跳到主要內容

臺灣博碩士論文加值系統

(3.235.227.117) 您好!臺灣時間:2021/08/01 22:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳正忠
研究生(外文):Zheng-Zhong Chen
論文名稱:含氟分枝狀高分子電解質之流變性質
論文名稱(外文):Rheological Properties of Fluoride Branched Polymer Lithium Electrolytes
指導教授:鄭國忠鄭國忠引用關係
口試委員:董崇民芮祥鵬蘇淵源
口試日期:2012-06-28
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:122
中文關鍵詞:聚氧化乙烯含氟分枝狀高分子鋰電解質流變性質離子導電度裂解活化能
外文關鍵詞:PEOfluoride branched polymerlithium polyelectrolyterheologyionic conductivityactivation energy of decomposition
相關次數:
  • 被引用被引用:0
  • 點閱點閱:116
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用雙官能基單體:poly(ethylene glycol) diglycidyl ether (PEGDE)、含胺基之四官能基化合物poly(oxyethylene) diamine (PEDA),和含氟單官能基化合物glycidyl 2,2,3,3,4,4,5,5-octafluoropentyl ether,經由聚合反應後產生含氟分枝狀聚氧化乙烯高分子,再以此高分子為基質摻混不同比率過氯酸鋰,製備出一系列含氟分枝狀聚氧化乙烯鋰電解質。在本研究中利用凝膠滲透色層分析儀(GPC)測量其分子量,微差掃描熱卡計(DSC)及熱重分析儀(TGA)分析其熱性質與裂解活化能,傅立葉轉換紅外線光譜儀(FT-IR)與核磁共振儀(NMR)鑑定其結構,並使用雙平板式流變儀測量鋰鹽濃度對高分子電解質流變性質之影響。結果發現:其重量平均分子量(Mw)為6900,分佈指數(PDI)為1.4,由滴定方法測其轉化率皆為93%。合成出之含氟分枝狀聚氧化乙烯高分子鋰電解質之玻璃轉移溫度(Tg)將隨鋰鹽濃度的增加而上升,由-59.6上升至-36.8℃。而最大裂解溫度(Tmax)由393下降至287℃。並利用Ozawa法探討高分子鋰電解質之裂解活化能,結果將隨鋰鹽比例的上升而活化能下降的趨勢。導電度則為氧鋰比為15時最佳,在70oC下可以達到5.3-4S/cm。並且將上述之結果與先前實驗室所合成之分枝狀聚氧化乙烯鋰電解質(BP6)做比較。
含鋰鹽之高分子電解質其在零剪切速率( =0)之黏度(η0)隨鋰鹽莫耳比ε增
加而上升,並受溫度影響,可由經驗模式描述。
所合成之含氟分枝狀高分子以及其鋰電解質,在頻率與剪切速率較高時將會呈現剪切稀釋(shear thinning)非牛頓流體現象,可利用Carreau-Yasuda方程式描繪其變化並且計算其鬆弛時間。此外分枝狀聚氧化乙烯高分子鋰電解質之動態儲存模數(G'')及損失模數(G")受鋰鹽濃度影響,例如在溫度為40℃頻率為10Hz時,可用方程式描述其關係。






The branched polymer derived from poly(ethylene glycol) diglycidyl ether (PEGDE), poly(oxyethylene) diamine(PEDA) and glycidyl,2,2,3,3,4,4,5,5-octafluoropentyl ether as monomer. Polyelectrolytes were prepared by doping the branched polymer with different ratio lithium perchlorate.Using GPC, DSC, TGA, FT-IR and NMR to analyze the characteristics of polyelectrolyte and furthermore we used plate and plate rheometer to analyze the effect of amount of lithium salt on polyelectrolytes. We could get average molecular weight (Mw) was 6900, the distribution index (PDI) was 1.4, and by titration method to calculate the conversion(%) was 93%. It was found that the glass transition temperature of branched polyelectrolytes were about from -59.6 through -36.8oC, which dependent on the amount of lithium salts. And the maximum decomposition temperature was drop from 393 to 287oC. We used Ozawa method to study activation energy of decomposition (Ea) of polyelectrolytes and find activation energy of decomposition will decreased with the amount of lithium was increasing.The best ionic conductivity was 5.3-4S/cm when O/Li=15 at 70oC.And to compare the result with the branched poly(ethylene oxide)-lithium electrolytes(BP6).
