|
Part I REFERENCES
1.Monk, P. M. S.; Mortimer, R. J.; Rosseinsky, D. R. Electrochromism and Electrochromic Devices, Cambridge University Press, Cambridge, UK, 2007. 2.(a) Baetens, R.; Jelle, B. P.; Gustavsen, A. requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: a stste-of-the-art review. Sol. Energy Mater. Sol. Cells 2010, 94, 87–105; (b) Mortimer, R. J.; Dyer, A. L.; Reynolds, J. R. Electrochromic organic and polymeric materials for display applications. Displays 2006, 27, 2–18; (c) Andersson, P.; Forchheimer, R.; Tehrani, P.; Berggren, M. Printable all-organic electrochromic active-matrix displays. Adv. Funct. Mater. 2007, 17, 3074–3082; (d) Tehrani, P.; Hennerdal, L.-O.; Dyer, A. L.; Reynolds, J. R.; Berggren, M. Improving the contrast of all-printed electrochromic polymer on paper displays. J. Mater. Chem. 2009, 19, 1799–1802; (e) Beaupre, S.; Breton, A.-C.; Dumas, J.; Leclerc, M. Multicolored electrochromic cells based on poly(2,7-Carbazole) derivatives for adaptive camouflage. Chem. Mater. 2009, 21, 1504–1513. 3.(a) Mortimer, R. J. Electrochromic materials. Chem. Soc. Rev. 1997, 26, 147-156; (b) Mortimer, R. J. Organic electrochromic materials. Electrochim. Acta 1999, 44, 2971-2981; (c) Rosseinsky, D. R.; Mortimer, R. J. Electrochromic systems and the prospects for devices. Adv. Mater. 2001, 13, 783–793; (d) Somani, P. S.; Radhakrishnan, S. Electrochromic materials and devices: present and future. Mater. Chem. Phys. 2002, 77, 117-133. 4.(a) Beaujuge, P. M.; Reynolds, J. R. Color control in π-conjugated organic polymers for use in electrochromic devices. Chem. Rev. 2010, 110, 268-320; (b) Beaujuge, P. M.; Amb, C. M.; Reynolds, J. R. Spectral engineering in π-conjugated polymers with intramolecular donor-acceptor interactions. Acc. Chem. Res. 2010, 43, 1395-1407; (c) Amb, C. M.; Dyer, A. L.; Reynolds, J. R. Navigating the color palette of solution-processable electrochromic polymers. Chem. Mater. 2011, 23, 397-415. 5.(a) Amb, C. M.; Beaujuge, P. M.; Reynolds, J. R. Spray-processable blue-to-highly transmissive switching polymer electrochromes via the donor-acceptor approach. Adv. Mater. 2010, 22, 724-728; (b) Shi, P.; Amb, C. M.; Knott, E. P.; Thompon, E. J.; Liu, D. Y.; Mei, J.; Dyer, A. L.; Reynolds, J. R. Broadly absorbing black to transmissive switching electrochromic polymers. Adv. Mater. 2010, 22, 4949-4953; (c) Icli, M.; Pamuk, M.; Algi, F.; Onal, A. M.; Cihaner, A. A new soluble neutral state black electrochromic copolymer via a donor–acceptor approach. Org. Electron. 2010, 11, 1255-1260; (d) Ozkut, M. I.; Atak, S.; Onal, A. M.; Cihaner, A. A blue to highly transmissive soluble electrochromic polymer based on poly(3,4-propylenedioxyselenophene) with a high stability and coloration efficiency. J. Mater. Chem. 2011, 21, 5268-5272. 6.(a) Thelakkat, M. Star-shaped, dendrimeric and polymeric triarylamines as photoconductors and hole transport materials for electro-optical applications. Macromol. Mater. Eng. 2002, 287, 442-461; (b) Shirota, Y.; Kageyama, H. Charge carrier transporting molecular materials and their applications in devices. Chem. Rev. 2007, 107, 953-1010. 7.