跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/01 19:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊福泉
研究生(外文):Fu-Chang Yung
論文名稱:自廢觸媒中分離與純化鈀之研究
論文名稱(外文):A Study on the Separation and Purification of Palladium from Spent Pd/C Catalyst
指導教授:蔡德華
口試委員:張裕祺方旭偉郭文正
口試日期:2012-06-29
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:100
中文關鍵詞:廢觸媒分離萃取反萃取氯化三辛基甲基銨(Aliquat336)
外文關鍵詞:PalladiumSpent CatalystSeparationExtractionStrippingtrioctylmethylammonium Chloride(Aliquat336)
相關次數:
  • 被引用被引用:1
  • 點閱點閱:339
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以廢鈀觸媒做為實驗對象,從中分離並純化出金屬鈀。實驗主要分為三部分來探討,而一開始的廢鈀觸媒需先經過通氧鍛燒以去除活性碳和有機物。第一部分為浸出實驗,用簡單且對環境無污染的實驗流程來溶解廢鈀/活性碳觸媒。實驗結果顯示,在90℃、液固比20、加熱2小時下,20% HCl +35% H2O2浸出廢鈀觸媒,鈀的浸出率可達98.4%。
第二部分為分離實驗,利用溶劑萃取法來作為分離方法,將Aliquat336溶於煤油中來萃取浸出液中的鈀。實驗中發現,萃取過程中會產生第三相的問題,影響萃取的效果,但當加入正辛醇時,可消除第三相的產生。最後實驗結果顯示,以0.05M Aliquat336+10%1-Octanol為載體,油水相比為1,在H2O2+HCl的系統下,可有效的萃取鈀金屬,萃取率高達99%以上;以0.5molL-1HCl+0.5molL-1 thiourea水溶液進行反萃,反萃率可達100%。實驗最後藉由圖解分析法可得知萃合物組成為PdCl4(R4N)2,其萃取平衡常數分別為K20=3178.04
第三部分為還原實驗,實驗結果顯示,在pH值在1-9之間 、90℃、反應時間1小時下,0.1mL的甲酸可還原0.0108M鈀水溶液達99%以上。然而溫度和pH值對還原鈀粉的影響甚大,在較高的溫度和pH值下,不僅能提高回收率,更能大幅的減少甲酸的用量。最後,本研究提供了一有效的回收流程,可使鈀從廢鈀觸媒中有效的分離出來,其鈀純度可達99.96%。


In this research, We used spent catalyst to separate and purification for palladium, The experiment was divided into three parts. Spent catalyst were initially pre-oxidized (800℃,2hr) in order to eliminate active carbon and organic matter.The first part is leaching process, A simple and environmentally friendly process was propose for the recovery of palladium from spent catalyst based on carbon carrier. It’s about 98.4% dissolution of palladium was achieved by leaching with a solution contains 20%HCl and 35%H2O2 at 90 ℃ for 2.5 hr with a liquid/solid ratio of 20/1 .
The second part is separation process, Liquid-Liquid extraction(LLE) of palladium(II) in H2O2+HCl solution has been investigated, using Aliquat336 in kerosene at 25℃. The result show that the third phase formed when extracting palladium in H2O2+HCl solution with Aliquat336.But if the modifier (1-Octanol) was added in the extractant, this phenomenon will be eliminated. The results indicate that,0.05M Aliquat 336+10% 1-Octanol extracted more than 99% of palladium in one stage at 25℃ with an A/O phase ratio equal to 1 (v/v) , 0.5molL-1+0.5molL-1thiourea systyem is better for the palladium stripping, it was stripped about 100% in one stage at 25℃ with an A/O phase ratio equal to 1 (v/v). In the extraction process, there have about two Aliquat336 molecules involved in the aqueous solution. Based on graphical and numberical analysis.The compositions of Pd/Aliquat336 complex formed in the organic phase were found to be PdCl4(R4N)2, and the respective correspomding equilibrium constant were K20=3178.04
The third part is reduction process, the results show that, at pH 1-9 and temperature 90 ℃, reaction time 1hour, 0.0108 M Pd2+, simply use 0.1 mL formic acid, will can be more than 99% recovery ratio. The temperature and pH value on the recovery of palladium powder has great impact, at higher pH and temperature, not only can increase the recovery efficiency and reaction rate, more significantly reduce the amount of formic acid.Finally, We provide an efficient and complete separation of palladium process, this recovery process can achieve about 99.96% purity of palladium from spent Pd/C catalyst.