The zero shear viscosity(η0) of branched polyelectrolytes was increased with the raise of the lithium salt molar ratio ε, but the zero shear viscosity(η0) was decreased with temperature increasing. Therefore, we proposed experience equation that showing the correlation of viscosity and ε, This mode could fully explain the variation of actual value.

The fluoride branched polymer and it’s lithium polyelectrolyte was showed shear thinning behavior of non-Newtonian fluids at high frequency and shear rate . The relationship between shear rate and shear viscosity of polyelectrolyte could be obtained by Carreau-Yasuda equation. Futhermore, the branched polyelectrolyte’s storage modulus(G'') and loss modulus(G") were affected by the lithium salt. According to this result, we found the following equation to explain the relationship between the lithium salt molar ratio and two modulus at 40℃ and frequency at 10 Hz .


摘 要 i
ABSTRACT iii
誌 謝 v
目錄 vi
表目錄 viii
圖目錄 ix
第一章 緒論 1
第二章 原理與文獻回顧 3
2.1 分枝狀高分子簡介 3
2.2 聚氧化乙烯高分子電解質簡介 5
2.2.1 聚氧化乙烯導電原理 6
2.2.2 高分子電解質種類 7
2.3 高分子離子活化能 9
2.4 含氟高分子 10
2.5 流變學 11
2.5.1 流體類型 12
2.5.2 流變儀 14
2.6 動態流變行為 17
2.7 穩態剪切行為 18
2.8 流變相關理論 19
2.9 時間-溫度重疊原理 21
2.10 流動活化能 22
2.11 Carreau-Yasuda 模式 23
2.12 熱裂解動力學 23
第三章 實驗內容 30
3.1 實驗材料 30
3.2 實驗設備 32
3.3 實驗流程 34
3.4 實驗步驟 35
3.4.1 含氟分枝狀高分子合成 35
3.4.2 含氟分枝狀高分子電解質製備 36
3.4.3 分子量測量 36
3.4.4 傅立葉轉換紅外線光譜儀測量 36
3.4.5核磁共振儀測量 36
3.4.6環氧當量滴定測量轉化率 37
3.4.7玻璃轉移溫度與熔融溫度 37
3.4.8熱裂解溫度與裂解活化能 37
3.4.9流變性質 38
3.4.10 離子導電度測量 38
第四章 結果與討論 40
4.1 合成含氟聚氧化乙烯分枝狀高分子 40
4.1.1 分子量與轉化率測定 40
4.1.2 FTIR分析 42
4.1.3 NMR分析 43
4.2 含氟分枝狀高分子鋰電解質分析 44
4.2.1 離子導電度分析 44
4.2.2 離子活化能分析 46
4.2.3 傅立葉轉換紅外線光譜儀分析 47
4.2.4 熱性質分析 48
4.3 含氟分枝狀高分子鋰電解質之流變性質 51
4.3.1 穩態流變性質 51
4.3.2 動態流變性質 58
第五章 結論 63
圖集 64
文獻 97
附錄 109
符號表 121


文獻
[1] 王嘉淳,分枝狀聚氧化乙烯鋰電解質之製備及特性分析,碩士論文,國立臺北科技大學化學工程研究所,台北,2010。
[2] D. Fenton, J. Parker, and P. Wright, ''Complexes of alkali metal ions with poly(ethylene oxide),'' Polymer, vol. 14, no. 11, 1973, pp. 589-589.
[3] C. Berthier, W. Gorecki, M. Minier, M. B. Armand, J. M. Chabagno, and P. Rigaud, ''Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts,'' Solid State Ionics, vol. 11, no. 1, 1983, pp. 91-95.
[4] 廖彥程,利用多官能基單體及罩蓋劑合成超分枝高分子,碩士論文,國立臺北科技大學化學工程研究所,台北,2008。
[5] 梁仁耀,Dgeba 型環氧樹脂與4,4''-亞甲基雙苯胺合成超分枝高分子,碩士論文,國立臺北科技大學化學工程研究所,台北,2009。
[6] C. Gao, and D. Yan, ''Hyperbranched polymers: from synthesis to applications,'' Progress in Polymer Science, vol. 29, no. 3, 2004, pp. 183-275.
[7] B. Voit, ''New Developments in Hyperbranched Polymers,'' Journal of Polymer, vol. 38, 2000, pp. 2505-2525.
