跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 23:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張佩琦
研究生(外文):Pei-Chi Chang
論文名稱:新型含三苯胺結構之芳香族聚醚醯胺與聚醚醯亞胺的合成和電致變色性質
論文名稱(外文):Synthesis and Electrochromic Properties of Novel Aromatic Polyetheramides and Polyetherimides Bearing Triphenylamine Units
指導教授:蕭勝輝
指導教授(外文):Sheng-Huei Hsiao
口試委員:陳志堅陳耀騰劉貴生
口試委員(外文):Jyh-Chien ChenYaw-Terng ChenGuey-Sheng Liou
口試日期:2012-07-30
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:134
中文關鍵詞:聚醚醯胺聚醚醯亞胺三苯胺電聚合電致變色光譜電化學電致變色元件
外文關鍵詞:polyetheramidespolyetherimidestriphenylamineelectrochemistryelectrochromismspectroelectrochemistryelectrochromic devices
相關次數:
  • 被引用被引用:0
  • 點閱點閱:148
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文包含三個研究主題,主要探討由具有三苯胺結構的二醚二胺及二醚二酸酐單體所衍生的芳香族聚醚醯胺(polyetheramides)與聚醯亞胺(polyetherimides)的合成及其電化學、光譜電化學和電致變色等性質。
第一部分在探討一種具有雙苯氧基連接三苯胺結構的二胺單體4,4’-Bis(p-aminophenoxy)triphenylamine的合成,此二醚二胺單體與各種芳香族二酐先進行開環加成聚合得到聚醯胺酸,然後再經由化學閉環和熱閉環而得到聚醚醯亞胺。這一系列的聚醚醯亞胺展現出優異的熱穩定性,玻璃態轉移溫度範圍在234-281 oC之間,並且在溫度超過540 oC才會有10%的重量損失。由高分子薄膜的循環伏安研究發現這些聚醚醯亞胺同時擁有p- 和 n-可摻雜的特性並且具有多顏色電致變色的現象。在與沒有苯氧基結構取代的聚合物來比較,他們有著明顯較佳的電化學穩定性。
第二部分則在探討以上述具有雙苯氧基連接三苯胺結構的二胺單體為主體的聚醚醯胺的合成與特性。一系列新型的芳香族聚醚醯胺是由上述的二醚二胺單體與各種芳香族二羧酸進行磷酸化聚縮合反應而得。這些聚醯胺屬於非結晶性的材料,並且易溶於極性的有機溶劑如NMP、DMAc,因此可經由它們的溶液塗佈及烘乾後製得具有可撓曲性的高分子薄膜。這些聚醯胺展現出好的熱穩定性,它們的玻璃態轉移溫度範圍在227-234 oC,在溫度超過530 oC才有10%的重量損失。這一系列的聚醚醯胺薄膜展現出優異的電化學和電致變色穩定性,施加電壓範圍在0到1.06 V間薄膜顏色會從中性態的透明無色變成氧化態的淡黃色或藍色。
第三部分在探討一種新型具有三苯胺結構的二醚二酸酐單體4,4’-Bis(3,4-dicarboxyphenoxy)triphenylamine dianhydride及其聚醚醯亞胺的合成及性質。這一系列的聚醚醯亞胺的玻璃態轉移溫度範圍在211-299 oC之間。由高分子薄膜的循環伏安研究發現這些聚醚醯亞胺同時擁有p- 和 n-可摻雜的特性並且具有多顏色電致變色的現象。在進行循環伏安實驗的過程中,這些聚醚醯亞胺電氧化產生的三苯胺自由基陽離子結構單元會進行偶合反應而形成交聯型的電致變色聚合物。這些高分子薄膜做成的電致變色元件具有高的變色效率和電致變色穩定度以及快速的顏色變化。


This thesis is aimed to synthesize and characterize two triphenylamine (TPA)-based bis(ether amine) and bis(ether anhydride) monomers and their derived aromatic polyetheramides and polyetherimides. The electrochemical, spectroelectrochemical and electrochromic properties of these polymers will be investigated.
In the first part of this thesis, a TPA-bis(ether amine) monomer, namely bis(p-aminophenoxy)triphenylamine, was successfully synthesized and reacted with aromatic tetracarboxylic dianhydrides via a conventional two-step technique leading to a series of TPA-containing polyetherimides. These polyetherimides showed a high level of thermal stability, with glass-transition temperatures of 234-282 oC and decomposition temperatures in excess of 540 oC. They showed well-defined and reversible redox couples during both p- and n-doping processes, together with multi-electrochromic behaviors. They exhibited enhanced redox-stability and electrochromic performance as compared to the corresponding analogs without the phenoxy spacer between the TPA and imide units.
The second part reports the synthesis and properties of aromatic polyetheramides on the basis of the TPA-bis(ether amine) monomer as described in the first part. These polyetheramides were prepared via the direct phosphorylation polycondensation from bis(p-aminophenoxy)triphenylamine and aromatic dicarboxylic acids. These polyamides were amorphous with good solubility in many organic solvents, such as NMP and DMAc, and could be solution-cast into flexible polymer films. The polyetheramides had useful levels of thermal stability with glass-transition temperatures in the range of 227-234 oC and 10% weight loss temperatures in excess of 530 oC. The polymer films revealed excellent electrochemical and electrochromic stability, with a color change from a colorless neutral form to yellow and blue oxidized forms at applied potentials ranging from 0 to 1.06 V.
The third part of this thesis deals with the synthesis and characterization of a new TPA-bis(ether anhydride) monomer, 4,4’-bis(3,4-dicarboxyphenoxy)- triphenylamine dianhydride, and its derived polyetherimides. The polyetherimides exhibited glass-transition temperatures in the range 211–299 oC. They showed well-defined and reversible redox couples during both p- and n-doping processes, together with multicolored electrochromic behaviors. During the n-doping process, a cross-linked polymer structure may be formed due to the coupling reaction between the TPA radical cations in the polymer chain. These polymers can be used to fabricate electrochromic devices with high coloration efficiency, high redox stability, and fast response time.