摘 要 i
ABSTRACT ii
誌 謝 iv
目 錄 v
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 前言 1
1.2鈀金屬簡介與應用 1
1.3鈀的傳統回收方法 5
1.4鈀的供給與需求及回收 7
1.5研究動機 11
第二章 文獻回顧 12
2.1溶劑萃取技術 12
2.1.1. 溶劑萃取簡介 12
2.1.2. 溶劑萃取原理 12
2.1.3. 溶劑萃取技術的發展與應用 14
2.1.4. 萃取劑的選擇 15
2.1.5. 萃取劑的分類 16
2.1.6. 稀釋劑的用途及選擇 26
2.1.7. 修飾劑的用途 27
第三章 實驗方法及器材 28
3.1 實驗藥品與儀器 28
3.1.1. 實驗藥品 28
3.1.2. 實驗器材與分析儀器 31
3.2 實驗流程 33
3.3實驗方法與步驟 36
3.3.1溶解實驗 36
3.3.1.1改變王水液固比直接浸出廢鈀觸媒 36
3.3.1.2改變溫度煅燒廢棄觸媒 36
3.3.1.3不同酸性溶劑浸出煅燒過後之廢鈀觸媒 36
3.3.1.4不同酸性溶劑浸出先煅燒後還原過之廢鈀觸媒 37
3.3.1.5改變溫度浸出先煅燒後還原過之廢鈀觸媒 37
3.3.1.6改變HCl和H2O2濃度在液固比為20之浸出實驗 37
3.3.1.7改變加熱時間在液固比為20之浸出實驗 37
3.3.2溶劑萃取 38
3.3.2.1以Aliquat336(未加修飾劑)萃取Pd(II) 38
3.3.2.2以Aliquat336+1-Octanol萃取Pd(II) 38
3.3.2.3以Aliquat336+10%1-Octanol萃取Pd(II) 39
3.3.2.4以thiourea+HCl反萃Pd(II) 39
3.3.2.5以PC-88A和D2EHPA萃取雜質金屬 40
3.3.3樹脂吸附 41
3.3.3.1樹脂前處理 41
3.3.3.2不同樹脂克數對吸附平衡之影響 41
3.3.4還原實驗 42
3.3.4.1不同pH值下甲酸還原鈀(II)金屬 42
3.3.4.2不同pH值下反應時間對鈀回收影響 42
3.3.4.3在pH值8.52下溫度及甲酸用量對鈀回收率影響 42
第四章 結果與討論 43
4.1浸出實驗 43
4.1.1王水直接浸出廢鈀觸媒 46
4.1.2不同酸性溶劑浸出煅燒過後之廢鈀觸媒 47
4.1.3廢鈀觸媒先經煅燒後甲酸還原再作浸出 50
4.2分離實驗 54
4.2.1溶劑萃取 57
4.2.1.1以Aliquat336(未加修飾劑)萃取Pd(II) 57
4.2.1.2以Aliquat336+1-Octanol萃取Pd(II) 61
4.2.1.3以Aliquat336+10%1-Octanol萃取Pd(II) 64
4.2.1.4鈀(II)之萃取平衡 67
4.2.1.5以thiourea+HCl反萃Pd(II) 72
4.2.1.6以酸性萃取劑PC-88A和D2EHPA萃取雜質金屬 73
4.2.2樹脂吸附 76
4.2.2.1以螯合樹脂S930 plus吸附雜質金屬 76
4.2.2.2以強酸型陽離子交換樹脂IR120吸附雜質金屬 80
4.3還原實驗 84
4.3.1不同pH值及溫度下甲酸還原鈀(II)金屬 84
4.3.2回收後鈀粉之分析結果 86
第五章 結論 92
符號彙整 94
參考文獻 95


[1]百度百科http://baike.baidu.com
[2]楊榮烽,奈米金屬鈀、聚苯胺/奈米金屬鈀和NDGA/奈米金屬鈀薄膜修飾電極的製備及其電催化特性之研究,碩士論文,國立臺北科技大學化學工程研究所,台北,2008。
[3]廖釗鋙,吳耀庭,「2010年諾貝爾化學獎鈀催化交叉耦合反應 」,科學發展,第462期,第60 ~ 65頁,2011年6月
[4]維基百科http://zh.wikipedia.org/wiki/Wikipedi
[5]陳景,鉑族金屬冶金,北京:化學科學出版社,第339頁,2008。
[6]http://www.importcatalytic.com/
[7]Vismadeb Mazumder, Miaofang Chi, Karren L. More, and Shouheng Sun, “Core/Shell Pd/FePt Nanoparticles as an Active and Durable Catalyst for the Oxygen Reduction”, Journal of the American Chemical Society, vol. 132, pp.7848-7849, 2010.11
[8]liuyong,「芬蘭顯著降低燃料電池成本 未來有望驅動電動汽車」,中國科技報,2012年2月
[9]http://www.bloggang.com/viewdiary.php?id=wing41&month=07-2007&date=12&group=1&gblog=2
[10]百聚鉑鈀資訊http://www.bobainfo.com