[8] Y. H. Kim, ''Hyperbranched polymers 10 years after,'' Journal of Polymer Science Part A: Polymer Chemistry, vol. 36, no. 11, 1998, pp. 1685-1698.
[9] K.Uhrich, Hyperbranched polymers for drug delivery, Cambridge, ROYAUME-UNI: Elsevier, 1997, pp.388-393.
[10] H. Liu, J. H. Näsman, and M. Skrifvars, ''Radical alternating copolymerization: A strategy for hyperbranched materials,'' Journal of Polymer Science Part A: Polymer Chemistry, vol. 38, no. 17, 2000, pp. 3074-3085.
[11] C. H. C. Nguyen, R. Miller, E. Huang, J. Hedrick, R. Gauderon and J. Hilborn, ''Hyperbranched polyesters as nanoporosity templating agents for organosilicates,'' Macromolecules, vol. 33, 2000, pp. 4281-4284.
[12] Y. A. T. Sato, M. Seno and T. Hirano, ''Initiator-Fragment Incorporation Radical Polymerization of Divinyl Adipate with Dimethyl 2, 2 ‘-Azobis (isobutyrate): Kinetics and Formation of Soluble Hyperbranched Polymer,'' Macromolecules, vol. 38, 2005, pp. 1627-1632.
[13] J. P. Chen, Han; Law, Charles C. W.; Dong, Yuping; Lam, Jacky W. Y.; Williams, Ian D.; Tang, Ben Zhong, ''Hyperbranched poly (phenylenesilolene) s: synthesis, thermal stability, electronic conjugation, optical power limiting, and cooling-enhanced light emission,'' Macromolecules, vol. 36, no. 12, 2003, pp. 4319-4327.
[14] Y. Bai, N. Song, J. P. Gao, X. Sun, X. Wang, G. Yu, and Z. Y. Wang, ''A new approach to highly electrooptically active materials using cross-linkable, hyperbranched chromophore-containing oligomers as a macromolecular dopant,'' J Am Chem Soc, vol. 127, no. 7, 2005, pp. 2060-2061.
[15] J. H. Weiner, and T. W. Stevens, ''Relative importance of internal pressure and excluded-volume effects in resolution of network collapse problem,'' Macromolecules, vol. 16, no. 4, 1983, pp. 672-678.
[16] 楊家諭、鄭程鴻、邱永城,鋰離子二次電解質介紹,工業材料,第110期, 第82頁,1996。
[17] 陳建志,PEO/ LiClO4固態高分子電解質混摻奈米粒子(SiO2、TiO2、SiC、CdS)和TEOS之離子導電度研究,碩士論文,大同大學化學工程研究所,台北,2002。
[18] 何永盛,含聚乙烯醚及聚丙烯醚鏈環氧樹脂型高分子電解質之製備及其特性探討,碩士論文,國立成功大學化學研究所,台南,2005。
[19] F. M. Wang, Wu, H.C., Cheng, C.S., Huang, C.L. & Yang, C.R., ''High ionic transfer of a hyperbranched-network gel copolymer electrolyte for potential electric vehicle (EV) application,'' Electrochimica Acta, vol. 54, no. 14, 2009, pp. 3788-3793.
[20] P. Jannasch, ''Ion conducting electrolytes based on aggregating comblike poly(propylene oxide),'' Polymer, vol. 42, no. 21, 2001, pp. 8629-8635.
[21] X. G. K. Sun, J.B., ''Synthesis and characterization of network single ion conductors based on comb-branched polyepoxide ethers and lithium bis (allylmalonato) borate,'' Macromolecules, vol. 39, no. 1, 2006, pp. 362-372.
[22] J. Paulsdorf, M. Burjanadze, K. Hagelschur, and H. D. Wiemhöfer, ''Ionic conductivity in polyphosphazene polymer electrolytes prepared by the living cationic polymerization,'' Solid State Ionics, vol. 169, no. 1–4, 2004, pp. 25-33.
[23] F. Zeng, Y. Shen, and S. Zhu, ''Synthesis of comb-branched polyacrylamide with cationic poly[(2-dimethylamino)ethyl methacrylate dimethylsulfate] quat,'' Journal of Polymer Science Part A: Polymer Chemistry, vol. 40, no. 14, 2002, pp. 2394-2405.