TABLE OF CONTENTS

摘 要 i
ABSTRACT iii
ACKNOWLEDGEMENTS v
TABLE OF CONTENTS vi
LIST OF SCHEMES viii
LIST OF TABLES ix
LIST OF FIGURES x
Part I 1
ABTRACT 2
CHAPTER 1 INTRODUCTION 3
CHAPTER 2 EXPERIMENTAL 6
2.1 Materials 6
2.2 Monomer Synthesis 7
2.2.1 4,4’-Dimethoxytriphenylamine (1) 7
2.2.2 4,4’-Dihydroxytriphenylamine (2) 7
2.2.3 4,4’-Bis(p-nitrophenoxy)triphenylamine (3) 8
2.2.4 4,4’-Bis(p-aminophenoxy)triphenylamine (4) 9
2.3 Polymer Synthesis 10
2.4 Measurements 11
CHAPTER 3 RESULTS AND DISCUSSION 13
3.1 Monomer Synthesis 13
3.2 Polymer Synthesis 21
3.3 Polymer Properties 25
3.3.1 Basic Characterization 25
3.3.2 Thermal Properties 28
3.3.3 Electrochemical Properties 30
3.3.4 Spectroelectrochemistry and Electrochromic Switching 38
CHAPTER 4 CONCLUSIONS 48
REFERENCES 49
Part II 54
ABSTRACT 55
CHAPTER 1 INTRODUCTION 56
CHAPTER 2 EXPERIMENTAL 58
2.1 Materials 58
2.2 Polymer Synthesis 58
2.3 Preparation of the Polyamide Films 59
2.4 Measurements 59
CHAPTER 3 RESULTS AND DISCUSSION 61
3.1 Polymer Synthesis 61
3.2 Polymer Properties 64
3.2.1 Basic Characterization 64
3.2.2 Thermal Properties 65
3.2.3 Electrochemical Properties 67
3.2.4 Spectroelectrochemistry and Electrochromic Switching 71
Chapter 4 CONCLUSION 77
REFERENCES 78
Part III 85
ABSTRACT 86
CHAPTER 1 INTRODUCTION 87
Chapter 2 EXPERIMENTAL 90
2.1 Materials 90
2.2 Monomer Synthesis 91
2.2.1 4,4’-Bis(3,4-dicyanophenoxy)triphenylamine (3) 91
2.2.2 4,4’-Bis(3,4-dicarboxyphenoxy)triphenylamine (4) 91
2.2.3 4,4’-Bis(3,4-dicarboxyphenoxy)triphenylamine dianhydride (5) 92
2.3 Polymer Synthesis 93
2.4 Fabrication of the Electrochromic Devices 94
2.5 Measurements 95
Chapter 3 RESULTS AND DISCUSSION 97
3.1 Monomer Synthesis 97
3.2 Polymer Synthesis 103
3.3 Polymer Properties 106
3.3.1 Basic Characterization 106
3.3.2 Thermal Properties 109
3.3.3 Electrochemical Properties 111
3.3.4 Spectroelectrochemistry and Electrochromic Switching 118
CHAPTER 4 CONCLUSIONS 125
REFERENCES 126



LIST OF SCHEMES

PART I
Scheme 1. Synthetic route to the target diamine monomer 4 15
Scheme 2. Synthesis of polyimide 6a~6f by twp step method 22
Scheme 3. Postulated reduction chemistry of various diimide systems. 34
Scheme 4. Proposed coupling reaction between the TPA units in the polyimides. 37

PART II
Scheme 1. Synthesis of polyamides 6a~6e. 62
Scheme 2. Proposed coupling reaction of the TPA units in the polyamides. 69

PART III
Scheme 1. Synthetic route to the target bis(ether anhydride) monomer 5 98
Scheme 2. Synthesis of poly(ether-imide)s 7a~7g. 104
Scheme 3. Postulated redox chemistry of the poly(ether-imide)s. 113
Scheme 4. Proposed coupling reaction of the TPA radical cations in the poly(ether-imide)s, together with the following oxidation reactions. 114
Scheme 5. Electrochemical crosslinking of the poly(ether-imide) via the dimerization of TPA radical cations. 114



LIST OF TABLES

PART I
Table 1. Inherent viscosity and solubility behavior of polyimides prepared via thermal (-T) or chemical (-C) imidization 27
Table 2. Thermal properties of polyimides 29
Table 3. Optical and electrochemical properties of polyimides 35
Table 4. Electrochemical and optical properties of the polyimides on peduction 43
Table 5. Electrochromic properties of polyimides 6a, 6d, and 6’d 46

PART II
Table 1. Inherent viscosity and solubility behavior of polyamides 65
Table 2. Thermal properties of the polyamides a 66
Table 3. Redox potentials and energy levels of polyamides 71
Table 4. Electrochromic properties of polyamide 6d at 488 and 768 nm 76

PART III
Table 1. Inherent viscosity and solubilityb behavior of polyimides prepared via thermal (-T) or chemical (-C) imidization 108
Table 2. Thermal properties of the poly(ether-imide)s 110
Table 3. Optical and electrochemical properties of the poly(ether-imide)s 117
Table 4. Electrochromic properties of the 7d’ film 124




LIST OF FIGURES

Figure 1. IR spectra of all the synthesized compounds 1-4. 16
Figure 2. (a) 1H NMR and (b) 13C NMR spectra of compound 1 in DMSO-d6. 17
Figure 3. (a) 1H NMR and (b) 13C NMR spectra of compound 2 in DMSO-d6. 18
Figure 4. (a) 1H NMR, (b) 13C NMR, (c) H-H COSY, and (d) C-H HMQC spectra of dinitro compound 3 in DMSO-d6. 19
Figure 5. (a) 1H NMR, (b) 13C NMR, (c) H-H COSY, and (d) C-H HMQC spectra of the target diamine monomer 4 in DMSO-d6. 20
Figure 6. IR spectra of polyimide 6c and its poly(amic acid) precursor. 23
Figure 7. (a) 1H NMR and (b) H-H COSY spectra of polymer 6f in CDCl3. 24
Figure 8. The WAXD patterns of the polyimide films prepared by the thermal imidization method. 26
Figure 9. TMA and TGA curves of polyimide 6f with a heating rate of 10 and 20 oC min-1, respectively. 29
Figure 10. DSC curves of polyimides 6a-6f with a heating rate of 20 oC/min. 30
Figure 11. Cyclic voltammetric diagrams of the cast films of polyimides (a) 6a, (b) 6b, (c) 6c, (d) 6d, (e) 6e, and (f) 6f on an ITO-coated glass substrate in 0.1 M Bu4NClO4 acetonitrile (for anodic process) and DMF (for cathodic process) solution at a scan rate of 50 and 100 mV/s, respectively. 33
Figure 12. Cyclic voltammograms of polyimides 6d and 6’d on ITO-coated glass substrate in 0.1 M Bu4NClO4/ CH3CN solution at scan rate of 100 mV/s. 36
Figure 13. Repeated cyclic voltammograms of polyimide 6d on the ITO-coated glass substrate in 0.1 M Bu4NClO4/ CH3CN solution at scan rate of 100 mV/s. 36
Figure 14. (a) Absorption spectra of the thin film of polyimide 6d on an ITO electrode at various potentials from 0 to 1.1 V, (b) spectral change from 1.1 back to 0.74 V, (c) repetitive cyclic voltammograms for 6d, and (d) the second spectroelectrochemical series of the polyimide 6d thin film. 42
Figure 15. Spectroelectrochemistry of the films of polyimides (a) 6a, (b) 6b, and (c) 6d on an ITO electrode in 0.1 M Bu4NClO4/DMF at various applied potentials. 44
Figure 16. Potential step absorptometry of the cast films of polyimides 6d and the referenced 6’d on the ITO-glass slide (coated area ~ 1 cm2)(in CH3CN with 0.1 M Bu4NClO4 as the supporting electrolyte) by applying a potential step:(a) optical switching for polyimide 6d at potential 0.0 V 1.10 V and cycle time 12 s, monitored at λmax = 753 nm; (b) 6’d at potential 0.0 V 1.28 V and cycle time 14 s, monitored at λmax = 768 nm. 45
Figure 17. Potential step absorptometry of the cast film of polyimide 6a on the ITO-glass slide (coated area ~ 1 cm2)(in DMF with 0.1 M Bu4NClO4 as the supporting electrolyte) at λmax = 558 nm as the applied voltage was stepped between 0 and -1.45 V (vs. Ag/Ag/Cl). 47

