跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/07/30 03:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳贏宏
研究生(外文):Ying-Hong Wu
論文名稱:含分枝狀高分子半互穿式網狀結構鋰電解質
論文名稱(外文):Semi-interpenetrating Network Polymer Lithium Electrolytes with Branched Polymers
指導教授:鄭國忠鄭國忠引用關係
口試委員:韓錦鈴林達鎔蔡德華
口試日期:2012-06-28
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:139
中文關鍵詞:離子導電度聚氧化乙烯分枝狀高分子高分子電解質化學誘發相分離環氧樹脂薄膜
外文關鍵詞:ionic conductivityPEO-based branched polymerpolyelectrolytechemically induced phase separationepoxymembrane
相關次數:
  • 被引用被引用:0
  • 點閱點閱:119
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
第一部分
本研究利用聚氧化乙烯分枝狀高分子鋰電解質︰BP6(15)摻混三種不同結構環氧樹脂,分別為長鏈型的聚乙二醇環氧樹脂(D.E.R.732)、雙官能基單體poly(ethylene glycol) diglycidyl ether (PEGDE) 與雙酚A型的環氧樹脂(D.E.R.331),在以二次乙基三胺(DETA)作為硬化劑,製備具半互穿式網狀結構高分子鋰電解質。藉由環氧基滴定與FTIR鑑定轉化率及其結構;所得之半互穿式網狀結構高分子鋰電解質,利用交流阻抗分析法(ac-impendance)測得其離子導電度,探討加入不同結構環氧樹脂、不同結構環氧樹脂事先添加鋰鹽、BP6(15)含量對離子導電度之影響。利用DSC測得其玻璃轉移溫度(Tg)、熔點(Tm)與結晶度,分析其對離子導電度之影響,其Tg約為-49℃ ~139℃,並經由TGA分析所製備出來的半互穿式網狀結構鋰電解質有高的熱穩定性。其中以D.E.R.732事先添加鋰鹽,BP6(15)含量為80%時的導電度為最佳,在70 ℃時可達2.88×10-4 S/cm。
第二部分
另外以化學誘發相分離製備具有孔洞互穿結構的環氧樹脂薄膜。以雙酚A型的環氧樹脂(D.E.R.331)溶入二異丁酮(diisobutyl ketone, DIBK)中,利用2,4,6-三(二甲胺基甲基)苯酚(2,4,6-tris-(dimethylaminomethyl)phenol, DMP-30)作為硬化劑,於硬化反應的過程中,誘發高分子與溶劑溶解度下降而引發相分離,以製備出多孔性高分子薄膜。實驗中以改變前硬化反應溫度、硬化劑比例來探討對薄膜表面與截面孔洞型態之影響。隨者硬化劑比例的增加時,製備出的薄膜其表面孔徑尺寸從1.19μm縮小到0.14μm,且整體孔隙度則也從0.63下降至0.14,隨者前硬化反應溫度增加時,製備出的薄膜其表面孔徑尺寸從1.1μm縮小到為緻密狀態,且整體孔隙度則也從0.55下降到0.21。在乙醇滲透率的測試中發現,根據不同的孔隙度大小其滲透率約在12至6205 L / m2‧h‧bar之間,並且也進一步探討滲透率對各薄膜阻力間之關係,結果發現乙醇的滲透率較低時,薄膜表面的阻力之影響較大。


Part I
The Synthesis and characteristics of branched polymer and semi-IPN Lithium Electrolytes formed from PEO-based branched polymer:BP6、poly(ether glycol) diglycidylether (PEGDE)、epichlorohydrin and polypropylene glycol (D.E.R.732)、diglycidyl ether of bisphenol A (D.E.R.331) and diethylenetriamine(DETA), adding lithium become a series of PEO based lithium polyelectrolytes in this study. The glass transition temperature of polyelectrolytes is from -49oC to -139oC. The lithium ionic conductivity of the branched polymer and semi-IPN Lithium Electrolytes of 2.88×10-4S/cm at 70oC can be achieved by.The decomposition temperature at 5% weight loss measured by a TGA is higher than 250oC, and it implies the branched polymer and semi-IPN Lithium Electrolytes have a good thermal stability.
Part II
Porous epoxy networks were prepared from epoxy resin, D.E.R. 331, cured with tertiary amine: 2,4,6-tris-(dimethylaminomethyl) phenol (DMP-30), in the diisobutyl ketone (DIBK). After removing the solvent, epoxy thermosets with interconnected channels can be formed via chemical induced phase separation, CIPS. The interconnected structure of the epoxy matrix was further confirmed by a permeation test, and the permeability of ethanol is about 12~6205 L/m2‧h‧bar which are dependent on the porous structure.