[24] H.-T. Kim, K.-B. Kim, S.-W. Kim, and J.-K. Park, ''Li-ion polymer battery based on phase-separated gel polymer electrolyte,'' Electrochimica Acta, vol. 45, no. 24, 2000, pp. 4001-4007.
[25] J. Y. Song, Y. Y. Wang, and C. C. Wan, ''Review of gel-type polymer electrolytes for lithium-ion batteries,'' Journal of Power Sources, vol. 77, no. 2, 1999, pp. 183-197.
[26] E. Tsuchida, H. Ohno, and K. Tsunemi, ''Conduction of lithium ions in polyvinylidene fluoride and its derivatives—I,'' Electrochimica Acta, vol. 28, no. 5, 1983, pp. 591-595.
[27] K. Tsunemi, H. Ohno, and E. Tsuchida, ''A mechanism of ionic conduction of poly (vinylidene fluoride)-lithium perchlorate hybrid films,'' Electrochimica Acta, vol. 28, no. 6, 1983, pp. 833-837.
[28] M. J. R., Polymer Electrolyte Reviews, 1, New York: Kluwer Academic Pub, 1987.
[29] 梁育豪,含螯合性官能基之膠態高分子電解質之傳導機構的探討,碩士論文,國立成功大學化學工程研究所,台南,2004。
[30] O. Bohnke, G. Frand, M. Rezrazi, C. Rousselot, and C. Truche, ''Fast ion transport in new lithium electrolytes gelled with PMMA. 2. Influence of lithium salt concentration,'' Solid State Ionics, vol. 66, no. 1–2, 1993, pp. 105-112.
[31] M. Hirao, H. Sugimoto, and H. Ohno, ''Preparation of Novel Room-Temperature Molten Salts by Neutralization of Amines,'' Journal of The Electrochemical Society, vol. 147, no. 11, 2000, pp. 4168-4172.
[32] Y. X. Zhang, A. H. Da, G. B. Butler, and T. E. Hogen-Esch, ''A fluorine-containing hydrophobically associating polymer. I. Synthesis and solution properties of copolymers of acrylamide and fluorine-containing acrylates or methacrylates,'' Journal of Polymer Science Part A: Polymer Chemistry, vol. 30, no. 7, 1992, pp. 1383-1391.
[33] S. A. Perusich, P. Avakian, and M. Y. Keating, ''Dielectric relaxation studies of perfluorocarboxylate polymers,'' Macromolecules, vol. 26, no. 18, 1993, pp. 4756-4764.
[34] D. M. Stoakley, A. K. St. Clair, and C. I. Croall, ''Low dielectric, fluorinated polyimide copolymers,'' Journal of Applied Polymer Science, vol. 51, no. 8, 1994, pp. 1479-1483.
[35] J. G. Hilborn, J. W. Labadie, and J. L. Hedrick, ''Poly(aryl ether-benzoxazoles),'' Macromolecules, vol. 23, no. 11, 1990, pp. 2854-2861.
[36] C.-C. Han, S.-P. Hong, K.-F. Yang, M.-Y. Bai, C.-H. Lu, and C.-S. Huang, ''Highly Conductive New Aniline Copolymers Containing Butylthio Substituent,'' Macromolecules, vol. 34, no. 3, 2000, pp. 587-591.
[37] 陳啟漳,含聚全氟醚聚胺基甲酸酯高分子電解質之製備與其特性探討,碩士論文,國立成功大學化學工程研究所,台南,2001。
[38] J. He, P. Ni, and C. Liu, ''Synthesis and characterization of amphiphilic fluorinated pentablock copolymers based on Pluronic F127,'' Journal of Polymer Science Part A: Polymer Chemistry, vol. 46, no. 9, 2008, pp. 3029-3041.
[39] M. Watanabe, H. Tokuda, and S. Muto, ''Anionic effect on ion transport properties in network polyether electrolytes,'' Electrochimica Acta, vol. 46, no. 10–11, 2001, pp. 1487-1491.
[40] J. F. Steffe, Rheological Methods in Food Process Engineering, East Lansing: MI: Freeman Press, 1996.
[41] L. E. Nielsen, Polymer Rheology, New York: M. Dekker, 1977.
[42] R. B. Bird, R. C. Armstrong, and O. Hassager, Dynamics of polymeric líquids: Fluid mechanics, New York: Wiley-Interscience, 1987.