PART II
Figure 1. Typical IR spectrum of polyamide 6a. 62
Figure 2. (a) 1H NMR, (b) 13C NMR, (C) H-H COSY, and (d) C-H HMQC spectra of polyamide 6a in DMSO-d6. 63
Figure 3. WAXD patterns of the polyamide films. 64
Figure 4. TGA and TMA curves of polyamide 6e with a heating rate of 20 oC/min. 66
Figure 5. DSC curves of polyamides 6a-6e with a heating rate of 20 oC/min. 67
Figure 6. Cyclic voltammograms of the cast film of polyamide 6b on an ITO-coated glass substrate in 0.1 M Bu4NClO4/CH3CN solution at a scan rate of 100 mV/s. 69
Figure 7. Repetitive cyclic voltammograms of the cast film of polyamide 6’d on an ITO-coated glass substrate in 0.1 M Bu4NClO4/CH3CN solution at a scan rate of 50 mV/s. 70
Figure 8. The normalized UV-vis spectra of thin films of polyamides 6d and 6’d. 70
Figure 9. Spectroelectrochemistry of the polyamide 6d thin film on the ITO-coated glass substrate in 0.1 M Bu4NClO4/CH3CN from 0 to 1.06 V: (a) the first series and (b) the second series. (c): The spectroelectrochemical series of the polyamide 6’d thin film from 0 to 1.03 V. 74
Figure 10. (a) Optical transmittance changes ; (b) current densities monitored and (c) the 1st cycle optical transmittance changes for polyamide 6d at 488 nm and 768 nm on the ITO-glass slide (coated area ~ 1 cm2)(in CH3CN with 0.1 M Bu4NClO4 as the supporting electrolyte). The dotted line represents the applied voltage. 75

PART III
Figure 1. IR spectra of the synthesized compounds 3-5. 99
Figure 2. (a) 1H NMR, (b) 13C NMR, (c) H-H COSY, and (d) C-H HMQC spectra of tetracyano compound 3 in DMSO-d6. 100
Figure 3. (a) 1H NMR, (b) 13C NMR, (c) H-H COSY, and (d) C-H HMQC spectra of tetracarboxylic acid 4 in DMSO-d6. 101
Figure 4. (a) 1H NMR, (b) 13C NMR, (c) H-H COSY, and (d) C-H HMQC spectra of the target bis(ether anhydride) 5 in DMSO-d6. 102
Figure 5. IR spectra of polyimide 7d and its poly(amic acid) precursor. 104
Figure 6. (a) 1H NMR and (b) H-H COSY spectra of poly(ether-imide) 7d in CDCl3 105
Figure 7. WAXD patterns of the polyimide films. 107
Figure 8. TMA and TGA curves of polyimide 7f with a heating rate of 10 and 20 oC/min, respectively. 110
Figure 9. DSC curves of poly(ether-imide)s 7a-7g with a heating rate of 20 oC/min. 111
Figure 10. Cyclic voltammograms of the cast film of poly(ether-imide) 7d on an ITO-coated glass substrate in 0.1 M Bu4NClO4/CH3CN (for the anodic process) and DMF (for the cathodic process) solution at a scan rate of 50 and 100 mV/s, respectively. 112
Figure 11. Repeated cyclic voltammograms of 7d polymer between 0 and 1.45 V (form a cross-linked polymer coded with 7d’) in 0.1 M Bu4NClO4/CH2Cl2 solution, with a scan rate of 150 mV/s. 113
Figure 12. (a) Cyclic voltammograms of the cast films of polyimides 7d, 7f and 8 on an ITO-coated glass substrate in 0.1 M Bu4NClO4/CH3CN solution at a scan rate of 50 mV/s. (b) Differential pulse voltammogram (DPV) of 7f. 116
Figure 13. (a) Repetitive cyclic voltammograms of the cast film of poly(ether-imide) 7g on an ITO-coated glass substrate in 0.1 M Bu4NClO4/CH3CN solution at a scan rate of 50 mV/s. (b) Differential pulse voltammograms of 7g. 116
Figure 14. Cyclic voltammograms of the cast film of the crosslinked polyimide 7d’ on an ITO-coated glass substrate in 0.1 M Bu4NClO4/CH3CN at a scan rate of 50 mV/s. 121
Figure 15. (a) Absorption spectra of the thin film of polyimide 7d on an ITO electrode at various potentials from 0 to 1.14 V, (b) spectral change from 1.14 back to 0.80 V, (c) the second spectroelectrochemical series of the polyimide 7d thin film, and (d) Photos and repetitive cyclic voltammograms for 7d . 122
Figure 16. Spectroelectrochemistry of the polyimide 7d’ thin film on the ITO-coated glass substrate in 0.1 M Bu4NClO4/CH3CN. 122
Figure 17. (a) Optical transmittance changes ; (b) current densities monitored and (c) the 1st cycle optical transmittance changes for the 7d’ film at 485 nm and 839 nm on the ITO-glass slide (coated area: 1 cm2)(in CH3CN with 0.1 M Bu4NClO4 as the supporting electrolyte). The dotted line represents the applied voltage. 123
Figure 18. (a) Photos of single-layer ITO-coated glass electrochromic device, using polyimide 7d’ as active layer. (b) Schematic diagram of polyimide ECD sandwich cell. 124


