跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2025/01/18 03:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周于丹
研究生(外文):Yu-Tan Chou
論文名稱:側鏈含三苯胺結構之芳香族聚醯胺與聚醯亞胺的合成與電致變色性質之研究
論文名稱(外文):Synthesis and Electrochromic Properties of Aromatic Polyamides and Polyimides Bearing Pendent Triphenylamine Units
指導教授:蕭勝輝
指導教授(外文):Sheng-Huei Hsiao
口試委員:陳志堅陳耀騰劉貴生
口試委員(外文):Jyh-Chien ChenYaw-Terng ChenGuey-Sheng Liou
口試日期:2012-07-30
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:103
中文關鍵詞:聚醯胺聚醯亞胺三苯胺電化學電致變色光譜電化學
外文關鍵詞:polyamidespolyimidestriphenylamineelectrochemistryelectrochromismspectroelectrochemistry
相關次數:
  • 被引用被引用:0
  • 點閱點閱:183
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文在探討三種新型懸掛三苯胺側鏈基的芳香族二胺單體分別為4-(3,5-diaminobenzamido)triphenylamine (4)、4-(3,5-diaminobenzamido)-4'',4''-di- tert-butyltriphenylamine (t-Bu-4) 和 4-(3,5-diaminobenzamido)-4'',4''-dimethoxy triphenylamine (MeO-4)及由它們衍生的芳香族聚醯胺與聚醯亞胺之合成及特性。三個系列具電活性的聚醯胺是由這三種二胺單體分別與三種芳香族二羧酸經由磷酸化聚縮合反應而製得。這些聚醯胺均很容易溶於極性的有機溶劑當中,並可由它們的溶液塗佈及烘乾後製成具可撓曲性、強韌的薄膜。這些聚合物的玻璃態轉移溫度 (Tg) 在269-294 oC之間,受熱溫度超過470 oC才會達到10 %的重量損失,顯示它們具備良好的熱安定性。由二胺 t-Bu-4 與 MeO-4 所衍生的聚醯胺具有可逆的電化學氧化還原特性,它們的薄膜在電化學氧化還原的過程中會伴隨著明顯的顏色變化並具有高的光學對比度及電致變色穩定性。我們並以光譜電化學的量測結果來解釋它們的電致變色行為。由二胺 4 所衍生的聚醯胺在氧化的過程中所生成的三苯胺自由基陽離子會產生電偶合反應形成聯苯胺 (benzidine) 結構,此種新結構會使聚合物多一種氧化態及顏色變化。
此外,我們也用上述三種二胺單體分別與 4,4-oxydianiline (ODA) 混合再與兩種二酐 DSDA 及 6FDA 進行開環加成聚合得到聚醯胺酸,然後再經由化學閉環得到六種聚醯亞胺共聚物。這些聚醯亞胺均易溶於極性溶劑中,並且可由它們的的溶液塗佈鑄成具可撓曲性、強韌的薄膜。這些聚醯亞胺展現出優異的熱穩定性,其 Tg 值在269-294 oC之間。由高分子薄膜的循環伏安研究發現這些聚醯亞胺同時擁有p-和n-可掺雜特性並且具有多顏色的電致變色現象。與聚醯胺類似,由二胺 t-Bu-4 與 MeO-4 所衍生的聚醯亞胺具有可逆的電化學氧化還原特性,它們的薄膜在電化學氧化還原的過程中會伴隨著明顯的顏色變化並具有高的光學對比度及電致變色穩定性。由二胺 4 所衍生的聚醯亞胺在氧化的過程中所生成的三苯胺自由基陽離子也會產生電偶合反應形成聯苯胺的結構,此種新結構也會使聚醯亞胺多出一種氧化態及顏色變化。