[43] 林建中,高分子材料科學:高分子材料機械性質,台北:大揚出版社,2001, 第256頁。
[44] C. W. Macosko, Rheology: Principles,Measurements and Applications, New York: Wiley-VCH, 1994.
[45] 胡德,高分子物理與機械性質(上),台北:渤海堂文化事業有限公司,1990。
[46] J. Ferguson, and Z. Kembłowski, Applied Fluid Rheology, Kluwer Academic Pub, 1991.
[47] C. D. Han, Multiphase Flow in Polymer Processing, New York: Academic Press, 1981.
[48] Z. Kemblowski, Applied Fluid Rheology Springer, UK: Kluwer Academic Pub, 1991.
[49] R. B. Bird, R. C. Armstrong, and O. Hassager, Dynamics of polymeric liquids. Vol. 1: Fluid mechanics, NY: John Wiley and Sons Inc, 1987.
[50] S. Onogi, T. Fujii, H. Kato, and S. Ogihara, ''Relation between Steady-Flow and Dynamic Viscosity for Polyethylene Melts1,'' The Journal of Physical Chemistry, vol. 68, no. 6, 1964, pp. 1598-1601.
[51] E. K. Harris, ''Effect of blending on the rheological properties of polystyrene,'' Journal of Applied Polymer Science, vol. 17, no. 6, 1973, pp. 1679-1692.
[52] K. Yasuda, R. Armstrong, and R. Cohen, ''Shear flow properties of concentrated solutions of linear and star branched polystyrenes,'' Rheologica Acta, vol. 20, no. 2, 1981, pp. 163-178.
[53] P. E. R. Jr, ''A theory of the linear viscoelastic properties of dilute solutions of coiling polymers,'' J. Chem. Phys, vol. 21, 1953, pp. 1272.
[54] F. Bueche, ''The viscoelastic properties of plastics,'' J. Chem. Phys, vol. 223, 1954, pp. 60.
[55] B. H. Zimm, ''Dynamics of polymer molecules in dilute solution: viscoelasticity, flow birefringence and dielectric loss,'' J. Chem. Phys., vol. 24, 1956, pp. 269.
[56] C. D. Han, Y. J. Kim, H.-K. Chuang, and T. H. Kwack, ''Rheological properties of branched low-density polyethylene,'' Journal of Applied Polymer Science, vol. 28, no. 11, 1983, pp. 3435-3451.
[57] T. T. Hsieh, C. Tiu, and G. P. Simon, ''Melt rheology of aliphatic hyperbranched polyesters with various molecular weights,'' Polymer, vol. 42, no. 5, 2001, pp. 1931-1939.
[58] İ. B. Pehlivan, R. Marsal, G. A. Niklasson, C. G. Granqvist, and P. Georén, ''PEI–LiTFSI electrolytes for electrochromic devices: Characterization by differential scanning calorimetry and viscosity measurements,'' Solar Energy Materials and Solar Cells, vol. 94, no. 12, 2010, pp. 2399-2404.
[59] B. H. Zimm, and R. W. Kilb, ''Dynamics of branched polymer molecules in dilute solution,'' Journal of Polymer Science, vol. 37, no. 131, 1959, pp. 19-42.
[60] K. Osaki, Y. Mitsuda, R. M. Johnson, J. L. Schrag, and J. D. Ferry, ''Infinite-Dilution Viscoelastic Properties of Linear and Star-Shaped Polybutadienes,'' Macromolecules, vol. 5, no. 1, 1972, pp. 17-19.
[61] R. L. Sammler, and J. L. Schrag, ''Predictions of the ability of solution dynamics experiments to characterize long-chain structure in flexible homopolymers,'' Macromolecules, vol. 21, no. 11, 1988, pp. 3273-3285.
[62] R. L. Sammler, and J. L. Schrag, ''Bead-spring model predictions of solution dynamics for flexible homopolymers incorporating long-chain branches and/or rings,'' Macromolecules, vol. 21, no. 4, 1988, pp. 1132-1140.
[63] A. I. M. Denneman, and R. J. J. Jongschaap, ''A bead-spring model incorporating cyclic structures, non-equal springs and beads with non-equal friction coefficients,'' J. Rheol, vol. 40, 1996, pp. 589.
[64] L. H. Sperling, Introduction to Physical Polymer Science, USA: Wiley Online Library, 1992.