(a) Chou, M.-Y.; Leung, M.-K.; Su, Y. O.; Chiang, C. L.; Lin, C.-C, Lin, J.-H.; Kuo, C.-K.; Mou, C.-Y. Electropolymerization of starburst triarylamines and their application to electrochromism and electroluminescence. Chem. Mater. 2004, 16, 654-661; (b) Beaupre, S.; Dumas, J.; Leclerc, M. Toward the development of new textile/plastic electrochromic cells using triphenylamine-based copolymers. Chem. Mater. 2006, 18, 4011-4018; (c) Natera, J.; Otero, L.; D’Eramo, F.; Sereno, L.; Fungo, F.; Wang, N.-S.; Tsai, Y.-M.; Wong, K.-T. Synthesis and properties of a novel cross-linked electroactive polymer formed from a bipolar starburst monomer. Macromolecules 2009, 42, 626-635. 8.(a) Cheng, S.-H.; Hsiao, S.-H.; Su, T.-H.; Liou, G.-S. Novel aromatic poly(amine-imide)s bearing a pendent triphenylamine group: synthesis, thermal, photophysical, electrochemical, and electrochromic characteristics. Macromolecules 2005, 38, 307-316; (b) Hsiao, S.-H.; Liou, G.-S.; Kung, Y.-C.; Yen, H.-J. High contrast ratio and rapid switching electrochromic polymeric films based on 4-(dimethylamino)triphenylamine-functionalized aromatic polyamides. Macromolecules 2008, 41, 2800-2808; (c) Kung, Y.-C; Hsiao, S.-H. Fluorescent and electrochromic polyamides with pyrenylamine chromophores. J. Mater. Chem. 2010, 20, 5481-5492; (d) Kung, Y.-C.; Hsiao, S.-H. Solution-processable, high-Tg, ambipolar polyimide electrochromics bearing pyrenylamine units. J. Mater. Chem. 2011, 21, 1746-1754; (e) Yen, H.-J.; Lin, H.-Y.; Liou, G.-S. Transmissive to black electrochromic aramids with high near-infrared and multicolor electrochromism based on electroactive tetraphenylbenzidine units. J. Mater. Chem. 2011, 21, 6230-6237; (f) Yen, H.-J.; Liou, G.-S. Solution-processable triarylamine-based electroactive high performance polymers for anodically electrochromic applications. Polym. Chem. 2012, 3, 255-264. 9.Seo, E. T.; Nelson, R. F.; Fritsch, J. M.; Marcoux, L. S.; Leedy, D. W.; Adams, R. N. Anodic oxidation pathways of aromatic amines. Electrochemical and electron paramagnetic resonance studies. J. Am. Chem. Soc. 1966, 88, 3498-3503. 10.(a) Hagopian, L.; Kohler, G.; Walter, R. I. Substituent effects on the properties of stable aromatic free radicals. Oxidation-reduction potentials of triaryl-amine-triarylaminium ion systems. J. Phys. Chem. 1967, 71, 2290-2296; (b) Nelson, R. F.; Adams, R. N. Anodic oxidation pathways of substituted triphenylamines. II. Quantitative studies of benzidine formation. J. Am. Chem. Soc. 1968, 90, 3925-3930; (c) Creason, S. C.; Wheeler, J.; Nelson, R. F. Electrochemical and spectroscopic studies of cation radicals. I. Coupling rates of 4-substituted triphenylaminium ions. J. Org. Chem. 1972, 37, 4440-4446. 11.Hsiao, S.-H.; Liou, G.-S.; Wang, H.-M. Highly stable electrochromic polyamides based on N,N-bis(4-aminophenyl)-N’,N’-bis(4-tert-butylphenyl)- 1,4-phenylenediamine. J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 2330-2343. 12.Liou, G.-S.; Chang, C.-W. Highly stable anodic electrochromic aromatic polyamides containing N,N,N'',N''-tetraphenyl-p-phenylenediamine moieties: synthesis, electrochemical, and electrochromic properties. Macromolecules 2008, 41, 1667-1674. 