This thesis describes the synthesis and properties of three new aromatic diamine monomers with pendent triphenylamine group including 4-(3,5-diaminobenzamido)triphenylamine (4), 4-(3,5-diaminobenzamido)-4'',4''-di- tert-butyltriphenylamine (t-Bu-4) and 4-(3,5-diaminobenzamido)-4'',4''-dimethoxy- triphenylamine (MeO-4) and their derived aromatic polyamides and polyimides. Three series of electroactive polyamides were synthesized from these three diamines with three aromatic dicarboxylic acids via the phosphorylation polyamidation reactions. The resulting polyamides are easily soluble in polar organic solvents and can be solution-cast into flexible and strong films. They exhibited good thermal stability with glass-transition temperatures (Tg) in the range of 269-294oC and 10% weight-loss temperatures in excess of 470 oC. The polyamides derived from diamines t-Bu-4 and MeO-4 exhibited reversible electrochemical oxidation, accompanied by strong color changes with high contrast ratio and electrochromic stability. The remarkable electrochromic behavior of the polymer film is clearly interpreted on the basis of spectroelectrochemical studies. For the polyamides derived from diamine 4, the triphenylamine radical cations formed during the oxidative process will dimerize to a benzidine structure, leading to an additional oxidation state and color change.
Aromatic polyimides with pendent triphenylamine group were synthesized from equimolar mixture of 4,4''-diaminodiphenyl ether and each of the newly synthesized diamines with two tetracarboxylic dianhydrides (DSDA and 6FDA) via a conventional two-steps procedure that included a ring-opening polyaddition to give poly(amic acid)s, following by chemical cyclodehydration. These polymers exhibited good solubility in polar organic solvents and could be solution-cast into tough and flexible polymer films. They showed excellent thermal stability, with Tg values in the range of 284-309 oC. Similar to that of polyamides, the polyimides derived from diamines t-Bu-4 and MeO-4 exhibited reversible electrochemical oxidation, accompanied by strong color changes with high contrast ratio and electrochromic stability. For the polyimides derived from diamine 4, the triphenylamine radical cations formed during the oxidative process also could couple to a benzidine structure, leading to an additional oxidation state and color change.


TABLE OF CONTENTS

摘 要 i
ABSTRACT iii
ACKNOWLEDGEMENTS v
TABLE OF CONTENTS vi
LIST OF SCHEMES viii
LIST OF TABLES ix
LIST OF FIGURES x

Part I 1
ABSTRACT 2
CHAPTER 1 INTRODUCTION 3
CHAPTER 2 EXPERIMENTAL 5
2.1 Materials 5
2.2 Monomer Synthesis 6
2.2.1 Synthesis of Dinitro Compounds 6
2.2.1.1 4-(3,5-Dinitrobenzamido)triphenylamine (3) 6
2.2.1.2 4-(3,5-Dinitrobenzamido)-4'',4''-di-tert-butyltriphenylamine (t-Bu-3) 7
2.2.1.3 4-(3,5-Dinitrobenzamido)-4'',4''-dimethoxytriphenylamine (MeO-3) 8
2.2.2 Synthesis of Diamine Monomers 9
2.2.2.1 4-(3,5-Diaminobenzamido)triphenylamine (4) 9
2.2.2.2 4-(3,5-Diaminobenzamido)-4'',4''-di-tert-butyltriphenylamine (t-Bu-4) 10
2.2.2.3 4-(3,5-Diaminobenzamido)-4'',4''-dimethoxytriphenylamine (MeO-4) 11
2.3 Polymer Synthesis 11
2.4 Preparation of the Polyamide Films 12
2.5 Instrumentation and Measurements 12
CHAPTER 3 RESULTS AND DISCUSSION 14
3.1 Monomer Synthesis 14
3.2 Polymer Synthesis 25
3.3 Polymer Properties 31
3.3.1 Crystallinity and Solubility 31
3.3.2 Thermal Properties 33
3.3.3 Electrochemical Properties 38
3.3.4 Spectroelectrochemical and Electrochromic Properties 43
CHAPTER 4 CONCLUSIONS 55
REFERENCES 56

Part II 61
ABSTRACT 62
CHAPTER 1 INTRODUCTION 63
CHAPTER 2 EXPERIMENTAL 65
2.1 Materials 65
2.2 Synthesis of Polyimides 65
2.3 Fabrication of Electrochromic Device 67
2.4 Instrumentation and Measurements 67
CHAPTER 3 RESULRS AND DISCUSSION 69
3.1 Polymer Synthesis 69
3.2 Polymer Properties 76
3.2.1 Basic Characterization 76
3.2.2 Thermal Properties 78
3.2.3 Electrochemical Properties 81
3.3.4 Spectroelectrochemical and Electrochromic Properties 88
3.3.5 Electrochromic Switching and Stability 92
3.3.6 Electrochromic Device 96
CHAPTER 4 CONCLUSIONS 98
REFERENCES 99


LIST OF SCHEMES

PART I
Scheme 1. Synthesis of TPA-NH2 compounds 2, t-Bu-2, and MeO-2. 5
Scheme 2. Synthesis of diamine monomers 4, t-Bu-4, and MeO-4. 14
Scheme 3. Synthesis of polyamides. 26
Scheme 4. Dimerization of TPA units through oxidative coupling and the subsequent oxidation processes of the formed tetraphenylbenzidine segment. 42

PART II
Scheme 1. Synthesis of polyimides and their cast films 71
Scheme 2. Electrochemical coupling reaction of the TPA radical cations and the subsequent oxidation reaction of the resulting tetraphenylbenzidine (TPB) segment. 87
Scheme 3. Postulated reduction chemistry of the DSDA and 6FDA imide systems. 87