[65] M. L. Williams, R. F. Landel, and J. D. Ferry, ''The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-forming Liquids,'' Journal of the American Chemical Society, vol. 77, no. 14, 1955, pp. 3701-3707.
[66] K. I. M. Al-Malah, B. Abu-Jdayil, S. Zaitoun, and A. A.-M. Ghzawi, ''APPLICATION OF WLF AND ARRHENIUS KINETICS TO RHEOLOGY OF SELECTED DARK-COLORED HONEY,'' Journal of Food Process Engineering, vol. 24, no. 5, 2001, pp. 341-357.
[67] P. J. Carreau, ''Rheological equations from molecular network theories,'' J. Rheol., vol. 16, 1972, pp. 99.
[68] J. D. Cooney, M. Day, and D. M. Wiles, ''Thermal degradation of poly(ethylene terephthalate): A kinetic analysis of thermogravimetric data,'' Journal of Applied Polymer Science, vol. 28, no. 9, 1983, pp. 2887-2902.
[69] T. C. Chang, K. H. Wu, C. L. Liao, S. T. Lin, and G. P. Wang, ''Thermo-oxidative degradation of siloxane-containing polyimide and unmodified polyimide,'' Polymer Degradation and Stability, vol. 62, no. 2, 1998, pp. 299-305.
[70] J. H. Flynn, and L. A. Wall, ''General treatment of the thermogravimetry of polymers,'' J Res Natl Bur Stand, vol. 70, 1966, pp. 487-523.
[71] T. Ozawa, ''A new method of analyzing thermogravimetric data,,'' Bull. Chem. Soc. Jpn., vol. 38, 1965, pp. 1881-1886.
[72] H. E. Kissinger, ''Reaction Kinetics in Differential Thermal Analysis,'' Analytical Chemistry, vol. 29, no. 11, 1957, pp. 1702-1706.
[73] F. J. Stadler, and V. Karimkhani, ''Correlations between the Characteristic Rheological Quantities and Molecular Structure of Long-Chain Branched Metallocene Catalyzed Polyethylenes,'' Macromolecules, vol. 44, no. 13, 2011, pp. 5401-5413.
[74] J. Chen, J. Xia, K. Fan, and T. Peng, ''A novel CuI-based iodine-free gel electrolyte for dye-sensitized solar cells,'' Electrochimica Acta, vol. 56, no. 16, 2011, pp. 5554-5560.
[75] A. Karmakar, and A. Ghosh, ''A comparison of ion transport in different polyethylene oxide–lithium salt composite electrolytes '' J. Appl. Phys., vol. 107, no. 10, 2010, pp. 104113-104113-6.
[76] F.-M. Wang, H.-C. Wu, C.-S. Cheng, C.-L. Huang, and C.-R. Yang, ''High ionic transfer of a hyperbranched-network gel copolymer electrolyte for potential electric vehicle (EV) application,'' Electrochimica Acta, vol. 54, no. 14, 2009, pp. 3788-3793.
[77] C. A. Ittner Mazali, and M. I. Felisberti, ''Vinyl ester resin modified with silicone-based additives: III. Curing kinetics,'' European Polymer Journal, vol. 45, no. 8, 2009, pp. 2222-2233.
[78] L. Niedzicki, M. Kasprzyk, K. Kuziak, G. Z. Żukowska, M. Armand, M. Bukowska, M. Marcinek, P. Szczeciński, and W. Wieczorek, ''Modern generation of polymer electrolytes based on lithium conductive imidazole salts,'' Journal of Power Sources, vol. 192, no. 2, 2009, pp. 612-617.
[79] F. J. Stadler, and H. Münstedt, ''Numerical description of shear viscosity functions of long-chain branched metallocene-catalyzed polyethylenes,'' Journal of Non-Newtonian Fluid Mechanics, vol. 151, no. 1–3, 2008, pp. 129-135.
[80] L. Ye, P. Gao, Y.-m. Zhao, Z.-g. Feng, Y. Bai, and F. Wu, ''Preparation and evaluation of two kinds of solid polymer electrolytes made from crosslinked poly(ether urethane) elastomers consisting of a comb-like and a hyperbranched polyether,'' Journal of Applied Polymer Science, vol. 109, no. 3, 2008, pp. 1955-1961.
[81] J. M. Dodds, E. De Luca, L. R. Hutchings, and N. Clarke, ''Rheological properties of HyperMacs—long-chain branched analogues of hyperbranched polymers,'' Journal of Polymer Science Part B: Polymer Physics, vol. 45, no. 19, 2007, pp. 2762-2769.