摘 要 i
Abstract iii
誌謝 iv
目 錄 v
表目錄 ix
圖目錄 xi
第一章 緒論 1
1.1前言 1
1.2研究動機 2
第二章 原理與文獻回顧 3
2.1鋰電池的發展 3
2.2分枝狀高分子電解質 3
2.2.1分枝狀高分子簡介 3
2.2.2聚氧化乙烯高分子電解質簡介 5
2.2.3聚氧化乙烯導電原理 6
2.3高分子電解質的種類 7
2.3.1 固態高分子電解質 7
2.3.2 膠態電解質 8
2.3.3 孔洞式高分子電解質 9
2.4高分子離子活化能 10
2.5聚氧化乙烯高分子電解質文獻回顧 11
2.6交流阻抗發分析原理 18
2.6.1 交流阻抗法基本原理 18
2.6.2 高分子電解質導電度量測之理論 20
第三章 實驗 23
3.1實驗藥品 23
3.2實驗儀器 27
3.3實驗方法 30
3.3.1半互穿式網狀結構高分子鋰電解質製備 30
3.3.2分枝狀高分子電解質合成 32
3.3.3環氧當量滴定 33
3.3.4傅立葉轉換紅外線光譜儀量測 34
3.3.5離子導電度測量 36
3.3.6玻璃轉移溫度量測 37
3.3.7熱裂解性質 37
3.3.8環氧樹脂薄膜之合成 38
3.3.9掃瞄式電子顯微鏡(SEM) 39
3.3.10薄膜孔洞量測之關係 39
3.3.11滲透率量測 40
第四章 結果與討論 Part I含分枝狀高分子半互穿式網狀結構鋰電解質 43
4.1半互穿式網狀結構高分子鋰電解質 43
4.2分枝狀高分子合成 43
4.3半互穿式網狀結構高分子鋰電解質分析 44
4.4離子導電度分析 45
4.5傅立葉轉換紅外線光譜儀(FT-IR) 50
4.6玻璃轉移溫度分析(DSC) 53
4.7熱重量分析(TGA) 58
第五章 結果與討論 Part I I利用化學誘發相分離法製備薄膜 61
5.1 利用化學誘發相分離法製備薄膜 61
5.2薄膜之聚合反應程度分析 61
5.3薄膜之熱性質分析 62
5.4硬化劑含量對薄膜型態之影響 62
5.5不同前硬化反應溫度對薄膜型態之影響 63
5.6滲透率測試 63
5.7滲透率模式 64
第六章 結論 67
符號表 68
參考文獻 123
附錄 128
附錄 1 半互穿式網狀結構高分子鋰電解質A80聚合反應前後IR圖 128
附錄 2 半互穿式網狀結構高分子鋰電解質A50聚合反應前後IR圖 128
附錄 3 半互穿式網狀結構高分子鋰電解質A20聚合反應前後IR圖 129
附錄 4 半互穿式網狀結構高分子鋰電解質A0聚合反應前後IR圖 129
附錄 5 半互穿式網狀結構高分子鋰電解質B80聚合反應前後IR圖 130
附錄 6 半互穿式網狀結構高分子鋰電解質B50聚合反應前後IR圖 130
附錄 7 半互穿式網狀結構高分子鋰電解質B20聚合反應前後IR圖 131
附錄 8 半互穿式網狀結構高分子鋰電解質B0聚合反應前後IR圖 131
附錄 9 半互穿式網狀結構高分子鋰電解質C80聚合反應前後IR圖 132
附錄 10 半互穿式網狀結構高分子鋰電解質C50聚合反應前後IR圖 132
附錄 11 半互穿式網狀結構高分子鋰電解質C20聚合反應前後之IR圖 133
附錄 12 半互穿式網狀結構高分子鋰電解質C0聚合反應前後之IR圖 133
附錄 13 半互穿式網狀結構高分子鋰電解質D80聚合反應前後之IR圖 134
附錄 14 半互穿式網狀結構高分子鋰電解質D50聚合反應前後之IR圖 134
附錄 15 半互穿式網狀結構高分子鋰電解質D20聚合反應前後之IR圖 135
附錄 16 半互穿式網狀結構高分子鋰電解質D0聚合反應前後之IR圖 135
附錄 17 半互穿式網狀結構高分子鋰電解質E80聚合反應前後之IR圖 136
附錄 18 半互穿式網狀結構高分子鋰電解質E50聚合反應前後之IR圖 136
附錄 19 半互穿式網狀結構高分子鋰電解質E20聚合反應前後之IR圖 137
附錄 20 半互穿式網狀結構高分子鋰電解質E0聚合反應前後之IR圖 137
附錄 21 半互穿式網狀結構高分子鋰電解質F80聚合反應前後之IR圖 138
附錄 22 半互穿式網狀結構高分子鋰電解質F50聚合反應前後之IR圖 138
附錄 23 半互穿式網狀結構高分子鋰電解質F20聚合反應前後之IR圖 139