13.Yamazaki, N.; Matsumoto, M.; Higashi, F. Studies on reactions of the N-phosphonium salts of pyridines. XIV. Wholly aromatic polyamides by the direct polycondensation reaction by using phosphites in the presence of metal salts. J. Polym. Sci. Polym. Chem. Ed. 1975, 13, 1373-1380. 14.(a) Sonmez, G. Polymeric electrocheomics. Chem. Commun. 2005, 5251-5259; (b) Balan, A.; Baran, D.; Gunbas, G.; Durmus, A.; Ozyurt, F.; Toppare, L. One polymer for all: benzotriazole containing donor-acceptor type polymer as a multi-purpose material. Chem. Commun. 2009, 6768-6770; (d) Koyunce, S.; Usluer, O.; Can, M.; Demic, S.; Icli, S.; Serdar, N. Electrochromic and electroluminescent devices based on a novel branched quasi-dendric fluorine-carbazole-2,5-bis(2-thoenyl)-1H-pyrrole system. J. Mater. Chem. 2011, 21, 2684-2693. 15.(a) Hsiao, S.-H.; Chang, Y.-M.; Chen, H.-W.; Liou, G.-S. Novel aromatic polyamides and polyimides functionalized with 4-tert-butyltriphenylamine groups. J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 4579-4592; (b) Chang, C.-W.; Liou, G.-S.; Hsiao, S.-H. Highly stable anodic green electrochromic aromatic polyamides: synthesis and electroctromic properties. J. Mater. Chem. 2007, 17, 1007-1015; (c) Chang, C.-W.; Liou, G.-S. Novel anodic electrochromic aromatic polyamides with multi-stage oxidative coloring based on N,N,N’,N’-tetraphenyl-p-phenylenediamine derivatives. J. Mater. Chem. 2008, 18, 5638-5646; (d) Wang, H.-M.; Hsiao, S.-H. Enhanced redox stability and electrochromic properties of aromatic polyamides based on N,N-bis(4-carboxyphenyl)-N’,N’-bis(4-tert-butylphenyl)-1,4-phenylenediamine J. Polym. Sci. Part A: Polym. Chem., 2011, 49, 337-351; (e) Yen, H.-J.; Lin, H.-Y.; Liou, G.-S. Novel starburst triarylamine-containing electroactive aramids with highly stable electrochroism in near-infrared and visible light regions. Chem. Mater. 2011, 23, 1874-1882.
Part II REFERENCES
1.(a) Polyimides; Wilson, D.; Stenzenberger, H. D.; Hergenrothe, P. M. Eds.; Blackie: Glasgow and London, 1990; (b) Sroog, C. E. Polyimides. Prog. Polym. Sci. 1991, 16, 561-694; (c) Polyimides: Fundamentals and Applications; Ghosh, M. K.; Mittal, K. L. Eds.; Marcel Dekker, New York, 1996; (d) Liaw, D.-J.; Wang, K.-L.; Huang, Y.-C.; Lee, K.-R.; Lai, J.-Y.; Ha, C.-S. Advanced polyimide materials: Syntheses, physical properties and applications. Prog. Polym. Sci. 2012, 37, 907-974. 2.(a) Huang, S. J.; Hoyt, A. E. The synthesis of soluble polyimides. Trends Polym. Sci. 1995, 3, 262-271; (b) de Abajo, J.; de la Campa, J. G. Processable aromatic polyimides. Adv. Polym. Sci. 1999, 140, 23-59; (c) Ding, M. Isomeric polyimides. Prog. Polym. Sci. 2007, 32, 623-668; (d) Dhara, M.-G.; Banerjee, S. Fluorinated high-performance polymers: Poly(arlene ether)s and aromatic polyimides containing trifluoromethyl groups. Prog. Polym. Sci. 2010, 35, 1022-1077. 3.(a) Yin, D.-X,; Li, Y.-F.; Yang, H.-X.; Yang, S.-Y.; Fan, L.; Liu J.-G. Synthesis and characterization of novel polyimides derived from 1,1-bis[4-(4''-aminophenoxy)-phenyl]-1-[3'',5''-bis(trifluoromethyl)-2,2,2-trifluoroethane Polymer 2005, 46, 3119-3127; (b) Lin, C.