LIST OF TABLES

PART I
Table 1. Inherent Viscosity and Solubility Behavior of Polyamides 32
Table 2. Thermal Properties of Polyamides 35
Table 3. Redox Potentials and Energy Levels of Polyamides 40
Table 4. Electrochromic Properties of Polyamides 49

PART II
Table 1. Inherent Viscosity and Solubility Behavior of Polyimides 77
Table 2. Thermal Properties of the Polyimides 79
Table 3. Redox Potentials and Energy Levels of Polyimides 83
Table 4. Electrochromic Properties of Polyimides 95



LIST OF FIGURES

PART I
Figure 1. IR spectra diamine monomer 4 and its precursor compounds. 16
Figure 2. IR spectra of diamine monomer t-Bu-4 and its precursor compounds. 17
Figure 3. IR spectra of diamine monomer MeO-4 and its precursor compounds. 18
Figure 4. (a) 1H NMR, (b) 13C NMR, (c) H-H COSY, and (d) C-H HMQC spectra of dinitro compound 3 in DMSO-d6. 19
Figure 5. (a) 1H NMR, (b) 13C NMR, (c) H-H COSY, and (d) C-H HMQC spectra of the diamine monomer 4 in DMSO-d6 20
Figure 6. (a) 1H NMR and (b) H-H COSY spectra of dinitro compound t-Bu-3 in DMSO-d6 21
Figure 7. (a) 1H NMR, (b) 13C NMR, (c) H-H COSY, and (d) C-H HMQC spectra of diamino compound t-Bu-4 in DMSO-d6. 22
Figure 8. (a) 1H NMR, (b) 13C NMR, (c) H-H COSY, and (d) C-H HMQC spectra of dinitro compound MeO-3 in DMSO-d6. 23
Figure 9. (a) 1H NMR and (b) 13C NMR spectra of the diamine monomer MeO-4 in DMSO-d6. 24
Figure 10. IR spectra of polyamides 6b, t-Bu-6b, and MeO-6b. 27
Figure 11. (a) 1H NMR, (b) 13C NMR, (c) H-H COSY, and (d) C-H HMQC spectra of polyamide 6b in DMSO-d6. 28
Figure 12. (a) 1H NMR and (b) H-H COSY spectra of polyamide t-Bu-6b in DMSO-d6. 29
Figure 13. (a) 1H NMR and (b) H-H COSY spectra of polyamide MeO-6b in DMSO-d6. 30
Figure 14. WAXD patterns of the polyamide films. 31
Figure 15. TGA curves of polyamides 6b, t-Bu-6b and MeO-6b in (a) nitrogen and (b) air at a heating rate 20oC/min. 36
Figure 16. TMA and DSC curves of polyamide MeO-6b at a heating rate of 10 oC/min and 20 oC/min, respectively. 37
Figure 17. Cyclic voltammograms of the cast films of polyamides 6b, t-Bu-6b, and MeO-6b on an ITO-coated glass substrate in 0.1 M Bu4NClO4/CH3CN solution at a scan rate of 50 mV/s. 41
Figure 18. Repetitive cyclic voltammograms (2nd to 10th scan) of: the cast films of polyamide 6b and MeO-6b on an ITO-coated glass substrate in 0.1 M Bu4NClO4/CH3CN solution at a scan rate of 50 mV/s. The inset showed a linear plot of the anodic current of polymer MeO-6b grown at 0.80 V vs. the number of scans. 41
Figure 19. Spectral changes of the cast film of polyamide 6b on an ITO-coated glass in 0.1 M Bu4NClO4/CH3CN at various applied potentials (vs Ag/AgCl): (a) the first series and (b) the second series. 46
Figure 20. Spectral changes of the cast films of polyamides (a) t-Bu-6b and (b) MeO-6b on an ITO-coated glass in 0.1 M Bu4NClO4/CH3CN at various applied potentials (vs Ag/AgCl). 47
Figure 21. Current densities monitored and optical transmittance changes for polyamides (a) 6b at 760 nm, the potential between 0 and 1.0 V (vs. Ag/AgCl), (b) t-Bu-6b at 762 nm, between 0 and 0.9 V), and (c) MeO-6b at 755 nm, between 0 and 0.9 V. 48
Figure 22. Electrochromic switching, current, and optical response to potential steps for polyamides (a) 6b and (b) MeO-6b in 0.1 M Bu4NClO4/CH3CN. 50