[11]Jonathan Butler, “Platinum 2012 Interim Review”, Johnson Matthey Public Limited Company 2012 Report, 2012.5
[12]郭子瑋,自廢棄活性碳觸媒回收貴重金屬鈀之研究,碩士論文,國立臺北科技大學化學工程研究所,臺北,2011。
[13]PLATINUM TODAYhttp://www.platinum.matthey.com/
[14]D.S.Flett, “Solvemt Extracton in Scrap and Waste Processing”, J.Chem.Technol.Biotechnol., Vol.29, pp.258-272, 1979
[15]M.A.Hughes, “The recovery of metals from secondary sources: Solvent extraction routes”, Chem.Ind.,Des, pp.1042-1046, 1975
[16]H.Reinhardt, “Solvent extraction for recovery of metal waste”, Chem.Ind.
, pp.210-213, 1975
[17]蔡德華,以溶劑萃取和支撐式液膜分離鈷(II)和鎳(II)之研究,博士論文,國立成功大學化學工程研究所,台南,1991。
[18]蔡政宏,以支撐式液膜分離鋅(Ⅱ)和銅(Ⅱ)之研究,碩士論文,國立臺北科技大學化學工程研究所,臺北,2001。
[19]R.Farooq, Y.Wang, F.Lin, S.F.Shaukat, J.Donaldson and A.J.Chouhdary, “Effect of ultrasound on the removal of copper from the model solutions for copper electrolysis process”, Water Research, vol. 36, No.12, pp.3165-3169, 2002
[20]M.D.Kaminski, L.Nunez, “Extractant-coated magnetic particles for cobalt and nickel recovery from acidic solution”, Journal of Magnetism Magnetic Materials, vol. 194, pp.31-36, 1999
[21]E.Antico, A.Masana, M.Hidalgo, V.Salvado, M.Iglesias, M.Valiente, “Solvent extraction of yttrium from chloride media by di(2-ethylhexyl) phosphoric acid in kerosene. Speciation studies and gel formation”, Analytica Chimica Acta, vol. 327, pp.267-276, 1996
[22]Ruey-Shin Juang, Ren-Hour Huang, “Equilibrium studies on reactive extraction of lactic acid with an amine extractant”, The Chemical Engineering Journal, vol. 65, pp.47-53, 1997
[23]Andreas Geist, Walter Nitsch, Jae-Ⅱ Kim, “On the kinetics of rare-earth extraction into D2EHPA”, Chemical Engineering Science, vol. 54, pp. 1903-1907, 1999
[24]江建利,「攪拌萃取裝置的操作特性」,化工,第42期,第3篇,第54頁,1995
[25]郭爵榮,以支撐液膜傳送分離鋅(II)和鎘(II)離子之研究,碩士論文,國立臺北科技大學化學工程研究所,臺北,2004。
[26]陸九芬、李總成、包鐵竹,「分離過程化學」,大陸:北京大學清華出版社,1993。
[27]Treybal R E, “Liquid Extraction”, New York, Toronto, London: McGraw-Hill Book Company Inc., 1963.
[28]G. S.Laddha, T. E.Degaleeson, “Transport Phenomena in Liquid Extraction”, New Delhi: Tata McGraw-Hill Publishing Co. Ltd, 1978.
[29]J.Rydberg, C.Musikas, R.C.Gregory, “Principles and Practices of Solvent Extraction”, New York: M. Dekker, 1992.