附錄 24 半互穿式網狀結構高分子鋰電解質F0聚合反應前後之IR圖 139




表目錄
表2.1 常用電解液 9
表2.2 文獻回顧 13
表3.1 單體化學結構及分子量 32
表3.2 反應條件 32
表3.3 半互穿式網狀結構高分子鋰電解在FTIR圖中顯示的波數及代表的分子間作用 35
表3.4 半互穿式網狀結構高分子鋰電解質製備組成(wt.%) 42
表4.1 為不同系列半互穿式網狀結構鋰電解製備組成(wt.%)及轉化率 70
表4.2 為含長鏈型的聚乙二醇環氧樹脂添(D.E.R.732)摻混不同BP6(15)含量之A系列半互穿式網狀結構鋰電解在不同溫度下導電度σ (S/cm)之數據整理 71
表4.3 為含長鏈型的聚乙二醇環氧樹脂(D.E.R.732)事先添加機鋰鹽再摻混不同BP6(15)含量之B系列半互穿式網狀結構鋰電解在不同溫度下導電度σ(S/cm)之數據整理 71
表4.4 為含雙官能基單體PEGDE摻混不同BP6(15)含量之C系列半互穿式網狀結構鋰電解質在不同溫度下導電度σ (S/cm)之數據整理 72
表4.5 為含雙官能基單體PEGDE事先添加鋰鹽再摻混不同BP6(15)含量之D系列半互穿式網狀結構鋰電解質不同溫度下導電度σ(S/cm)之數據整理 72
表4.6 為DGEBA雙酚A型的環氧樹脂D.E.R.331摻混不同BP6(15)含量之E系列半互穿式網狀結構鋰電解質在不同溫度下導電度σ (S/cm)之數據整理 73
表4.7 為DGEBA雙酚A型的環氧樹脂D.E.R.331事先添加鋰鹽再摻混不同BP6(15)含量之F系列半互穿式網狀結構鋰電解質在不同溫度下導電度σ (S/cm)之數據整理 73
表4.8 不同系列之半互穿式網狀結構鋰電解質之運用VTF equation計算之活化能數據整理 74
表4.9 不同系列之半互穿式網狀結構鋰電解質各ClO4-吸收峰比例 75
表4.10 為含長鏈型的聚乙二醇環氧樹脂添(D.E.R.732)摻混不同BP6(15)含量之A、B系列半互穿式網狀結構鋰電解DSC數據整理 76
表4.11 含雙官能基單體PEGDE摻混不同BP6(15)含量之C、D系列半互穿式網狀結構鋰電解質之DSC數據整理 77
表4.12 為DGEBA雙酚A型的環氧樹脂D.E.R.331摻混不同BP6(15)含量之E、F系列半互穿式網狀結構鋰電解質DSC數據整理 78
表4.13 為含長鏈型的聚乙二醇環氧樹脂添(D.E.R.732)摻混不同BP6(15)含量之A、B系列半互穿式網狀結構鋰電解TGA分析數據 79
表4.14 含雙官能基單體PEGDE事先添加鋰鹽再摻混不同BP6(15)含量之C、D系列半互穿式網狀結構鋰電解質之TGA分析數據 80
表4.15 為DGEBA雙酚A型的環氧樹脂D.E.R.331摻混不同BP6(15)含量之E、F系列半互穿式網狀結構鋰電解質之TGA分析數據 81
表5.1 環氧樹脂薄膜(M-38)不同硬化劑比例及前硬化反應溫度下之熱性質 82
表5.2環氧樹脂薄膜(M-38)不同硬化劑比例及前硬化反應溫度下之孔洞型態 82
表5.3 環氧樹脂薄膜(M-38)不同硬化劑比例及前硬化反應溫度下其阻力關係 83






圖目錄
圖2.1 分支鏈狀高分子分子型態 5
圖2.2 聚氧化乙烯高分子之螺旋狀結構 5
圖2.3 PEO系高分子電解質之離子傳導示意圖 7
圖2.4 阻抗Z在複數平面上的示意圖 19
圖2.5 基礎電子元件及其組合在交流阻抗圖譜中的形式 20
圖2.6 電化學電池電路圖 21
圖3.1 樣品製備圖 31
圖3.2 分枝狀高分子(BP6)之結構示意圖 33
圖3.3 交流阻抗儀裝置圖 36
圖3.4 滲透實驗裝置圖 39
圖4.1 分枝狀高分子電解質BP6於聚合(a)反應前(b)反應後之IR圖 84
圖4.2 不同系列之成模形態 85
圖4.3 為含長鏈型的聚乙二醇環氧樹脂添(D.E.R.732)摻混不同BP6(15)含量之A系列半互穿式網狀結構高分子鋰電解質利用THF萃取後之表面及截面SEM圖 86
圖4.4 為含長鏈型的聚乙二醇環氧樹脂添(D.E.R.732)事先添加再摻混不同BP6(15)含量之B系列半互穿式網狀結構高分子鋰電解質利用THF萃取後之表面及截面SEM圖 87