PART II
Figure 1. IR spectra of (a) polyimide 5b and (b) its poly(amic acid) precursor. 72
Figure 2. (a)1H NMR spectrum and (b) H-H COSY spectrum of polyimide 5b. 73
Figure 3. (a)1H NMR spectrum and (b) H-H COSY spectrum of polyimide t-Bu-5b. 74
Figure 4. (a)1H NMR spectrum and (b) H-H COSY spectrum of polyimide MeO-5b. 75
Figure 5. WAXD patterns of the thin films of polyimides. 77
Figure 6. DSC curves (the second scans after quenching from 400 oC) of all the polyimides with a heating rate of 20 oC/min. 79
Figure 7. TGA curves of polyimides 5a, t-Bu-5a and MeO-5a: (a) in nitrogen and (b) in air, with a heating rate 20 oC/min. 80
Figure 8. Anodic cyclic voltammograms of the cast films of polyimides 5a, t-Bu-5a, and MeO-5a on an ITO-coated glass substrate in 0.1 M Bu4NClO4/CH3CN solution at a scan rate of 50 mV/s. 84
Figure 9. Repetitive anodic CV scans of the cast film of polyimide 5a on an ITO-coated glass substrate in 0.1 M Bu4NClO4/CH3CN solution at a scan rate of 50 mV/s. 85
Figure 10. Cyclic voltammograms of the cast films of polyimides (a) 5a, (b) 5b, (c) t-Bu-5a, (d) t-Bu-5b, (e) MeO-5a, and (f) MeO-5b on an ITO-coated glass substrate in 0.1 M Bu4NClO4/CH3CN (for anodic process) and DMF (for cathodic process) solution at a scan rate of 50 and 100 mV/s, respectively. 86
Figure 11. Spectral changes of the cast film of polyimides on an ITO-coated glass in 0.1 M Bu4NClO4/CH3CN at various applied potentials (vs Ag/AgCl): (a) the first series for polyimide 5b, (b) the second series for polyimide 5b, (c) the first series for polyimide MeO-5b, and (d) the second series for polyimide MeO-5b. 90
Figure 12. Spectroelectrochemistry of polyimide t-Bu-5b thin film on the ITO-coated glass substrate in 0.1 M Bu4NClO4/CH3CN (for the anodic oxidation) or DMF (for the cathodic reduction) at various applied potentials. 91
Figure 13. Optical transmittance change monitored at 750 nm for the polyimide thin films on ITO-glass slide in 0.1 M Bu4NClO4/CH3CN. (The dotted line represents the applied voltage.) 93
Figure 14. Potential step absorptometry of the cast film of polyimides on the ITO-glass slide by applying a potential step: (a) 5b (b) t-Bu-5b (c) MeO-5b for 10 cycles and (d) MeO-5b for 50 cycles. 94
Figure 15. (a) Photos of single-layer ITO-coated glass electrochromic device, using polyimide MeO-5b as active layer. (b) Schematic diagram of polyimide ECD sandwich cell. 97