Part I

1. (a) Polyimides; Wilson, D.; Stenzenberger, H. D.; Hergenrother, P. M., Eds.; Blackie: Glasgow and London, 1990; (b) Sroog, C. E. Polyimides. Prog Polym Sci 1991, 16, 561–694; (c) Polyimides: Fundamentals and Applications; Ghosh, M. K.; Mittal, K. L. Eds.; Marcel Dekker: New York, 1996.
2.For review papers: see (a) Huang, S. J.; Hoyt, A. E. The synthesis of soluble polyimides. TRIP 1995, 3, 262–271; (b) de Abajo, J.; de la Campa, J. G. Processable aromatic polyimides. Adv Polym Sci 1999, 140, 23–59; (c) Ding, M. Isomeric polyimides. Prog Polym Sci 2007, 32, 623–668; (d) Dhara, M. G.; Banerjee, S. Fluorinated high-performance polymers: Poly(arylene ether)s and aromatic polyimides containing trifluoromethyl groups. Prog Polym Sci 2010, 35, 1022–1077.
3.For selected examples: see (a) Harris, F. W.; Hsu, S. L.-C. Synthesis and characterization of polyimides cased on 3,6-diphenylpyromellitic dianhydride. High Perform Polym 1989, 1, 3–16; (b) Matsuura, T.; Hasuda, Y.; Nishi, S.; Yamada, N. Polyimide derived from 2,2''-bis(trifluoromethyl)-4,4''-diaminobiphenyl. 1. Synthesis and characterization of polyimides prepared with 2,2''-bis(3,4-dicarboxy- phenyl)hexafluoropropane dianhydride or pyromellitic dianhydride. Macromolecules 1991, 24, 5001–5005; (c) Wang, Z. Y.; Qi, Y. Synthesis and properties of poly(aryl prehnitimide)s. Macromolecules 1995, 28, 4207–4212; (d) Chung, I. S.; Kim, S. Y. Soluble polyimides from unsymmetrical diamine with trifluoromethyl pendent group. Macromolecules 2000, 33, 3190–3193; (e) Zhang, H. B.; Wang, Z. Y. Polyimides derived from novel unsymmetric dianhydride. Macromolecules 2000, 33, 4310–4312; (f) Chou, C.-H.; Reddy, D. S.; Shu, C.-F. Synthesis and characterization of spirobifluorene-based polyimides. J Polym Sci Part A: Polym Chem 2002, 40, 3615–3621; (g) Hsiao, S.-H.; Lin, K.-H. Polyimides derived from novel asymmetric ether diamine. J Polym Sci Part A: Polym Chem 2005, 43, 331–341; (h) Kwak, S. M.; Yeon, J. H.; Yoon, T. H. Synthesis and characterization of polyimides from bis(3-aminophenyl)-4-(1-adamantyl)phenoxyphenyl phosphine oxide. J Polym Sci Part A: Polym Chem 2006, 44, 2567–2578; (i) Chern, Y.-T.; Tsai, J.-Y.; Wang, J.-J. High Tg and high organosolubility of novel unsymmetric polyimides. J Polym Sci Part A: Polym Chem 2009, 47, 2443–2452; (j) Chung, C. W.; Lin, C. H.; Cheng, P. W.; Hwang, H. J.; Dai, S. A. Facile and efficient preparation of phosphinate-functionalized aromatic diamines and their high-Tg polyimides. J Polym Sci Part A: Polym Chem 2009, 47, 2486–2499; (k) Zhang, S. J.; Li, Y. F.; Ma, T.; Zhao, J. J.; Xu, X. Y.; Yang, F. C.; Xiang, X. Y. Organosolubility and optical transparency of novel polyimides derived from 2’,7’-bis(4-aminophenoxy)-spiro(fluorene-9,9’-xanthene). Polym Chem 2010, 1, 485–493; (l) Liu, Y.; Xing, Y.; Zhang, Y. H.; Guan, S. W.; Zhang, H. B.; Wang, Y.; Wang, Y. P.; Jiang, Z. H. Novel soluble fluorinated poly(ether imide)s with different pendant groups: Synthesis, thermal, dielectric, and optical properties. J Polym Sci Part A: Polym Chem 2010, 48, 3281–3289; (m) Calle, M.; Lozano, A. E.; de la Campa, J. G.; de Abajo, J. Novel aromatic polyimides derived from 5’-t-butyl-2’-pivaloylimino- 3,4,3”,4”-m-terphenyltetracarboxylic dianhydride with potential application on gas separation processes. Macromolecules 2010, 43, 2268–2275.
4.(a) Ito, A.; Ino, H.; Tanaka, K.; Kanemoto, K.; Kato, T. Facile synthesis, crystal structures, and high-spin cationic states of all-para-brominated oligo(N-phenyl-m-aniline)s. J Org Chem 2002, 67, 491–498; (b) Fukuzaki, E.; Nishide, H. 2,6,10-Tris(dianisylaminium)-3,7,11-tris(hexyloxy)- triphenylene: A Robust quartet molecule at room temperature. Org Lett 2006, 8, 1835–1838.
5.(a) Shirota, Y. Organic materials for electronic and optoelectronic devices. J Mater Chem 2000, 10, 1–25; (b) Shirota, Y. Photo- and electroactive amorphous molecular materials—molecular design, syntheses, reactions, properties, and applications. J Mater Chem 2005, 15, 75–93; (c) Shirota, Y.; Kageyama, H. Charge carrier transporting molecular materials and their applications in devices. Chem Rev 2007, 107, 953–1010.
6.Thelakkat, M. Star-shaped, dendrimeric and polymeric triarylamines as photoconductors and hole transport materials for electro-optical applications. Macromol Mater Eng 2002, 287, 442–461.
7.Tang, C. W.; VanSlyke, S. A. Organic electroluminescent diodes. Appl Phys Lett 1987, 51, 913–915.
8.(a) Cheng, S.-H.; Hsiao, S.-H.; Su, T.-H.; Liou, G.-S. Novel aromatic poly(amine-imide)s bearing a pendent triphenylamine group:  Synthesis, thermal, photophysical, electrochemical, and electrochromic characteristics. Macromolecules 2005, 38, 307–316; (b) Hsiao, S.-H.; Chang, Y.-M.; Chen, H.-W.; Liou, G.-S. Novel aromatic polyamides and polyimides functionalized with 4-tert-butyltriphenylamine groups. J Polym Sci Part A: Polym Chem 2006, 44, 4579–4592; (c) Liou, G.-S.; Hsiao, S.-H.; Chen, H.-W. Novel high-Tg poly(amine-imide)s bearing pendent N-phenylcarbazole units: synthesis and photophysical, electrochemical and electrochromic properties. J Mater Chem 2006, 16, 1831–1842; (d) Chang, C.-W.; Liou, G.-S.; Hsiao, S.-H. Highly stable anodic green electrochromic aromatic polyamides: synthesis and electrochromic properties. J Mater Chem 2007, 17, 1007–1015; (e) Wang, H.-M.; Hsiao, S.-H. Electrochemically and electrochromically stable polyimides bearing tert-butyl-blocked N,N,N’,N’-tetraphenyl-1,4-phenylenediamine units. Polymer 2009, 50, 1692–1699; (f) Hsiao, S.-H.; Liou, G.-S.; Kung, Y.-C.; Pan, H.-Y.; Kuo, C.-H. Electroactive aromatic polyamides and polyimides with adamantylphenoxy-substituted triphenylamine units. Eur Polym J 2009, 45, 2234–2248.
9.(a) Hsiao, S.-H.; Liou, G.-S.; Kung, Y.-C.; Yen, H.-J. High contrast ratio and rapid switching electrochromic polymeric films based on 4-(dimethylamino)triphenylamine-functionalized aromatic polyamides. Macromolecules 2008, 41, 2800–2808; (b) Kung, Y.-C.; Liou, G.-S.; Hsiao, S.-H. Synthesis and characterization of novel electroactive polyamides and polyimides with bulky 4-(1-adamantoxy)triphenylamine moieties J Polym Sci Part A: Polym Chem 2009, 47, 1740–1755; (c) Hsiao, S.-H.; Liou, G.-S.; Wang, H.-M. Highly stable electrochromic polyamides based on N,N-bis(4-aminophenyl)-N’,N’-bis(4-tert-butylphenyl)-1,4-phenylene- diamine. J Polym Sci Part A: Polym Chem 2009, 47, 2330–2343; (d) Hsiao, S.-H.; Liou, G.-S.; Kung, Y.-C.; Chang, Y.-M. Fluorescent and electrochromic aromatic polyamides with 4-tert-butyltriphenylamine chromophore. J Polym Sci Part A: Polym Chem 2010, 48, 2798–2809; (e) Hsiao, S.-H.; Liou, G.-S.; Kung, Y.-C.; Hsiung, T.-J. Synthesis and properties of new aromatic polyamides with redox-active 2,4-dimethoxytriphenylamine moieties. J Polym Sci Part A: Polym Chem 2010, 48, 3392–3401; (f) Wang, H.-M.; Hsiao, S.-H.; Liou, G.-S.; Sun, C.-H. Synthesis, photoluminescence, and electrochromism of polyamides containing (3,6-di-tert-butylcarbazol-9-yl)triphenylamine units. J Polym Sci Part A: Polym Chem 2010, 48, 4775–4789; (g) Wang, H.-M.; Hsiao, S.-H. Enhanced redox stability and electrochromic properties of aromatic polyamides based on N,N-bis(4-carboxyphenyl)-N’,N’-bis(4-tert-butyl- phenyl)-1,4-phenylenediamine. J Polym Sci Part A: Polym Chem 2011, 49, 337–351.
10.Yen, H.-J.; Liou, G.-S. Solution-processable triarylamine-based electroactive high performance polymers for anodically electrochromic applications. Polym Chem 2012, 3, 255-264.
11.Thelakkat, M.; Schmitz, C.; Hohle, C.; Strohriegl, P.; Schmidt, H.-W.; Hofmann, U.; Schloter, S.; Haarer, D. Novel functional materials based on triarylamines–synthesis and application in electroluminescent devices and photorefractive systems. Phys Chem Chem Phys 1999, 1, 1693-1698.
12.Kuorosawa, T.; Chueh, C.-C.; Liu, C.-L.; Higashihara, T.; Ueda, M.; Chen, W.-C. High performance volatile polymeric memory devices based on novel triphenylamine-based polyimides containing mono- or dual-mediated phenoxy linkages. Macromolecules 2010, 43, 1236-1244.
Part II