圖4.5 為含長鏈型的聚乙二醇環氧樹脂添(D.E.R.732)摻混不同BP6(15)含量之A系列半互穿式網狀結構高分子鋰電解質隨溫度變化之導電度圖 88
圖4.6 為含長鏈型的聚乙二醇環氧樹脂添(D.E.R.732)事先添加鋰鹽再摻混不同BP6(15)含量之B系列半互穿式網狀結構高分子鋰電解質隨溫度變化之導電度圖 88
圖4.7 為含雙官能基單體PEGDE摻混不同BP6(15)含量之C系列半互穿式網狀結構高分子鋰電解質隨溫度變化之導電度圖 89
圖4.8 為含雙官能基單體PEGDE事先添加鋰鹽再摻混不同BP6(15)含量之D系列半互穿式網狀結構高分子鋰電解質隨溫度變化之導電度圖 89
圖4.9 為DGEBA雙酚A型的環氧樹脂D.E.R.331摻混不同BP6(15)含量之E系列半互穿式網狀結構高分子鋰電解質隨溫度變化之導電度圖 90
圖4.10 為DGEBA雙酚A型的環氧樹脂D.E.R.331事先添加鋰鹽再摻混不同BP6(15)含量之F系列半互穿式網狀結構高分子鋰電解質隨溫度變化之導電度圖 90
圖4.11 為不同系列下BP6(15)含量為80%之半互穿式網狀結構高分子鋰電解質隨溫度變化之導電度圖 91
圖4.12 為不同系列下BP6(15)含量為50%之半互穿式網狀結構高分子鋰電解質隨溫度變化之導電度比較圖 91
圖4.13 為不同系列下BP6(15)含量為20%之半互穿式網狀結構高分子鋰電解質隨溫度變化之導電度比較圖 92
圖4.14 為含長鏈型的聚乙二醇環氧樹脂添(D.E.R.732)摻混不同BP6(15)含量之A系列半互穿式網狀結構高分子鋰電解質之VTF圖 92
圖4.15 為含長鏈型的聚乙二醇環氧樹脂添(D.E.R.732)事先添加鋰鹽再摻混不同BP6(15)含量之B系列半互穿式網狀結構高分子鋰電解質之VTF圖 93
圖4.16 為含雙官能基單體PEGDE摻混不同BP6(15)含量之C系列半互穿式網狀結構高分子鋰電解質隨溫度變化之VTF圖 93
圖4.17 為含雙官能基單體PEGDE事先添加鋰鹽再摻混不同BP6(15)含量之D系列半互穿式網狀結構高分子鋰電解質隨溫度變化之VTF圖 94
圖4.18 為DGEBA雙酚A型的環氧樹脂D.E.R.331摻混不同BP6(15)含量之E系列半互穿式網狀結構高分子鋰電解質之VTF圖 94
圖4.19 為DGEBA雙酚A型的環氧樹脂D.E.R.331事先添加鋰鹽再摻混不同BP6(15)含量之F系列半互穿式網狀結構高分子鋰電解質之VTF圖 95
圖4.20 為含長鏈型的聚乙二醇環氧樹脂添(D.E.R.732)摻混不同BP6(15)含量之A系列半互穿式網狀結構高分子鋰電解質對ClO4-特徵峰之FTIR圖 96
圖4.21 為含長鏈型的聚乙二醇環氧樹脂添(D.E.R.732)事先添加鋰鹽再摻混不同BP6(15)含量之B系列半互穿式網狀結構高分子鋰電解質對ClO4-特徵峰之FTIR圖 96
圖4.22 為含雙官能基單體PEGDE摻混不同BP6(15)含量之C系列半互穿式網狀結構高分子鋰電解質對ClO4-特徵峰之FTIR圖 97
圖4.23 為含雙官能基單體PEGDE事先添加鋰鹽再摻混不同BP6(15)含量之D系列半互穿式網狀結構高分子鋰電解質對ClO4-特徵峰之FTIR圖 97
圖4.24 為DGEBA雙酚A型的環氧樹脂D.E.R.331摻混不同BP6(15)含量之E系列半互穿式網狀結構高分子鋰電解質對ClO4-特徵峰之FTIR圖 98
圖4.25 為DGEBA雙酚A型的環氧樹脂D.E.R.331事先添加鋰鹽再摻混不同BP6(15)含量之F系列半互穿式網狀結構高分子鋰電解質對ClO4-特徵峰之FTIR圖 98
圖4.26 為含長鏈型的聚乙二醇環氧樹脂添(D.E.R.732)摻混不同BP6(15)含量之A系列半互穿式網狀結構高分子鋰電解質之DSC圖 99
圖4.27 為含長鏈型的聚乙二醇環氧樹脂添(D.E.R.732)事先添加鋰鹽再摻混不同BP6(15)含量之B系列半互穿式網狀結構高分子鋰電解質之DSC圖 100
圖4.28 為含雙官能基單體PEGDE摻混不同BP6(15)含量之C系列半互穿式網狀結構高分子鋰電解質之DSC圖 101
圖4.29 為含雙官能基單體PEGDE事先添加鋰鹽再摻混不同BP6(15)含量之D系列半互穿式網狀結構高分子鋰電解質之DSC圖 102