[30]朱屯、李洲,溶劑萃取,北京:化學工業出版社,第73-78頁,2008。
[31]E.Jackson, “Hydrometallurgical Extraction and Reclamation”, Chichester, West sussex, Eill Horwood Ltd., pp.50-57, 1986
[32]蔡泓欣,以液膜萃取分離錳(II)和鎳(II)之研究,博士論文,國立臺北科技大學化學工程研究所,臺北,2011。
[33]R.S.Juang, and R.H.Lo, “Kinetics of the Coupled Transport of Vanadium(IV) From Sulfate Solutions Through Supported Liquid Membranes, ”Ind. Eng. Chem. Res., vol.33(4), pp.1011-1016, 1994
[34]L.J.Lozano, and C.Godinez, “Comparative Study of Solvent Extraction of Vanadium from Sulphate Solutions by Primene 81R and Alamine336”, Miner. Eng., vol. 16(3), pp.179-304, 2003
[35]P. K.Mohapatra, D.S.Lakshmi, D.Mohan and V.K.Manchanda, “Uranium Pertraction Across a PTFE Flatsheet Membrane Containing Aliquat336 as the Carrier”, Sep. Pur. Tech., vol. 51(1), pp.24-30, 2006
[36]B.R.Reddy, S.Radhika and B.N.Kumar, “Liquid-Liquid Extraction Studies of Trivalent Yttrium from Phosphoric Acid Solutions Using TOPS99 as an Extractant”, Sep. Sci. Technol., vol. 34(15), pp.2997-3008, 2010
[37]G.M.Ritcey, and A.W.Ashbrook, “Solvent Extraction: Principles and Applications to Process Metallurgy”, Part I & Part II, Elsevier Science Publishers B. V., Amsterdam, 1984.
[38]蔡弘昇,鋅(II)和銅(II)經支撐液膜傳送分離之研究,碩士論文,國立臺北科技大學化學工程研究所,臺北,2003。
[39]吳文馨,支撐式液膜萃取分離鋅和鎘離子之效率與質傳,碩士論文,元智大學化學工程研究所,桃園,2002。
[40]陳仁川,2-乙基己基膦酸單-2-乙基己基酯為載劑利用支撐式液膜分離鈷離子之研究,碩士論文,國立成功大學化學工程研究所,台南,1996。
[41]蔡德華,「液態離子交換劑之介紹」,化工,第46期,第4篇,1999,第23-31頁。
[42]M.J.Hudson, “An Introduction to some aspect of solvent extraction chemistry in hydrometallurgy”, Hydrometallurgy,vol.9(2), pp.149-168, 1982
[43]T.C.Lo, M.H.I.Baird and C.Hanson, “Handbook of Solvent Extraction”, John Wiely & Son., Inc., New York, 1983.
[44]L.L.Tavlarides, J.H.Bae and C.K.Lee, “Solvent extraction, membranes, and ion exchange in hydrometallurgical dilute metals separation”, Separation Science Technology, vol. 22(2-3), pp.581-617, 1987
[45]G.M.Ritcey, and A.W.Ashbrook, “Solvent Extraction: Principles and Applications to Process Metallurgy”, Elsevier: Amsterdam, 1984.
[46]G. M.Ritcey , “Solvent Extraction in Hydrometallurgy: Present and Future”, Tsinghua Science & Technology, vol. 11(2), pp.137-258, 2006
[47]T.Sekine and Y. Hasegawa, “Solvent Extraction Chemistry: Fundamentals and Applicationa”, Marcel Dekker Inc., New York and Basel, 1977.