1.Wienk, M. M.; Janssen, R. A. J. Stable triplet-state di(cation radical)s of a N-phenylaniline oligomer. Chem Commun 1996, 267–268.
2.Selby, T. D.; Blackstock, S. C. Macrocyclic Polyarylamines for rigid connection of poly radical cation spins. Org Lett 1999, 13, 2053–2055.
3.Ito, A.; Ino, H.; Tanaka, K.; Kanemoto, K.; Kato, T. Facile synthesis, crystal structures, and high-spin cationic states of all-para-brominated oligo(N-phenyl-m-aniline)s. J Org Chem 2002, 67, 491–498.
4.Selby, T. D.; Kim, K.-Y.; Blackstock, S. C. Patterned Redox arrays of polyarylamines I. Synthesis and electrochemistry of a p-phenylenediamine and arylamino-pppended p-phenylenediamine arrays, Chem Mater 2002, 14, 1685–1690.
5.Murata, H.; Miyajima, D.; Nishide, H. A high-spin and helical organic polymer: Poly{[4-(dianisylaminium)phenyl]acetylene}. Macromolecules 2006, 39, 6331–6335.
6.Tang, C. W.; VanSlyke, S. A. Organic electroluminescent diodes. Appl Phys Lett 1987, 51, 913–915.
7.Adachi, C.; Nagai, K.; Tamoto, N. Molecular design of hole transport materials for obtaining high durability in organic electroluminescent diodes. Appl Phys Lett 1995, 66, 2679–2681.
8.Shirota, Y.; Okumoto, K.; Inada, H. Thermally stable organic light-emitting diodes using new families of hole-transporting amorphous molecular materials. Synth Met 2000, 111–112, 387–391.
9.Thelakkat, M. Star-shaped, dendrimeric and polymeric triarylamines as photoconductors and hole transport materials for electro-optical applications. Macromol Mater Eng 2002, 287, 442–461.
10.Shirota, Y.; Kageyama, H. Charge carrier transporting molecular materials and their applications in devices. Chem Rev 2007, 107, 953–1010.
11.Liang, F.; Pu, Y.-J.; Kurata, T.; Kido, J. Nishide, H. Synthesis and electroluminescent property of poly(p-phenylenevinylene)s bearing triarylamine pendants. Polymer 2005, 46, 3767–3775.
12.Liang, F.; Kurata, T.; Nishide, H.; Kido, J. Synthesis and electrochemical and electroluminescent properties of N-phenylcarbazole-substituted poly(p-phenylenevinylene). J Polym Sci Part A Polym Chem 2005, 43, 5765–5773.
13.Tang, R.; Tan, Z.; Li, Y.; Xi, F. Synthesis of new conjugated polyfluorene derivatives bearing triphenylamine moiety through a vinylene bridge and their stable blue electroluminescence. Chem Mater 2006, 18, 1053–1061.
14.Kim, Y.-H.; Zhao, Q.; Kwon, S.-K. Synthesis and characterization of poly(fluorene)-based copolymer containing triphenylamine group. J Polym Sci Part A Polym Chem 2006, 44, 172–182.
15.Zhao, Q.; Kim, Y.-H.; Dang, T. T. M.; Shin, D.-C.; You, H.; Kwon, S.-K. Synthesis and characterization of diphenylaminodiphenyl stryl based alternating copolymers. J Polym Sci Part A Polym Chem 2007, 45, 341–347.
16.Su, H.-J.; Wu, F.-I.; Tseng, Y.-H.; Shu, C.-F. Color tuning of a light-emitting polymer: polyfluorene-containing pendant amino-substituted distyrylarylene units. Adv Funct Mater 2005, 15, 1209–1216.
17.Wu, F.-I.; Yang, X.-H.; Neher, D.; Dodda, R.; Tseng, Y.-H.; Shu, C.-F. Efficient white-electrophosphorescent devices based on a single polyfluorene copolymer. Adv Funct Mater 2007, 17, 1085–1092.
18.Wu, F.-I.; Shih, P.-I.; Tseng, Y.-H.; Shu, C.-F.; Tung, Y.-L.; Chi, Y. Highly efficient white-electrophosphorescent devices based on polyfluorene copolymers containing charge-transporting pendent units. J Mater Chem 2007, 17, 167–173.
19.Mikroyannidis, J. A.; Gibbons, K. M.; Kulkarni, A. P.; Jenekhe, S. A. Poly(fluorenevinylene) copolymers containing bis(phenyl)oxadiazole and triphenylamine moieties: Synthesis, photophysics, and redox and electroluminescent properties. Macromolecules 2008, 41, 663–674.
20.Li, Y.; Xue, L.; Xia, H.; Xu, B.; Wen, S.; Tian, W. Synthesis and properties of polythiophene derivatives containing triphenylamine moiety and their photovoltaic applications. J Polym Sci Part A Polym Chem 2008, 46, 3970–3984.
21.Vellis, P. D.; Mikroyannidis, J. A.; Cho, M. J.; Choi, D. H. Carbazolevinylene-based polymers and model compounds with oxadiazole and triphenylamine segments: Synthesis, photophysics, and electroluminescence. J Polym Sci Part A Polym Chem 2008, 46, 5592–5603.
22.Park, M. H.; Huh, J. O.; Do, Y.; Lee, M. H. Synthesis and properties of polyethylene with side-chain triphenylamines as hole-transporting materials. J Polym Sci Part A Polym Chem 2008, 46, 5816–5825.
23.Hsieh, B.-Y.; Chen, Y. Synthesis of copolyfluorenes containing green chromophores based on triphenylamine unit and their application in light-emitting diodes. J Polym Sci Part A Polym Chem 2009, 47, 1553–1566.
24.Jiang, Z.; Zhang, W.; Yao, H.; Yang, C.; Cao, Y.; Qin, J.; Yu, G.; Liu, Y. Copolyfluorenes containing bridged triphenylamine or triphenylamine: Synthesis, characterization, and optoelectronic properties. J Polym Sci Part A Polym Chem 2009, 47, 3651–3661.