圖4.30 為DGEBA雙酚A型的環氧樹脂D.E.R.331摻混不同BP6(15)含量之E系列半互穿式網狀結構高分子鋰電解質之DSC圖 103
圖4.31 為DGEBA雙酚A型的環氧樹脂D.E.R.331事先添加鋰鹽再摻混不同BP6(15)含量之E系列半互穿式網狀結構高分子鋰電解質之DSC圖 104
圖4.32 為分枝狀高分子電解質BP6及BP6(15)之TGA圖 105
圖4.33 為分枝狀高分子電解質BP6及BP6(15)之DTG圖 105
圖4.34 為含長鏈型的聚乙二醇環氧樹脂添(D.E.R.732)摻混不同BP6(15)含量之A系列半互穿式網狀結構高分子鋰電解質之TGA圖 106
圖4.35 為含長鏈型的聚乙二醇環氧樹脂添(D.E.R.732)摻混不同BP6(15)含量之A系列半互穿式網狀結構高分子鋰電解質之之DTG圖 106
圖4.36 為含長鏈型的聚乙二醇環氧樹脂添(D.E.R.732)事先添加鋰鹽再摻混不同BP6(15)含量之B系列半互穿式網狀結構高分子鋰電解質之TGA圖 107
圖4.37 為含長鏈型的聚乙二醇環氧樹脂添(D.E.R.732)事先添加鋰鹽再摻混不同BP6(15)含量之B系列半互穿式網狀結構高分子鋰電解質之DTG圖 107
圖4.38 為含雙官能基單體PEGDE摻混不同BP6(15)含量之C系列半互穿式網狀結構高分子鋰電解質之TGA圖 108
圖4.39 為含雙官能基單體PEGDE摻混不同BP6(15)含量之C系列半互穿式網狀結構高分子鋰電解質之DTG圖 108
圖4.40 為含雙官能基單體PEGDE事先添加鋰鹽再摻混不同BP6(15)含量之D系列半互穿式網狀結構高分子鋰電解質之TGA圖 109
圖4.41 為含雙官能基單體PEGDE事先添加鋰鹽再摻混不同BP6(15)含量之D系列半互穿式網狀結構高分子鋰電解質之DTG圖 109
圖4.42 為DGEBA雙酚A型的環氧樹脂D.E.R.331摻混不同BP6(15)含量之E系列半互穿式網狀結構高分子鋰電解質之TGA圖 110
圖4.43 為DGEBA雙酚A型的環氧樹脂D.E.R.331摻混不同BP6(15)含量之E系列半互穿式網狀結構高分子鋰電解質之DTG圖 110
圖4.44 為DGEBA雙酚A型的環氧樹脂D.E.R.331事先添加鋰鹽再摻混不同BP6(15)含量之F系列半互穿式網狀結構高分子鋰電解質之TGA圖 111
圖4.45 為DGEBA雙酚A型的環氧樹脂D.E.R.331事先添加鋰鹽再摻混不同BP6(15)含量之F系列半互穿式網狀結構高分子鋰電解質之DTG圖 111
圖5.1 環氧樹脂薄膜(M-38)於聚合反應前、前硬化和後硬化之IR圖 112
圖5.2 為環氧樹脂薄膜(M-38)改變不同硬化劑比例之TGA圖 113
圖5.3 為環氧樹脂薄膜(M-38)改變不同硬化劑比例之DTG圖 113
圖5.4 為環氧樹脂薄膜(M-38)改變不同前硬化反應溫度之TGA圖 114
圖5.5 為環氧樹脂薄膜(M-38)改變不同前硬化反應溫度之DTG圖 114
圖5.6 為環氧樹脂薄膜(M-38)改變不同硬化劑比例之DSC圖 115
圖5.7 為環氧樹脂薄膜(M-38)改變不同前硬化反應溫度之DSC圖 116
圖5.8 為環氧樹脂薄膜(M-38)改變不同硬化劑比例之表面及截面SEM圖 117
圖5.9 為環氧樹脂薄膜(M-38)改變不前硬化反應同溫度之表面及截面SEM圖 118
圖5.10 改變不同硬化劑比例之乙醇透過環氧樹脂薄膜(M-38)之滲透率 119
圖5.11 改變不同溫度之乙醇透過環氧樹脂薄膜(M-38)之滲透率 120
圖5.12 環氧樹脂薄膜(M-38)在不同硬化劑比例下其阻力關係 121
圖5.13 環氧樹脂薄膜(M-38)在不同前硬化反應溫度下其阻力關係 121
圖5.14 環氧樹脂薄膜(M-38)在不同前硬化反應溫度及硬化劑比例下表面阻的效應與滲透率力關係 122
圖5.15 環氧樹脂薄膜示意圖 65






[1]D. E. Fenton, J. M. Parker, and P. V. Wright, "Complexes of alkali metal ions with poly(ethylene oxide)," Polymer, vol. 14, p. 589, 1973.