[48]L.L.Tavlarides, J.H.Bae and C.K.Lee, “Solvent Extraction, Membranes, and Ion Exchange in Hydrometallurgical Dilute Metals Separation”, Sep. Sci. Technol., vol. 22(2-3), pp.581-617, 1987
[49]M.E.Tunison, and J.Marchese and M.E.Campderros, “The Effect of a Diffusion Potential on the Rate of Liquid-Liquid Ion Exchange”, Ind. Eng. Chem. Fundam., vol.15(3), pp.196-201, 1976
[50]高向前,高濃度酸性溶液中鈷與鎳之萃取分離,碩士論文,元智大學化學工程與材料科學學系,桃園,2002。
[51]M.S.Lee, and M.Filiz, “Solvent Extraction of Mn(II) from Strong Hydrochloric Acid Solution by Alamine336”, Materials Trans., vol. 49(11), pp.2642-2647, 2008
[52]O.N.Kononova, E.L.Goncharova, A.M.Melnikov, D.M.Kashirin, A.G. Kholmogorov and S.G.Konontsev, “Ion Exchange Recovery of Rhodium(III) from Chloride Solutions by Selective Anion Exchanges”, Solvent Extr. Ion Exch., vol. 28(3), pp.388-402, 2010
[53]B.Wassink, D.Dreisinger and J.Howard, “Solvent Extraction Separation of Zinc and Cadmium from Nickel and Cobalt Using Aliquat336, a Strong Base Anion Exchanger, in the Chloride and Thiocyanate Forms”, Hydrometallurgy, vol. 57(3), pp.232-252, 2000
[54]高向前,非分散式萃取程式分離金屬酸液中貴重金屬之質傳分析,博士論文,元智大學化學工程與材料科學學系,桃園,2006。
[55]朱屯、李洲,溶劑萃取,北京:化學工業出版社,第73-78頁,2008。
[56]馬榮駿,萃取冶金,北京:冶金工業出版社,2009,第89和163頁。
[57]張文盈,以鹼性萃取劑萃取鉬(VI)之研究,碩士論文,國立臺北科技大學化學工程研究所,臺北,2011。
[58]I.Komasawa, T.Otake and Y.Ogawa, “The effect of diluent in the liquid-liquid extraction of cobalt and nickel using acidic organophosphorus compounds”, Journal of Chemical Engineering of Japan, vol. 17(4), pp. 410-417, 1984
[59]Y.Marcus, “Diluent effect in solvent extraction”, Solvent Extraction and Ion Exchange, vol. 7(4), pp.567-575, 1989
[60]T.Sato, M.Kawamura, T.Nakamura and M.Ueda, “The Extraction of Divalent Manganese, Iron, Cobalt, Nickel, Copper and Zinc from Hydrochloric Acid Solution by Di-(2-Ethylhexyl)phosphoric Acid”, Journal of Applied Chemistry and Biotechnology, vol. 28(2), pp. 85-94, 1978.
[61]G.M.Ritecy, and A.W.Ashbrook, “Solvent Extraction:Principles and Application to Process Metallurgy”, Part I & Part II, Elsevier Science Publishers B. V., Amsterdam, pp.27-31, 1984.
[62]R.Navarro, V.Gallardo, I.Saucedo and E.Guibal, “Extraction of Fe(III) from hydrochloric acid solutions using Amberlite XAD-7 resin impregnated with trioctylphosphine oxide (Cyanex 921)” , Hydrometallurgy , vol.98, pp. 257–266, 2009
[63]M.A.Barakat, M.H.Mahmoud, Y.S.Mahrous, “Recovery and Separation of Palladium from Spent Catalyst”, Applied Catalysis A: General, vol. 301, pp. 182-186, 2006
[64]Hasan Uslu and S.Ismail Kırbaslar , “Investigation of phase equilibria of levulinic acid distribution between aqueous phase to organic phase by Aliquat 336 in different modifiers”, J. Chem. Thermodynamics ,vol. 41, pp.1042–1048, 2009
[65]蔡明叡,從氯鉑酸廢液萃取鉑(IV)之研究,碩士論文,國立臺北科技大學化學工程研究所,臺北,2009
[66]F.J.Alguacil ,A.Cobo , A.G.Coedo , M.T.Dorado, A.Sastre,“Extraction of platinum( IV) from hydrochloric acid solutions by amine alamine 304 in xylene.Estimation of the interaction coefficient between PtCl and H+”, Hydrometallurgy, vol. 44, pp.203–212, 1997
[67]Anna Cieszynska , Maciej Wiśniewski“Extractive recovery of palladium(II) from hydrochloric acid solutions with CyphosRIL 104” Hydrometallurgy vol.113-114 ,pp.79–85, 2012
[68]Chen-Yu Peng and Teh-Hua Tsai “ Recovery of palladium (II) from acidic chloride solution using kerosene containing tri-n-octyl/decyl amine (Alamine 336)” , Desalination and Water Treatment, 2012
[69]Basudev Swain, Jinki Jeong , Soo-kyoung Kim, Jae-chun Lee,“Separation of platinum and palladium from chloride solution by solvent extraction
using Alamine 300”, Hydrometallurgy, vol.104, pp.1–7, 2010
[70]P.Sun, M.S.Lee, “Separation of Pt(IV) and Pd(II) from the loaded Alamine336 by stripping”, Hydrometallurgy, vol.109, pp.181–184, 2011
[71]朱屯,李洲,溶劑萃取,化學工業出版社,2008
[72]Z.Hubicki, M.Leszczyn ska,B.Łodyga ,A.Łodyga,“Palladium(II) removal from chloride and chloride–nitrate solutions by chelating ion-exchangers containing N-donor atoms” Minerals Engineering, vol.19, pp.1341–1347, 2006


電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top