-H.; Lin, C.-H. Synthesis and properties of polyimides derived from 1,4-bis(4-aminophenoxy)-2- (6-oxido-6H-dibenz[c,e][1.2]oxaphosphorin-6-yl)phenylene. J. Polym. Sci. Part A: Polym. Chem. 2007, 45, 2897-2912; (c) Zhang, Q.; Chen, G.; Zang, S.-B. Synthesis and properties of novel soluble polyimides having a spirobisindane-linked dianhydride unit. Polymer 2007, 48, 2250-2256; (d) Zang, Q.; Li, S.-H.; Li, W.-M.; Zhang, S.-B. Synthesis and properties of novel organosoluble polyimides derived from 1,4-bis(3,4-dicarboxyphenoxy)- triptycene dianhydride and various aromatic diamines. Polymer 2007, 48, 6246-6253; (e) Chern, Y.-T., Tsai, J.-Y. Low dielectric constant and high organosolubility of novel polyimides derived from unsymmetric 1,4-bis(4-aminophenoxy)-2,6-di-tert-butylbenzene. Macromolecules 2008, 41, 9556-9564; (f) Chern, Y.-T.; Tsai, J.-Y.; Wang, J.-J. High Tg and high organosolubility of novel unsymmetrical polyimides. J. Polym. Sci. Part A: Polym. Chem. 2009, 47, 2443-2452; (g) Zhang, S.-J.; Li, Y.-F.; Ma, T.; Zhao, J.-J.; Xu, X.-Y.; Yang, F.-C.; Xiang, X.-Y. Organosolubility and optical transparency of novel polyimides derived from 2’,7’-bis(4-aminophenoxy)- spiro(fluorine-9,9’-xanthene). Polym. Chem. 2010, 1, 485-493; (h) Lin, C.-H.; Chang, S.-L.; Peng, L.-A.; Peng, S.-P.; Chung, Y.-H. Organo-soluble phosphinated polyimides from asymmetric diamines. Polymer 2010, 51, 3899-3906; (i) Lin, C.-H.; Chang, S.-L.; Cheng, P.-W. Soluble high-Tg polyetherimides with good flame retardancy based on an asymmetric phosphinated etherdiamine. J. Polym. Sci. Part A: Polym. Chem. 2011, 49, 1331-1340; (j) Hsiao, S.-H.; Wang, H.-M.; Chen, W.-J.; Lee, T.-M.; Leu, C.-M. Synthesis and properties of novel triptycene-based polyimides. J. Polym. Sci. Part A: Polym. Chem. 2011, 49, 3109-3120; (k) Hsiao, S.-H.; Wang, H.-M.; Chou, J.-S.; Guo, W.; Lee, T.-M.; Leu, C.-M.; Su, C.-W. Triptycene poly(ether-imide)s with high solubility and optical transparency. J. Polym. Res. 2012, 19, 9757 (12 pp). 4.(a) Oishi, Y.; Ishida, M.; Kakimoto, M.; Imai, Y.; Kurosaki, T. J. Polym. Sci. Part A: Polym. Chem. 1992, 30, 1937; (b) Liou, G.-S.; Hsiao, S.-H.; Ishida, M.; Kakimoto, M.; Imai, Y. J. Polym. Sci. Part A: Polym. Chem. 2002, 40, 3815-3822; (c) Liaw, D.-J.; Hsu, P.-N.; Chen, W.-H.; Lin, S.-L. High glass transitions of new polyamides, polyimides, and poly(amide-imide)s containing a triphenlamine group: Synthesis and characterization. Macromolecules 2002, 35, 4669-4676; (d) Li, W.-M.; Li, S.-H.; Zang, Q.-Y.; Zang, S.-B. Synthesis of bis(amine anhydride)s for novel high Tgs and organosoluble poly(amine imide)s by palladium-catalyzed amination of 4-chlorophthalic anhydride. Macromolecules 2007, 40, 8205-8211. 5.(a) Cheng, S.-H.; Hsiao, S.-H.; Su, T.-H.; Liou, G.-S. Novel aromatic poly(amine imide)s bearing a pendent triphenylamine group: synthesis, thermal, photophysical, electrochemical, and electrochromic characteristics. Macromolecules 2005, 38, 307-316; (b) Liou, G.-S.; Hsiao, S.-H.; Chen, H.