[2]C. Berthier, W. Gorecki, M. Minier, M. B. Armand, J. M. Chabagno, and P. Rigaud, "Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts," Solid State Ionics, vol. 11, pp. 91-95, 1983.
[3]王嘉淳, "分枝狀聚氧化乙烯鋰電解質之製備及特性分析," 碩士, 化學工程研究所, 國立臺北科技大學, 台北市, 2010.
[4]J.Hajek, French Patent, vol. 8, p. 10, 1949.
[5]Y. H. Kim, "Hyperbranched polymers 10 years after," Journal of Polymer Science Part A: Polymer Chemistry, vol. 36, pp. 1685-1698, 1998.
[6]H. Liu, J. H. Näsman, and M. Skrifvars, "Radical alternating copolymerization: A strategy for hyperbranched materials," Journal of Polymer Science Part A: Polymer Chemistry, vol. 38, pp. 3074-3085, 2000.
[7]C. Nguyen, C. J. Hawker, R. D. Miller, E. Huang, J. L. Hedrick, R. Gauderon, and J. G. Hilborn, "Hyperbranched Polyesters as Nanoporosity Templating Agents for Organosilicates," Macromolecules, vol. 33, pp. 4281-4284, 2000.
[8]T. Sato, N. Higashida, T. Hirano, and M. Seno, "Initiator-fragment incorporation radical copolymerization of divinylbenzene and N-isopropylacrylamide with dimethyl 2,2′-azobisisobutyrate: Formation of soluble hyperbranched polymer nanoparticle," Journal of Polymer Science Part A: Polymer Chemistry, vol. 42, pp. 1609-1617, 2004.
[9]Y. Tezuka, R. Komiya, and M. Washizuka, "Designing 8-Shaped Polymer Topology by Metathesis Condensation with Cyclic Poly(THF) Precursors Having Allyl Groups," Macromolecules, vol. 36, pp. 12-17, 2002.
[10]Y. Bai, N. Song, J. P. Gao, X. Sun, X. Wang, G. Yu, and Z. Y. Wang, "A New Approach to Highly Electrooptically Active Materials Using Cross-Linkable, Hyperbranched Chromophore-Containing Oligomers as a Macromolecular Dopant," Journal of the American Chemical Society, vol. 127, pp. 2060-2061, 2005.
[11]J. H. Weiner and T. W. Stevens, "Relative importance of internal pressure and excluded-volume effects in resolution of network collapse problem," Macromolecules, vol. 16, pp. 672-678, 1983.
[12]李文瑜, "分枝狀聚氧化乙烯高分子鋰電解質之結晶動力學," 碩士, 化學工程研究所, 國立臺北科技大學, 台北市, 2011.
[13]F. L. Tanzella, W. Bailey, D. Frydrych, G. C. Farrington, and H. S. Story, "Ion transport in peo-alkali salt complex polymeric electrolytes," Solid State Ionics, vol. 5, pp. 681-684, 1981.
[14]楊家諭, 鄭程鴻, and 邱永城, "鋰離子二次電子電解質介紹," 工業材料, p. 82, 1996.
[15]M. S. Ding, K. Xu, S. Zhang, and T. R. Jow, "Liquid/Solid Phase Diagrams of Binary Carbonates for Lithium Batteries Part II," Journal of The Electrochemical Society, vol. 148, pp. A299-A304, 2001.
[16]J. Y. Song, Y. Y. Wang, and C. C. Wan, "Review of gel-type polymer electrolytes for lithium-ion batteries," Journal of Power Sources, vol. 77, pp. 183-197, 1999.
[17]E. Tsuchida, H. Ohno, and K. Tsunemi, "Conduction of lithium ions in polyvinylidene fluoride and its derivatives—I," Electrochimica Acta, vol. 28, pp. 591-595, 1983.
[18]K. Tsunemi, H. Ohno, and E. Tsuchida, "A mechanism of ionic conduction of poly (vinylidene fluoride)-lithium perchlorate hybrid films," Electrochimica Acta, vol. 28, pp. 833-837, 1983.
[19]A. S. Gozdz, J. M. Tarascon, and P. C. Warren, "U.S. Patent," 1995.
[20]E. Tsuchida, H. Ohno, K. Tsunemi, and N. Kobayashi, "Lithium ionic conduction in poly (methacrylic acid)-poly (ethylene oxide) complex containing lithium perchlorate," Solid State Ionics, vol. 11, pp. 227-233, 1983.
[21]D.-W. Kim, J.-K. Park, and H.-W. Rhee, "Conductivity and thermal studies of solid polymer electrolytes prepared by blending poly(ethylene oxide), poly(oligo[oxyethylene]oxysebacoyl) and lithium perchlorate," Solid State Ionics, vol. 83, pp. 49-56, 1996.
[22]B. J. Hwang, Y. C. Liu, and H. C. Lin, "Conductivity of composite solid polymer electrolyte made of PEO-LiClO4-fiber," Journal of Polymer Research, vol. 4, pp. 147-151, 1997.