25.Sim, J. H.; Kim, S. J.; Yamada, K.; Yokokyra, S.; Natori, I.; Natori, S.; Sato, H. Synthesis and characterization of polytriphenylamine containing ether bond in the main chain. Synth Met 2009, 159, 85–90.
26.Park, J. H.; Yun, C.; Park, M. H.; Do, Y.; Yoo, S.; Lee, M. H. Vinyl-type polynorbornenes with triarylamine side groups: A new class of soluble hole-transporting materials for OLEDs. Macromolecules 2009, 42, 6840–6843.
27.Cassidy, P. E. Thermally Stable Polymers; Marcel Dekker: New York, 1980.
28.Yang, H. H. Aromatic High-Strength Fibers; Wiley: New York, 1989.
29.Oishi, Y.; Takado, H.; Yoneyama, M.; Kakimoto, M.; Imai, Y. Preparation and properties of new aromatic polyamides from 4,4’-diamino- triphenylamine and aromatic dicarboxylic acids. J Polym Sci Part A: Polym Chem 1990, 28, 1763–1769.
30.Liou, G.-S.; Hsiao, S.-H.; Ishida, M.; Kakimoto, M.; Imai, Y. Synthesis and characterization of novel soluble triphenylamine-containing aromatic polyamides based on N,N’-bis(4-aminophenyl)-N,N’-diphenyl- 1,4-phenylenediamine. J Polym Sci Part A: Polym Chem 2002, 40, 2810–2818.
31.Liou, G.-S.; Hsiao, S.-H. Synthesis and properties of new soluble triphenylamine-based aromatic poly(amine amide)s derived from N,N’-bis(4-carboxyphenyl)-N,N’-diphenyl-1,4-phenylenediamine. J Polym Sci Part A: Polym Chem 2003, 41, 94–105.
32.Su, T.-H.; Hsiao, S.-H.; Liou, G.-S. Novel family of triphenylamine- containing, hole-transporting, amorphous aromatic polyamides with stable electrochromic properties. J Polym Sci Part A: Polym Chem 2005, 43, 2085–2098.
33.Liou, G.-S.; Hsiao, S.-H.; Su, T.-H. Synthesis, luminescence and electrochromism of aromatic poly(amine–amide)s with pendent triphenylamine moieties. J Mater Chem 2005, 15, 1812–1820.
34.Hsiao, S.-H.; Chang, Y.-M.; Chen, H.-W.; Liou, G.-S. Novel aromatic polyamides and polyimides functionalized with 4-tert-butyltriphenylamine groups. J Polym Sci Part A: Polym Chem 2006, 44, 4579–4592.
35.Liou, G.-S.; Huang, N.-K.; Yang, Y.-L. New soluble triphenylamine-based amorphous aromatic polyamides for high performance blue-emitting hole-transporting and anodically electrochromic materials. Polymer 2006, 47, 7013–7020.
36.Chang, C.-W.; Liou, G.-S.; Hsiao, S.-H. Highly stable anodic green electrochromic aromatic polyamides: synthesis and electrochromic properties. J Mater Chem 2007, 17, 1007–1015.
37.Hsiao, S.-H.; Liou, G.-S.; Kung, Y.-C.; Yen, H.-J. High contrast ratio and rapid switching electrochromic polymeric films based on 4-(dimethylamino)triphenylamine-functionalized aromatic polyamides. Macromolecules 2008, 41, 2800–2808.
38.Chang, C.-W.; Yen, H.-J.; Huang, K.-Y.; Yeh, J.-M.; Liou, G.-S. Novel organosoluble aromatic polyimides bearing pendant methoxy-substituted triphenylamine moieties: Synthesis, electrochromic, and gas separation properties. J Polym Sci Part A: Polym Chem 2008, 46, 7937–7949.
39.Lin, H.-Y.; Liou, G.-S. Poly(triphenylamine)s derived from oxidative coupling reaction: Substituent effects on the polymerization, electrochemical, and electro-optical properties. J Polym Sci Part A: Polym Chem 2009, 47, 285–294.
40.Liou, G.-S.; Lin, K.–H. Synthesis and characterization of a novel electrochromic aromatic polyamide from AB-type triphenylamine-based monomer. J Polym Sci Part A: Polym Chem 2009, 47, 1988–2001.
41.Hsiao, S.-H.; Liou, G.-S.; Wang, H.-M. Highly Stable Electrochromic Polyamides Based on N,N-bis(4-aminophenyl)-N’,N’-bis(4-tert- butylphenyl)-1,4-phenylenediamine. J Polym Sci Part A: Polym Chem. 2009, 47, 2330–2343.
42.Yen, H.-J.; Liou, G.-S. Solution-processable novel near-infrared electrochromic aromatic polyamides based on electroactive tetraphenyl-p-phenylenediamine moieties. Chem Mater 2009, 21, 4062–4070.
43.Hsiao, S.-H.; Liou, G.-S.; Kung, Y.-C.; Lee, Y.-J. Synthesis and characterization of electrochromic poly(amide-imide)s based on the diimide-diacid from 4,4’-diamino-4”-methoxytriphenylamine and trimellitic anhydride. Eur Polym J 2010, 46, 1355-1366.
44.Hsiao, S.-H.; Liou, G.-S.; Kung, Y.-C.; Hsiung T.-J. Synthesis and properties of new aromatic polyamides with redox-active 2,4-dimethoxytriphenylamine moieties. J Polym Sci Part A: Polym Chem. 2010, 48, 3392–3401.
45.Hsiao, S.-H.; Guo, W.; Kung, Y.-C.; Lee, Y.-J. Redox-active and electrochromic aromatic poly(amide-imide)s with 2,4-dimethoxy- triphenylamine chromophores. J Polym Res 2011, 18, 1353-1364.
46.Yen, H.-J.; Liou, G.-S. Solution-processable triarylamine-based electroactive high performance polymers for anodically electrochromic applications. Polym Chem 2012, 3, 255-264.
47.Yamazaki, N.; Matsumoto, M.; Higashi, F. Studies on reactions of the N-phosphonium salts of pyridines. XIV. Wholly aromatic polyamides by the direct polycondensation reaction by using phosphites in the presence of metal salts. J. Polym. Sci. Polym. Chem. Ed 1975, 13, 1373-1380.
Part III