Part I
REFERENCES

1.Monk, P. M. S.; Mortimer, R. J.; Rosseinsky, D. R. Electrochromism and Electrochromic Devices, Cambridge University Press, Cambridge, UK, 2007.
2.(a) Baetens, R.; Jelle, B. P.; Gustavsen, A. requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: a stste-of-the-art review. Sol. Energy Mater. Sol. Cells 2010, 94, 87–105; (b) Mortimer, R. J.; Dyer, A. L.; Reynolds, J. R. Electrochromic organic and polymeric materials for display applications. Displays 2006, 27, 2–18; (c) Andersson, P.; Forchheimer, R.; Tehrani, P.; Berggren, M. Printable all-organic electrochromic active-matrix displays. Adv. Funct. Mater. 2007, 17, 3074–3082; (d) Tehrani, P.; Hennerdal, L.-O.; Dyer, A. L.; Reynolds, J. R.; Berggren, M. Improving the contrast of all-printed electrochromic polymer on paper displays. J. Mater. Chem. 2009, 19, 1799–1802; (e) Beaupre, S.; Breton, A.-C.; Dumas, J.; Leclerc, M. Multicolored electrochromic cells based on poly(2,7-Carbazole) derivatives for adaptive camouflage. Chem. Mater. 2009, 21, 1504–1513.
3.(a) Mortimer, R. J. Electrochromic materials. Chem. Soc. Rev. 1997, 26, 147-156; (b) Mortimer, R. J. Organic electrochromic materials. Electrochim. Acta 1999, 44, 2971-2981; (c) Rosseinsky, D. R.; Mortimer, R. J. Electrochromic systems and the prospects for devices. Adv. Mater. 2001, 13, 783–793; (d) Somani, P. S.; Radhakrishnan, S. Electrochromic materials and devices: present and future. Mater. Chem. Phys. 2002, 77, 117-133.
4.(a) Beaujuge, P. M.; Reynolds, J. R. Color control in π-conjugated organic polymers for use in electrochromic devices. Chem. Rev. 2010, 110, 268-320; (b) Beaujuge, P. M.; Amb, C. M.; Reynolds, J. R. Spectral engineering in π-conjugated polymers with intramolecular donor-acceptor interactions. Acc. Chem. Res. 2010, 43, 1395-1407; (c) Amb, C. M.; Dyer, A. L.; Reynolds, J. R. Navigating the color palette of solution-processable electrochromic polymers. Chem. Mater. 2011, 23, 397-415.
5.(a) Amb, C. M.; Beaujuge, P. M.; Reynolds, J. R. Spray-processable blue-to-highly transmissive switching polymer electrochromes via the donor-acceptor approach. Adv. Mater. 2010, 22, 724-728; (b) Shi, P.; Amb, C. M.; Knott, E. P.; Thompon, E. J.; Liu, D. Y.; Mei, J.; Dyer, A. L.; Reynolds, J. R. Broadly absorbing black to transmissive switching electrochromic polymers. Adv. Mater. 2010, 22, 4949-4953; (c) Icli, M.; Pamuk, M.; Algi, F.; Onal, A. M.; Cihaner, A. A new soluble neutral state black electrochromic copolymer via a donor–acceptor approach. Org. Electron. 2010, 11, 1255-1260; (d) Ozkut, M. I.; Atak, S.; Onal, A. M.; Cihaner, A. A blue to highly transmissive soluble electrochromic polymer based on poly(3,4-propylenedioxyselenophene) with a high stability and coloration efficiency. J. Mater. Chem. 2011, 21, 5268-5272.
6.(a) Thelakkat, M. Star-shaped, dendrimeric and polymeric triarylamines as photoconductors and hole transport materials for electro-optical applications. Macromol. Mater. Eng. 2002, 287, 442-461; (b) Shirota, Y.; Kageyama, H. Charge carrier transporting molecular materials and their applications in devices. Chem. Rev. 2007, 107, 953-1010.
7.(a) Chou, M.-Y.; Leung, M.-K.; Su, Y. O.; Chiang, C. L.; Lin, C.-C, Lin, J.-H.; Kuo, C.-K.; Mou, C.-Y. Electropolymerization of starburst triarylamines and their application to electrochromism and electroluminescence. Chem. Mater. 2004, 16, 654-661; (b) Beaupre, S.; Dumas, J.; Leclerc, M. Toward the development of new textile/plastic electrochromic cells using triphenylamine-based copolymers. Chem. Mater. 2006, 18, 4011-4018; (c) Natera, J.; Otero, L.; D’Eramo, F.; Sereno, L.; Fungo, F.; Wang, N.-S.; Tsai, Y.-M.; Wong, K.-T. Synthesis and properties of a novel cross-linked electroactive polymer formed from a bipolar starburst monomer. Macromolecules 2009, 42, 626-635.