[23]M. Andrei and M. Soprani, "Characterization of a class of plasticized polymer electrolytes and application in Li/V6O13 cells," Electrochimica Acta, vol. 43, pp. 1205-1215, 1998.
[24]S. Rajendran, T. Mahalingam, and R. Kannan, "Experimental investigations on PAN–PEO hybrid polymer electrolytes," Solid State Ionics, vol. 130, pp. 143-148, 2000.
[25]N. Yoshimoto, H. Nomura, T. Shirai, M. Ishikawa, and M. Morita, "Ionic conductance of gel electrolyte using a polyurethane matrix for rechargeable lithium batteries," Electrochimica Acta, vol. 50, pp. 275-279, 2004.
[26]A. Yuan and J. Zhao, "Composite alkaline polymer electrolytes and its application to nickel–metal hydride batteries," Electrochimica Acta, vol. 51, pp. 2454-2462, 2006.
[27]F. Wu, T. Feng, Y. Bai, C. Wu, L. Ye, and Z. Feng, "Preparation and characterization of solid polymer electrolytes based on PHEMO and PVDF-HFP," Solid State Ionics, vol. 180, pp. 677-680, 2009.
[28]S. Wu, X. Peng, Y. Song, Z. Zhou, Y. Lin, D. Chen, and F. Wang, "Cure and ionic conductivity of a two-component epoxy network polymer electrolyte," Solid State Ionics, vol. 76, pp. 163-172, 1995.
[29]J.-S. Do, C.-P. Chang, and T.-J. Lee, "Electrochemical properties of lithium salt-poly(ethylene oxide)-ethylene carbonate polymer electrolyte and discharge characteristics of LiMnO2," Solid State Ionics, vol. 89, pp. 291-298, 1996.
[30]H.-W. Chen and F.-C. Chang, "The novel polymer electrolyte nanocomposite composed of poly(ethylene oxide), lithium triflate and mineral clay," Polymer, vol. 42, pp. 9763-9769, 2001.
[31]J. H. Shin, Y. T. Lim, K. W. Kim, H. J. Ahn, and J. H. Ahn, "Effect of ball milling on structural and electrochemical properties of (PEO)nLiX (LiX = LiCF3SO3 and LiBF4) polymer electrolytes," Journal of Power Sources, vol. 107, pp. 103-109, 2002.
[32]W.-J. Liang, C.-L. Kuo, C.-L. Lin, and P.-L. Kuo, "Solid polymer electrolytes. IV. Preparation and characterization of novel crosslinked epoxy-siloxane polymer complexes as polymer electrolytes," Journal of Polymer Science Part A: Polymer Chemistry, vol. 40, pp. 1226-1235, 2002.
[33]J.-W. Kim, K.-S. Ji, J.-P. Lee, and J.-W. Park, "Electrochemical characteristics of two types of PEO-based composite electrolyte with functional SiO2," Journal of Power Sources, vol. 119–121, pp. 415-421, 2003.
[34]I. W. Cheung, K. B. Chin, E. R. Greene, M. C. Smart, S. Abbrent, S. G. Greenbaum, G. K. S. Prakash, and S. Surampudi, "Electrochemical and solid state NMR characterization of composite PEO-based polymer electrolytes," Electrochimica Acta, vol. 48, pp. 2149-2156, 2003.
[35]W. Liang and P. Kuo, "Solid polymer electrolytes VIII: effect of LiClO-doped level on the microstructure and ionic conductivity of a chemical-covalently polyether-siloxane hybrid electrolyte," Polymer, vol. 45, pp. 1617-1626, 2004.
[36]J. W. Park, E. D. Jeong, M.-S. Won, and Y.-B. Shim, "Effect of organic acids and nano-sized ceramic doping on PEO-based solid polymer electrolytes," Journal of Power Sources, vol. 160, pp. 674-680, 2006.
[37]Z. Tang, J. Wang, Q. Chen, W. He, C. Shen, X.-X. Mao, and J. Zhang, "A novel PEO-based composite polymer electrolyte with absorptive glass mat for Li-ion batteries," Electrochimica Acta, vol. 52, pp. 6638-6643, 2007.
[38]D. Luo, Y. Li, W. Li, and M. Yang, "Synthesis and characterization of novel semi-interpenetrating polymer network electrolyte based on crosslinked P(GMA-co-AN)/PEO," Journal of Applied Polymer Science, vol. 108, pp. 2095-2100, 2008.
[39]M. Patel, K. G. Chandrappa, and A. J. Bhattacharyya, "Increasing ionic conductivity of polymer–sodium salt complex by addition of a non-ionic plastic crystal," Solid State Ionics, vol. 181, pp. 844-848, 2010.
[40]S.-J. Park, A. R. Han, J.-S. Shin, and S. Kim, "Influence of crystallinity on ion conductivity of PEO-based solid electrolytes for lithium batteries," Macromolecular Research, vol. 18, pp. 336-340, 2010.
[41]D.-J. Qi, H.-Q. Ru, X.-G. Bi, X.-H. Yang, and Z.-N. Ma, "A novel PEO-based composite polymer electrolyte with NaAlOSiO molecular sieves powders," Ionics, vol. 18, pp. 267-273, 2011.