[82] Y. Kitajyo, Y. Kinugawa, M. Tamaki, H. Kaga, N. Kaneko, T. Satoh, and T. Kakuchi, ''Synthesis, Characterization, and Functionalization of Hyperbranched Poly(3,4-epoxycyclohexanemethanol),'' Macromolecules, vol. 40, no. 26, 2007, pp. 9313-9321.
[83] A. Manuel Stephan, ''Review on gel polymer electrolytes for lithium batteries,'' European Polymer Journal, vol. 42, no. 1, 2006, pp. 21-42.
[84] S.-Y. Kwak, J. Choi, and H. J. Song, ''Viscoelastic Relaxation and Molecular Mobility of Hyperbranched Poly(ε-caprolactone)s in Their Melt State,'' Chemistry of Materials, vol. 17, no. 5, 2005, pp. 1148-1156.
[85] A. Manuel Stephan, S. Gopu Kumar, N. G. Renganathan, and M. Anbu Kulandainathan, ''Characterization of poly(vinylidene fluoride–hexafluoropropylene) (PVdF–HFP) electrolytes complexed with different lithium salts,'' European Polymer Journal, vol. 41, no. 1, 2005, pp. 15-21.
[86] W.-J. Liang, and P.-L. Kuo, ''Study of DSC, Ionic Conductivity, and 7Li NMR Spectral Changes Associated with Cation Complexation in an Epoxide-Cross-Linked Polysiloxane/Polyether Electrolyte,'' Macromolecules, vol. 37, no. 3, 2004, pp. 840-845.
[87] Z. Ye, F. AlObaidi, and S. Zhu, ''Melt Rheological Properties of Branched Polyethylenes Produced with Pd- and Ni–Diimine Catalysts,'' Macromolecular Chemistry and Physics, vol. 205, no. 7, 2004, pp. 897-906.
[88] Y. Matsumiya, N. P. Balsara, J. B. Kerr, T. Inoue, and H. Watanabe, ''In Situ Dielectric Characterization of Poly(ethylene oxide) Melts Containing Lithium Perchlorate under Steady Shear Flow,'' Macromolecules, vol. 37, no. 2, 2003, pp. 544-553.
[89] A. S. Nasar, M. Jikei, and M.-a. Kakimoto, ''Synthesis and properties of polyurethane elastomers crosslinked with amine-terminated AB2-type hyperbranched polyamides,'' European Polymer Journal, vol. 39, no. 6, 2003, pp. 1201-1208.
[90] H. Sawada, Y. Murai, T. Kawase, T. Minami, and J. Kyokane, ''Synthesis and gelation of fluoroalkyl end-capped copolymers containing glucosyl segments: Application to new fluorinated conductive polymer electrolytes,'' Journal of Applied Polymer Science, vol. 85, no. 14, 2002, pp. 2833-2838.
[91] A. T. Lee, and A. J. McHugh, ''Modeling the Rheology of Concentrated AB/AB2 Hyperbranched Polymeric Systems,'' Macromolecules, vol. 34, no. 26, 2001, pp. 9080-9086.
[92] S.-Y. Kwak, and D. U. Ahn, ''Processability of Hyperbranched Poly(ether ketone)s with Different Degrees of Branching from Viewpoints of Molecular Mobility and Comparison with Their Linear Analogue,'' Macromolecules, vol. 33, no. 20, 2000, pp. 7557-7563.
[93] O. Mahendran, S. Chen, Y. Chen-Yang, J. Lee, and S. Rajendran, ''Investigations on PMMA-PVdF polymer blend electrolyte with esters of dibenzoic acids as plasticizers,'' Ionics, vol. 11, no. 3, 2005, pp. 251-258.
[94] M. Salomon, M. Xu, E. M. Eyring, and S. Petrucci, ''Molecular Structure and Dynamics of LiClO4-Polyethylene Oxide-400 (Dimethyl Ether and Diglycol Systems) at 25 .degree.C,'' The Journal of Physical Chemistry, vol. 98, no. 33, 1994, pp. 8234-8244.
[95] P. Firman, M. Xu, E. M. Eyring, and S. Petrucci, ''Molecular relaxation dynamics of lithium perchlorate in acyclic polyether solvents,'' The Journal of Physical Chemistry, vol. 97, no. 14, 1993, pp. 3606-3613.