8.(a) Cheng, S.-H.; Hsiao, S.-H.; Su, T.-H.; Liou, G.-S. Novel aromatic poly(amine-imide)s bearing a pendent triphenylamine group: synthesis, thermal, photophysical, electrochemical, and electrochromic characteristics. Macromolecules 2005, 38, 307-316; (b) Hsiao, S.-H.; Liou, G.-S.; Kung, Y.-C.; Yen, H.-J. High contrast ratio and rapid switching electrochromic polymeric films based on 4-(dimethylamino)triphenylamine-functionalized aromatic polyamides. Macromolecules 2008, 41, 2800-2808; (c) Kung, Y.-C; Hsiao, S.-H. Fluorescent and electrochromic polyamides with pyrenylamine chromophores. J. Mater. Chem. 2010, 20, 5481-5492; (d) Kung, Y.-C.; Hsiao, S.-H. Solution-processable, high-Tg, ambipolar polyimide electrochromics bearing pyrenylamine units. J. Mater. Chem. 2011, 21, 1746-1754; (e) Yen, H.-J.; Lin, H.-Y.; Liou, G.-S. Transmissive to black electrochromic aramids with high near-infrared and multicolor electrochromism based on electroactive tetraphenylbenzidine units. J. Mater. Chem. 2011, 21, 6230-6237; (f) Yen, H.-J.; Liou, G.-S. Solution-processable triarylamine-based electroactive high performance polymers for anodically electrochromic applications. Polym. Chem. 2012, 3, 255-264.
9.Seo, E. T.; Nelson, R. F.; Fritsch, J. M.; Marcoux, L. S.; Leedy, D. W.; Adams, R. N. Anodic oxidation pathways of aromatic amines. Electrochemical and electron paramagnetic resonance studies. J. Am. Chem. Soc. 1966, 88, 3498-3503.
10.(a) Hagopian, L.; Kohler, G.; Walter, R. I. Substituent effects on the properties of stable aromatic free radicals. Oxidation-reduction potentials of triaryl-amine-triarylaminium ion systems. J. Phys. Chem. 1967, 71, 2290-2296; (b) Nelson, R. F.; Adams, R. N. Anodic oxidation pathways of substituted triphenylamines. II. Quantitative studies of benzidine formation. J. Am. Chem. Soc. 1968, 90, 3925-3930; (c) Creason, S. C.; Wheeler, J.; Nelson, R. F. Electrochemical and spectroscopic studies of cation radicals. I. Coupling rates of 4-substituted triphenylaminium ions. J. Org. Chem. 1972, 37, 4440-4446.
11.Hsiao, S.-H.; Liou, G.-S.; Wang, H.-M. Highly stable electrochromic polyamides based on N,N-bis(4-aminophenyl)-N’,N’-bis(4-tert-butylphenyl)- 1,4-phenylenediamine. J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 2330-2343.
12.Liou, G.-S.; Chang, C.-W. Highly stable anodic electrochromic aromatic polyamides containing N,N,N'',N''-tetraphenyl-p-phenylenediamine moieties: synthesis, electrochemical, and electrochromic properties. Macromolecules 2008, 41, 1667-1674.
13.Yamazaki, N.; Matsumoto, M.; Higashi, F. Studies on reactions of the N-phosphonium salts of pyridines. XIV. Wholly aromatic polyamides by the direct polycondensation reaction by using phosphites in the presence of metal salts. J. Polym. Sci. Polym. Chem. Ed. 1975, 13, 1373-1380.
14.(a) Sonmez, G. Polymeric electrocheomics. Chem. Commun. 2005, 5251-5259; (b) Balan, A.; Baran, D.; Gunbas, G.; Durmus, A.; Ozyurt, F.; Toppare, L. One polymer for all: benzotriazole containing donor-acceptor type polymer as a multi-purpose material. Chem. Commun. 2009, 6768-6770; (d) Koyunce, S.; Usluer, O.; Can, M.; Demic, S.; Icli, S.; Serdar, N. Electrochromic and electroluminescent devices based on a novel branched quasi-dendric fluorine-carbazole-2,5-bis(2-thoenyl)-1H-pyrrole system. J. Mater. Chem. 2011, 21, 2684-2693.
15.(a) Hsiao, S.-H.; Chang, Y.-M.; Chen, H.-W.; Liou, G.-S. Novel aromatic polyamides and polyimides functionalized with 4-tert-butyltriphenylamine groups. J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 4579-4592; (b) Chang, C.-W.; Liou, G.-S.; Hsiao, S.-H. Highly stable anodic green electrochromic aromatic polyamides: synthesis and electroctromic properties. J. Mater. Chem. 2007, 17, 1007-1015; (c) Chang, C.-W.; Liou, G.-S. Novel anodic electrochromic aromatic polyamides with multi-stage oxidative coloring based on N,N,N’,N’-tetraphenyl-p-phenylenediamine derivatives. J. Mater. Chem. 2008, 18, 5638-5646; (d) Wang, H.-M.; Hsiao, S.-H. Enhanced redox stability and electrochromic properties of aromatic polyamides based on N,N-bis(4-carboxyphenyl)-N’,N’-bis(4-tert-butylphenyl)-1,4-phenylenediamine J. Polym. Sci. Part A: Polym. Chem., 2011, 49, 337-351; (e) Yen, H.-J.; Lin, H.-Y.; Liou, G.-S. Novel starburst triarylamine-containing electroactive aramids with highly stable electrochroism in near-infrared and visible light regions. Chem. Mater. 2011, 23, 1874-1882.