1.Monk, P. M. S.; Mortimer, R. J.; Rosseinsky, D. R. Electrochromism and Electrochromic Devices; Cambridge University Press: Cambridge, UK, 2007.
2.(a) Rauch, R. D. Electrochromic windows: an overview. Electrochim Acta 1999, 44, 3165–3176; (b) Michaelis, A.; Berneth, H.; Haarer, D.; Kostromine, S.; Neigl, R.; Schmidt, R. Electrochromic dye system for smart window applications. Adv Mater 2001, 13, 1825–1828; (c) Heuer, H. W.; Wehrmann, R.; Kirchmeyer, S. Electrochromic window based on conducting poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate). Adv Funct Mater 2002, 12, 89–94; (d) Granqvist, C.-G. Electrochromic materials: Out of a niche. Nat Mater 2006, 5, 89–90; (e) Baetens, R.; Jelle, B. P.; Gustavsen, A. requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: a stste-of-the-art review. Sol Energy Mater Sol Cells 2010, 94, 87–105.
3.(a) Rosseinsky, D. R.; Mortimer, R. J. Electrochromic systems and the prospects for devices. Adv Mater 2001, 13, 783–793; (b) Sonmez, G.; Wudl, F. Completion of the three primary colours: the final step toward plastic displays. J Mater Chem 2005, 15, 20–22; (c) Mortimer, R. J.; Dyer, A. L.; Reynolds, J. R. Electrochromic organic and polymeric materials for display applications. Displays 2006, 27, 2–18; (d) Andersson, P.; Forchheimer, R.; Tehrani, P.; Berggren, M. Printable all-organic electrochromic active-matrix displays. Adv Funct Mater 2007, 17, 3074–3082.
4.Sonmez, G.; Sonmez, H. B. Polymeric electrochromics for data storage. J Mater Chem 2006, 16, 2473–2477.
5.(a) Bach, U.; Corr, D.; Lupo, D.; Pichot, F.; Ryan, M. Nanomaterials-based electrochromics for paper-quality displays. Adv Mater 2002, 14, 845–848; (b) Kobayashi, N.; Miur, S.; Nishimura, M.; Urano, H. Organic electrochromism for a new color electronic paper. Sol Energy Mater Sol Cells 2008, 92, 136–139; (c) Tehrani, P.; Hennerdal, L.-O.; Dyer, A. L.; Reynolds, J. R.; Berggren, M. Improving the contrast of all-printed electrochromic polymer on paper displays. J Mater Chem 2009, 19, 1799–1802.
6.Beaupre, S.; Breton, A.-C.; Dumas, J.; Leclerc, M. Multicolored electrochromic cells based on poly(2,7-Carbazole) derivatives for adaptive camouflage. Chem Mater 2009, 21, 1504–1513.
7.(a) Mortimer, R. J. Electrochromic materials. Chem Soc Rev 1997, 26, 147–156; (b) Mortimer, R. J. Organic electrochromic materials. Electrochim Acta 1999, 44, 2971–2981; (c) Somani, P. S.; Radhakrishnan, S. Electrochromic materials and devices: present and future. Mater Chem Phys 2002, 77, 117–133.
8.(a) Han, F. S.; Higuchi, M.; Kurth, D. G. Metallo-supramolecular polymers based on functionalized bis-terpyridines as novel electrochromic materials. Adv Mater 2007, 19, 3928–3931; (b) Zhang, T.; Liu, S.; Kurth, D. G.; Faul, C. F. J. Organized nanostructured complexes of polyoxometalates and surfactants that exhibit photoluminescence and electrochromism. Adv Funct Mater 2009, 19, 642–652; (c) Maier, A.; Rabindranath, A. R.; Tieke, B. Fast-switching electrochromic films of zinc polyiminofluorene-terpyridine prepared upon coordinative supramolecular assembly. Adv Mater 2009, 21, 959–963.
9.(a) Dautremont-Smith, W. C. Transition metal oxide electrochromic materials and displays: a review: Part 1: oxides with cathodic coloration. Displays 1982, 3, 3–20; (b) Dautremont-Smith, W. C. Transition metal oxide electrochromic materials and displays: a review: Part 2: oxides with anodic coloration. Displays 1982, 3, 67–80; (c) Niklasson, G. A.; Granqvist, C. G. Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these. J Mater Chem 2007, 17, 127–156.
10.(a) Monk, P. M. S. The Viologens: Synthesis, Physicochemical Properties and Applications of the Salts of 4,4’-Bipyridine; Wiley: Chichester, 1998; (b) Ko, H. C.; Kang, M.; Moon, B.; Lee, H. Enhancement of electrochromic contrast of poly(3,4-ethylenedioxythiophene) by incorporating a pendant viologen. Adv Mater 2004, 16, 1712–1716; (c) Ko, H. C.; Kim, S.; Lee, H.; Moon, B. Multicolored electrochromism of a poly{1,4-bis[2-(3,4-ethylenedioxy)thienyl]benzene} derivative bearing viologen functional groups. Adv Funct Mater 2005, 15, 905–909.
11.(a) Groenendaal, L.; Zotti, G.; Aubert, P. H.; Waybright, S. M.; Reynolds, J. R. Electrochemistry of poly(3,4-alkylenedioxythiophene) derivatives. Adv Mater 2003, 15, 855–879; (b) Argun, A. A.; Aubert, P. H.; Thompson, B. C.; Schwendeman, I.; Gaupp, C. L.; Hwang, J.; Pinto, N. J.; Tanner, D. B.; MacDiarmid, A. G.; Reynolds, J. R. Multicolored electrochromism in polymers: Structures and devices. Chem Mater 2004, 16, 4401–4412; (c) Walczak, R. M.; Reynolds, J. R. Poly(3,4-alkylenedioxypyrroles): The PXDOPs as versatile yet underutilized electroactive and conducting polymers. Adv Mater 2006, 18, 1121–1131; (d) Sonmez, G. Polymeric electrochromics. Chem Commun 2005, 5251–5259; (e) Patra, A.; Bendikov, M. Polyselenophenes. J Mater Chem 2010, 20, 422–433.
12.Beaujuge, P. M.; Reynolds, J. R. Color control in π-conjugated organic polymers for use in electrochromic devices. Chem Rev 2010, 110, 268–320.