[96] A. M. Rocco, C. P. da Fonseca, and R. P. Pereira, ''A polymeric solid electrolyte based on a binary blend of poly(ethylene oxide), poly(methyl vinyl ether-maleic acid) and LiClO4,'' Polymer, vol. 43, no. 13, 2002, pp. 3601-3609.
[97] D. L. Pavia, G. M. Lampman, and G. S. Kriz, Introduction to Spectroscopy., New York: Cole Pub Co, 2009.
[98] W.-J. Liang, C.-L. Kuo, C.-L. Lin, and P.-L. Kuo, ''Solid polymer electrolytes. IV. Preparation and characterization of novel crosslinked epoxy-siloxane polymer complexes as polymer electrolytes,'' Journal of Polymer Science Part A: Polymer Chemistry, vol. 40, no. 9, 2002, pp. 1226-1235.
[99] L. H. Sim, S. N. Gan, C. H. Chan, and R. Yahya, ''ATR-FTIR studies on ion interaction of lithium perchlorate in polyacrylate/poly(ethylene oxide) blends,'' Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 76, no. 3–4, 2010, pp. 287-292.
[100] A. Karmakar, and A. Ghosh, ''A comparison of ion transport in different polyethylene oxide–lithium salt composite electrolytes,'' J. Appl. Phys., vol. 107, no. 10, 2010, pp. 104113-104113-6.
[101] 何玉梅,鋰電池含氟素電解質聚合物之製備與研究,碩士論文,國立臺北科技大學有機高分子研究所,台北,2007。
[102] J. L. Acosta, and E. Morales, ''Structural, morphological and electrical characterization of polymer electrolytes based on PEO/PPO blends,'' Solid State Ionics, vol. 85, no. 1–4, 1996, pp. 85-90.
[103] D.-W. Kim, J.-K. Park, and H.-W. Rhee, ''Conductivity and thermal studies of solid polymer electrolytes prepared by blending poly(ethylene oxide), poly(oligo[oxyethylene]oxysebacoyl) and lithium perchlorate,'' Solid State Ionics, vol. 83, no. 1–2, 1996, pp. 49-56.
[104] Z. Tang, J. Wang, Q. Chen, W. He, C. Shen, X.-X. Mao, and J. Zhang, ''A novel PEO-based composite polymer electrolyte with absorptive glass mat for Li-ion batteries,'' Electrochimica Acta, vol. 52, no. 24, 2007, pp. 6638-6643.
[105] G. Gordon Cameron, M. D. Ingram, M. Younus Qureshi, H. M. Gearing, L. Costa, and G. Camino, ''The thermal degradation of poly(ethylene oxide) and its complex with NaCNS,'' European Polymer Journal, vol. 25, no. 7–8, 1989, pp. 779-784.
[106] L. Costa, A. M. Gad, G. Camino, G. G. Cameron, and M. Y. Qureshi, ''Thermal and thermooxidative degradation of poly(ethylene oxide)-metal salt complexes,'' Macromolecules, vol. 25, no. 20, 1992, pp. 5512-5518.
[107] P. Johansson, J. Tegenfeldt, and J. Lindgren, ''Modelling amorphous lithium salt–PEO polymer electrolytes: ab initio calculations of lithium ion–tetra-, penta- and hexaglyme complexes,'' Polymer, vol. 40, no. 15, 1999, pp. 4399-4406.
[108] J. H. Flynn, and L. A. Wall, ''General treatment of the thermogravimetry of polymers,'' J Res Natl Bur Stand, vol. 70, 1966, pp. 487-523.
[109] M. Rubinstein, and R. H. Colby, Polymer Physics., New York:Oxford University Press: USA, 2003.
[110] 羅少軒,分枝狀聚氧化乙烯鋰電解質之流變性質,碩士論文,國立臺北科技大學化學工程研究所,台北,2011。
[111] S. Kasapis, ''The use of Arrhenius and WLF kinetics to rationalise the rubber-to-glass transition in high sugar/kappa-carrageenan systems,'' Food Hydrocolloids, vol. 15, no. 3, pp. 239-245.
[112] L. Shechter, J. Wynstra, and R. P. Kurkjy, ''Glycidyl Ether Reactions with Amines,'' Industrial & Engineering Chemistry, vol. 48, no. 1, 1956, pp. 94-97.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top