-W. Novel high-Tg poly(amine imide)s bearing a pendent N-phenylcarbazole units: synthesis and photophysical, electrochemical, and electrochromic characteristics. J. Mater. Chem. 2006, 16, 1831-1842; (c) Wang, H.-M.; Hsiao, S.-H. Electrochemically and electrochromically stable polyimides bearing tert-butyl-blocked N,N,N’,N’-tetraphenyl-1,4-phenylenediamine units. Polymer 2009, 50, 1692–1699; (d) Hsiao, S.-H.; Liou, G.-S.; Kung, Y.-C.; Pan, H.-Y.; Kuo, C.-H. Electroactive aromatic polyamides and polyimides with adamantylphenoxy-substituted triphenylamine units. Eur. Polym. J. 2009, 45, 2234–2248; (e) Kung, Y.-C. ; Hsiao, S.-H. Solution-processable, high-Tg, ambipolar polyimide electrochromics bearing pyrenylamine units. J. Mater. Chem. 2011, 21, 1746-1754; (f) Yen, H.-J.; Liou, G.-S. Solution-processable triarylamine-based electroactive high performance polymers for anodically electrochromic applications. Polym. Chem. 2012, 3, 255-264. 6.(a) Ling, Q.-D.; Chang, F.-C.; Song, Y.; Zhu, C.-X.; Liaw, D.-J.; Chan, D. S.-H.; Kang, E.-T.; Neoh, K.-G. Synthesis and dynamic random acess memory behavior of a functional polyimide. J. Am. Chem. Soc. 2006, 128, 8732-8733; (b) Lee, T.-J.; Chang, C.-W.; Hahm, S.-G.; Kim, K.; Park, S.; Kim, D.-M.; Kim. J.; Kwon, W. -S.; Liou, G. -S.; Ree, M. Programmable digital memory devices based on nanoscale thin films of a thermally dimensionally stable polyimide. Nanotechnology 2009, 20, 135204 (7pp); (c) Kuorosawa, T.; Chueh, C.-C.; Liu, C.-L.; Higashihara, T.; Ueda, M.; Chen, W.-C. High performance volatile polymeric memory devices based on novel triphenylamine-based polyimides containing mono- or dual-mediated phenoxy linkages. Macromolecules 2010, 43, 1236-1244.; (d) Wang, K.-L.; Liu, Y.-L.; Shih, I.-H.; Neoh, K.-G.; Kang, E.-T. Synthesis of polyimides containing triphenylamine-substituted triazole moieties for polymer memory application. J. Polym. Sci. Part A: Polym. Chem. 2010, 48, 5790-5800. 7.Seo, E. T.; Nelson, R. F.; Fritsch, J. M.; Marcoux, L. S.; Leedy, D. W.; Adams, R. N. Anodic oxidation pathways of aromatic amines. Electrochemical and electron paramagnetic resonance studies. J. Am. Chem. Soc. 1966, 88, 3498-3503; (b) Nelson, R. F.; Adams, R. N. Anodic oxidation pathways of substituted triphenylamines. II. Quantitative studies of benzidine formation. J. Am. Chem. Soc. 1968, 90, 3925-3930; 8.(a) Hagopian, L.; Kohler, G.; Walter, R. I. Substituent effects on the properties of stable aromatic free radicals. Oxidation-reduction potentials of triaryl-amine-triarylaminium ion systems. J. Phys. Chem. 1967, 71, 2290-2296; (b) Creason, S. C.; Wheeler, J.; Nelson, R. F. Electrochemical and spectroscopic studies of cation radicals. I. Coupling rates of 4-substituted triphenylaminium ions. J. Org. Chem. 1972, 37, 4440-4446. 9.(a) Hsiao, S.-H.; Chang, Y.-M.; Chen, H.-W., Liou, G.-S. Novel aromatic polyamides and polyimides functionalized with 4-tert-butyltriphenlamine groups. J. Polym. Sci. Part A: Polym. Chem. 2006, 44, 4579-4592; (b) Kung, Y.-C.; Liou, G.-S.; Hsiao, S.-H. Synthesis and characterization of novel electroactive polyamides and polyimides with bulky 4-(1-adamantoxy)triphenylamine moieties J Polym Sci Part A: Polym Chem 2009, 47, 1740–1755.
|