[42]Y. Kumar, S. A. Hashmi, and G. P. Pandey, "Ionic liquid mediated magnesium ion conduction in poly(ethylene oxide) based polymer electrolyte," Electrochimica Acta, vol. 56, pp. 3864-3873, 2011.
[43]X. Gu and G. Wang, "Interfacial morphology and friction properties of thin PEO and PEO/PAA blend films," Applied Surface Science, vol. 257, pp. 1952-1959, 2011.
[44]J. Zhang, X. Huang, H. Wei, J. Fu, Y. Huang, and X. Tang, "Effect of surface modified porous inorganic-organic hybrid polyphosphazene nanotubes on the properties of polyethylene oxide based solid polymer electrolytes," Electrochimica Acta, vol. 55, pp. 5966-5974, 2010.
[45]J.-J. Hwang, H.-H. Peng, and J.-M. Yeh, "α-Al2O3 improves the properties of gel polyacrylonitrile nanocomposite electrolytes used as electrolyte materials in rechargeable lithium batteries," Journal of Applied Polymer Science, vol. 120, pp. 2041-2047, 2011.
[46]Rapat Boonpong, Attera Worayingyong, M. Arunchaiya, and A. Wongchaisuwat, "PEO/LaCoO3 Composite Polymer Electrolyte and Its Electrochemical
Properties," presented at the International Conference on Environment and Industrial Innovation, Singapore, 2011.
[47]J. P. Sharma, K. Yamada, and S. S. Sekhon, "Conductivity studies of plasticized PEO–HPF6–fumed silica nanocomposite polymer electrolyte system," Ionics, vol. 18, pp. 151-158, 2011.
[48]J. R. Macdonald, Impedance Spectroscopy – emphasizing solid materials and systems. New York: John Wiley & Sons, 1987.
[49]P. G. Bruce, Polymer Electrolyte Reviews – electrical measurements on polymer electrolytes-1. London, UK,: Elsevier, 1987.
[50]R. D. Armstrong and M. Todd, Solid state Electrochemistry – interfacial electrochemistry. UK: Cambridge Univ. Press, Cambridge, 1995.
[51]J. R. MacCallum and C. A. Vincent.
[52]何永盛, "含聚乙烯醚及聚丙烯醚鏈環氧樹脂型高分子電解質之製備與其特性探討," 碩士, 國立成功大學化學研究所, 國立成功大學化學研究所, 台南市, 2005.
[53]王秋雅, "利用化學反應誘發相分離法製備具不同表面形態之環氧樹脂薄膜," 碩士, 化學工程研究所, 國立臺北科技大學, 台北市, 2009.
[54]A. M. Rocco, C. P. Fonseca, F. A. M. Loureiro, and R. P. Pereira, "A polymeric solid electrolyte based on a poly(ethylene oxide)/poly(bisphenol A-co-epichlorohydrin) blend with LiClO4," Solid State Ionics, vol. 166, pp. 115-126, 2004.
[55]A. M. Rocco, C. P. da Fonseca, and R. P. Pereira, "A polymeric solid electrolyte based on a binary blend of poly(ethylene oxide), poly(methyl vinyl ether-maleic acid) and LiClO4," Polymer, vol. 43, pp. 3601-3609, 2002.
[56]A. Manuel Stephan, "Review on gel polymer electrolytes for lithium batteries," European Polymer Journal, vol. 42, pp. 21-42, 2006.
[57]M. Salomon, M. Xu, E. M. Eyring, and S. Petrucci, "Molecular Structure and Dynamics of LiClO4-Polyethylene Oxide-400 (Dimethyl Ether and Diglycol Systems) at 25 .degree.C," The Journal of Physical Chemistry, vol. 98, pp. 8234-8244, 1994/08/01 1994.
[58]Y. J. Shen, M. J. Reddy, and P. P. Chu, "Porous PVDF with LiClO4 complex as ‘solid’ and ‘wet’ polymer electrolyte," Solid State Ionics, vol. 175, pp. 747-750, 2004.
[59]J.-W. Park, M. D. Ediger, and M. M. Green, "Chiral Studies in Amorphous Solids:  The Effect of the Polymeric Glassy State on the Racemization Kinetics of Bridged Paddled Binaphthyls," Journal of the American Chemical Society, vol. 123, pp. 49-56, 2001/01/01 2000.
[60]M. Digar, S. L. Hung, H. L. Wang, T. C. Wen, and A. Gopalan, "Study of ionic conductivity and microstructure of a cross-linked polyurethane acrylate electrolyte," Polymer, vol. 43, pp. 681-691, 2002.
[61]M. Sahimi and M. Islam, Flow and transport in porous media and fractured rock: Wiley-VCH Verlag GmbH., 1995.
[62]P. R. Johnston, Fluid sterilization by filtration buffalo grove, III: Interpharm Press, IL, 1992.




連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top