Part II
REFERENCES

1.(a) Polyimides; Wilson, D.; Stenzenberger, H. D.; Hergenrothe, P. M. Eds.; Blackie: Glasgow and London, 1990; (b) Sroog, C. E. Polyimides. Prog. Polym. Sci. 1991, 16, 561-694; (c) Polyimides: Fundamentals and Applications; Ghosh, M. K.; Mittal, K. L. Eds.; Marcel Dekker, New York, 1996; (d) Liaw, D.-J.; Wang, K.-L.; Huang, Y.-C.; Lee, K.-R.; Lai, J.-Y.; Ha, C.-S. Advanced polyimide materials: Syntheses, physical properties and applications. Prog. Polym. Sci. 2012, 37, 907-974.
2.(a) Huang, S. J.; Hoyt, A. E. The synthesis of soluble polyimides. Trends Polym. Sci. 1995, 3, 262-271; (b) de Abajo, J.; de la Campa, J. G. Processable aromatic polyimides. Adv. Polym. Sci. 1999, 140, 23-59; (c) Ding, M. Isomeric polyimides. Prog. Polym. Sci. 2007, 32, 623-668; (d) Dhara, M.-G.; Banerjee, S. Fluorinated high-performance polymers: Poly(arlene ether)s and aromatic polyimides containing trifluoromethyl groups. Prog. Polym. Sci. 2010, 35, 1022-1077.
3.(a) Yin, D.-X,; Li, Y.-F.; Yang, H.-X.; Yang, S.-Y.; Fan, L.; Liu J.-G. Synthesis and characterization of novel polyimides derived from 1,1-bis[4-(4''-aminophenoxy)-phenyl]-1-[3'',5''-bis(trifluoromethyl)-2,2,2-trifluoroethane Polymer 2005, 46, 3119-3127; (b) Lin, C.-H.; Lin, C.-H. Synthesis and properties of polyimides derived from 1,4-bis(4-aminophenoxy)-2- (6-oxido-6H-dibenz[c,e][1.2]oxaphosphorin-6-yl)phenylene. J. Polym. Sci. Part A: Polym. Chem. 2007, 45, 2897-2912; (c) Zhang, Q.; Chen, G.; Zang, S.-B. Synthesis and properties of novel soluble polyimides having a spirobisindane-linked dianhydride unit. Polymer 2007, 48, 2250-2256; (d) Zang, Q.; Li, S.-H.; Li, W.-M.; Zhang, S.-B. Synthesis and properties of novel organosoluble polyimides derived from 1,4-bis(3,4-dicarboxyphenoxy)- triptycene dianhydride and various aromatic diamines. Polymer 2007, 48, 6246-6253; (e) Chern, Y.-T., Tsai, J.-Y. Low dielectric constant and high organosolubility of novel polyimides derived from unsymmetric 1,4-bis(4-aminophenoxy)-2,6-di-tert-butylbenzene. Macromolecules 2008, 41, 9556-9564; (f) Chern, Y.-T.; Tsai, J.-Y.; Wang, J.-J. High Tg and high organosolubility of novel unsymmetrical polyimides. J. Polym. Sci. Part A: Polym. Chem. 2009, 47, 2443-2452; (g) Zhang, S.-J.; Li, Y.-F.; Ma, T.; Zhao, J.-J.; Xu, X.-Y.; Yang, F.-C.; Xiang, X.-Y. Organosolubility and optical transparency of novel polyimides derived from 2’,7’-bis(4-aminophenoxy)- spiro(fluorine-9,9’-xanthene). Polym. Chem. 2010, 1, 485-493; (h) Lin, C.-H.; Chang, S.-L.; Peng, L.-A.; Peng, S.-P.; Chung, Y.-H. Organo-soluble phosphinated polyimides from asymmetric diamines. Polymer 2010, 51, 3899-3906; (i) Lin, C.-H.; Chang, S.-L.; Cheng, P.-W. Soluble high-Tg polyetherimides with good flame retardancy based on an asymmetric phosphinated etherdiamine. J. Polym. Sci. Part A: Polym. Chem. 2011, 49, 1331-1340; (j) Hsiao, S.-H.; Wang, H.-M.; Chen, W.-J.; Lee, T.-M.; Leu, C.-M. Synthesis and properties of novel triptycene-based polyimides. J. Polym. Sci. Part A: Polym. Chem. 2011, 49, 3109-3120; (k) Hsiao, S.-H.; Wang, H.-M.; Chou, J.-S.; Guo, W.; Lee, T.-M.; Leu, C.-M.; Su, C.-W. Triptycene poly(ether-imide)s with high solubility and optical transparency. J. Polym. Res. 2012, 19, 9757 (12 pp).
4.(a) Oishi, Y.; Ishida, M.; Kakimoto, M.; Imai, Y.; Kurosaki, T. J. Polym. Sci. Part A: Polym. Chem. 1992, 30, 1937; (b) Liou, G.-S.; Hsiao, S.-H.; Ishida, M.; Kakimoto, M.; Imai, Y. J. Polym. Sci. Part A: Polym. Chem. 2002, 40, 3815-3822; (c) Liaw, D.-J.; Hsu, P.-N.; Chen, W.-H.; Lin, S.-L. High glass transitions of new polyamides, polyimides, and poly(amide-imide)s containing a triphenlamine group: Synthesis and characterization. Macromolecules 2002, 35, 4669-4676; (d) Li, W.-M.; Li, S.-H.; Zang, Q.-Y.; Zang, S.-B. Synthesis of bis(amine anhydride)s for novel high Tgs and organosoluble poly(amine imide)s by palladium-catalyzed amination of 4-chlorophthalic anhydride. Macromolecules 2007, 40, 8205-8211.
5.(a) Cheng, S.-H.; Hsiao, S.-H.; Su, T.-H.; Liou, G.-S. Novel aromatic poly(amine imide)s bearing a pendent triphenylamine group: synthesis, thermal, photophysical, electrochemical, and electrochromic characteristics. Macromolecules 2005, 38, 307-316; (b) Liou, G.-S.; Hsiao, S.-H.; Chen, H.-W. Novel high-Tg poly(amine imide)s bearing a pendent N-phenylcarbazole units: synthesis and photophysical, electrochemical, and electrochromic characteristics. J. Mater. Chem. 2006, 16, 1831-1842; (c) Wang, H.-M.; Hsiao, S.-H. Electrochemically and electrochromically stable polyimides bearing tert-butyl-blocked N,N,N’,N’-tetraphenyl-1,4-phenylenediamine units. Polymer 2009, 50, 1692–1699; (d) Hsiao, S.-H.; Liou, G.-S.; Kung, Y.-C.; Pan, H.-Y.; Kuo, C.-H. Electroactive aromatic polyamides and polyimides with adamantylphenoxy-substituted triphenylamine units. Eur. Polym. J. 2009, 45, 2234–2248; (e) Kung, Y.-C. ; Hsiao, S.-H. Solution-processable, high-Tg, ambipolar polyimide electrochromics bearing pyrenylamine units. J. Mater. Chem. 2011, 21, 1746-1754; (f) Yen, H.-J.; Liou, G.-S. Solution-processable triarylamine-based electroactive high performance polymers for anodically electrochromic applications. Polym. Chem. 2012, 3, 255-264.
6.(a) Ling, Q.-D.; Chang, F.-C.; Song, Y.; Zhu, C.-X.; Liaw, D.-J.; Chan, D. S.-H.; Kang, E.-T.; Neoh, K.-G. Synthesis and dynamic random acess memory behavior of a functional polyimide. J. Am. Chem. Soc. 2006, 128, 8732-8733; (b) Lee, T.-J.; Chang, C.-W.; Hahm, S.-G.; Kim, K.; Park, S.; Kim, D.-M.; Kim. J.; Kwon, W. -S.; Liou, G. -S.; Ree, M. Programmable digital memory devices based on nanoscale thin films of a thermally dimensionally stable polyimide. Nanotechnology 2009, 20, 135204 (7pp); (c) Kuorosawa, T.; Chueh, C.-C.; Liu, C.-L.; Higashihara, T.; Ueda, M.; Chen, W.-C. High performance volatile polymeric memory devices based on novel triphenylamine-based polyimides containing mono- or dual-mediated phenoxy linkages. Macromolecules 2010, 43, 1236-1244.; (d) Wang, K.-L.; Liu, Y.-L.; Shih, I.-H.; Neoh, K.-G.; Kang, E.-T. Synthesis of polyimides containing triphenylamine-substituted triazole moieties for polymer memory application. J. Polym. Sci. Part A: Polym. Chem. 2010, 48, 5790-5800.
7.Seo, E. T.; Nelson, R. F.; Fritsch, J. M.; Marcoux, L. S.; Leedy, D. W.; Adams, R. N. Anodic oxidation pathways of aromatic amines. Electrochemical and electron paramagnetic resonance studies. J. Am. Chem. Soc. 1966, 88, 3498-3503; (b) Nelson, R. F.; Adams, R. N. Anodic oxidation pathways of substituted triphenylamines. II. Quantitative studies of benzidine formation. J. Am. Chem. Soc. 1968, 90, 3925-3930;
8.(a) Hagopian, L.; Kohler, G.; Walter, R. I. Substituent effects on the properties of stable aromatic free radicals. Oxidation-reduction potentials of triaryl-amine-triarylaminium ion systems. J. Phys. Chem. 1967, 71, 2290-2296; (b) Creason, S. C.; Wheeler, J.; Nelson, R. F. Electrochemical and spectroscopic studies of cation radicals. I. Coupling rates of 4-substituted triphenylaminium ions. J. Org. Chem. 1972, 37, 4440-4446.
9.(a) Hsiao, S.-H.; Chang, Y.-M.; Chen, H.-W., Liou, G.-S. Novel aromatic polyamides and polyimides functionalized with 4-tert-butyltriphenlamine groups. J. Polym. Sci. Part A: Polym. Chem. 2006, 44, 4579-4592; (b) Kung, Y.-C.; Liou, G.-S.; Hsiao, S.-H. Synthesis and characterization of novel electroactive polyamides and polyimides with bulky 4-(1-adamantoxy)triphenylamine moieties J Polym Sci Part A: Polym Chem 2009, 47, 1740–1755.


電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