13.(a) Cummins, D.; Boschloo, G.; Ryan, M.; Corr, D.; Rao, S.; Fitzmaurice, D. Ultrafast electrochromic windows based on redox-chromophore modified nanostructured semiconducting and conducting films. J Phys Chem B 2000, 104, 11449–11459; (b) Cho, S. I.; Kwon, W. J.; Choi, S.-J.; Kim, P.; Park, S.-A.; Kim, J.; Son, S. J.; Xiao, R.; Kim, S.-H.; Lee, S. B. Nanotube-based ultrafast electrochromic display. Adv Mater 2005, 17, 171–175; (c) Lee, S.-H.; Deshpande, R.; Parilla, P. A.; Jones, K. M.; To, B.; Mahan, A. H.; Dillon, A. C. Crystalline WO3 nanoparticles for highly improved electrochromic applications. Adv Mater 2006, 18, 763–766; (d) Invernale, M. A.; Ding, Y.; Mamangun, D. M. D.; Yavuz, M. S.; Sotzing, G. A. Preparation of conjugated polymers inside assembled solid-state devices. Adv Mater 2010, 22, 1379–1382; (e) Beaujuge, P. M.; Ellinger, S.; Reynolds, J. R. The donor–acceptor approach allows a black-to-transmissive switching polymeric electrochrome. Nat Mater 2008, 7, 795–799; (f) Balan, A.; Baran, D.; Gunbas, G.; Durmus, A.; Ozyurt, F.; Toppare, L. One polymer for all: benzotriazole containing donor–acceptor type polymer as a multi-purpose material. Chem Commun 2009, 6768–6770; (g) Park, S. Y.; Lee, J. M.; Noh, C.; Son, S. U. Colloidal approach for tungsten oxide nanorod-based electrochromic systems with highly improved response times and color efficiencies. J Mater Chem 2009, 19, 7959–7964; (h) Icli, M.; Pamuk, M.; Algi, F.; Onal, A. M.; Cihaner, A. Donor−acceptor polymer electrochromes with tunable colors and performance. Chem Mater 2010, 22, 4034–4044.
14.Wilson D, Stenzenberger HD, Hergenrother PM, editors. Polyimides. Glasgow and London: Blackie; 1990.
15.Sroog CE. Polyimides. Prog Polym Sci 1991, 16, 561–694.
16.Ghosh MM, Mittal KL, editors. Polyimides: fundamentals and applications. New York: Marcel Dekker; 1996.
17.De Abajo J, de la Campa JG. Processable aromatic polyimides. Adv Polym Sci 1999, 140, 23–59.
18.Takekoshi T, Kochanowski JE, Manello JS, Webber MJ. Polyetherimides. II. High-temperature solution polymerization. J Polym Sci: Polym Symp 1986, 74, 93–108.
19.Tamai S, Yamaguchi A, Ohta M. Melt processible polyimides and their chemical structures. Polymer 1996, 37, 3683–3692.
20.Hsiao SH, Huang PC. Synthesis and characterization of polyimides based on isopropylidene-containing bis(ether anhydride)s. J Polym Res 1997, 4, 183–190.
21.Hsiao SH, Yu CH. Aromatic poly(ether imide)s bearing isopropylidene or hexafluoroisopropylidene links in the main chain. Polym J 1997, 29, 944–948.
22.Hsiao SH, Chen WT. Syntheses and properties of aromatic polyimides based on 1,1-bis[4-(4-aminophenoxy)phenyl]-1-phenyl-2,2,2- trifluoroethane and 1,1-bis[4-(4-aminophenoxy)phenyl]-1-phenylethane. J Polym Res 2003, 10, 95–103.
23.Shao Y, Li YF, Zhao X, Ma T, Gong CL, Yang FC. Synthesis and characterization of soluble polyimides derived from a novel unsymmetrical diamine monomer: 1,4-(2’,4’-diaminodiphenoxy)benzene. Eur Polym J 2007, 43, 4389–4397.
24. (a) Thelakkat, M. Star-shaped, dendrimeric and polymeric triarylamines as photoconductors and hole transport materials for electro-optical applications. Macromol Mater Eng 2002, 287, 442–461; (b) Shirota, Y.; Kageyama, H. Charge carrier transporting molecular materials and their applications in devices. Chem Rev 2007, 107, 953–1010.
25.(a) Liang, F.; Kurata, T.; Nishide, H.; Kido, J. Synthesis and electrochemical and electroluminescent properties of N-phenylcarbazole-substituted poly(p-phenylenevinylene). J Polym Sci Part A: Polym Chem 2005, 43, 5765–5773; (b) Kim, Y.-H.; Zhao, Q.; Kwon, S.-K. Synthesis and characterization of poly(fluorene)-based copolymer containing triphenylamine group. J Polym Sci Part A: Polym Chem 2006, 44, 172–182; (c) Zhao, Q.; Kim, Y.-H.; Mai Dang, T. T.; Shin, D.-C.; You, H.; Kwon, S.-K. Synthesis and characterization of diphenylaminodiphenyl stryl based alternating copolymers. J Polym Sci Part A: Polym Chem 2007, 45, 341–347; (d) Chuang, C.-Y.; Shih, P.-I; Chien, C.-H.; Wu, F.-I.; Shu, C.-F. Bright-white light-emitting devices based on a single polymer exhibiting simultaneous blue, green, and red emissions. Macromolecules 2007, 40, 247–252; (e) Mikroyannidis, J. A.; Gibbons, K. M.; Kulkarni, A. P.; Jenekhe, S. A. Macromolecules 2008, 41, 663–674; (f) Park, J. H.; Huh, J. O.; Do, Y.; Lee, M. H. Poly(fluorenevinylene) copolymers containing cis(phenyl)oxadiazole and triphenylamine moieties: Synthesis, photophysics, and redox and electroluminescent properties. J Polym Sci Part A: Polym Chem 2008, 46, 5816–5825; (g) Park, J. H.; Yun, C.; Park, M. H.; Do, Y.; Yoo, S.; Lee, M. H. Vinyl-type polynorbornenes with triarylamine side groups: A new class of soluble hole-transporting materials for OLEDs. Macromolecules 2009, 42, 6840–6843; (h) Hsieh, B.-Y.; Chen, Y. Synthesis of copolyfluorenes containing green chromophores based on triphenylamine unit and their application in light-emitting diodes. J Polym Sci Part A: Polym Chem 2009, 47, 1553–1566; (i) Nursalim, G.; Chen, Y. Electrocoupling process and electrochemical deposition of poly(9-vinylcarbazole-co-4-vinyltriphenylamine) films. Polymer 2010, 51, 3187–3195.
26.(a) Leung, M.-k.; Chou, M.-Y.; Su, Y. O.; Chiang, C. L.; Chen, H.-L.; Yang, C. F.; Yang, C.-C.; Lin, C.-C.; Chen, H.-T. Diphenylamino group as an effective handle to conjugated donor−acceptor polymers through electropolymerization. Org Lett 2003, 5, 839–842; (b) Beaupre, S.; Dumas, J.; Leclerc, M. Toward the development of new textile/plastic electrochromic cells using triphenylamine-based copolymers. Chem Mater 2006, 18, 4011–4018; (c) Otero, L.; Sereno, L.; Fungo, F.; Liao, Y.-L.; Lin, C.-Y.; Wong, K.-T. Synthesis and properties of a novel electrochromic polymer obtained from the electropolymerization of a 9,9''-spirobifluorene-bridged donor−acceptor (D−A) bichromophore system. Chem Mater 2006, 18, 3495–3502; (d) Natera, J.; Otero, L.; Sereno, L.; Fungo, F.; Wang, N.-S.; Tsai, Y.-M.; Hwu, T.-Y.; Wong, K.-T. A Novel Electrochromic polymer synthesized through electropolymerization of a new donor−acceptor bipolar system. Macromolecules 2007, 40, 4456–4463.
27.(a) Cheng, S.-H.; Hsiao, S.-H.; Su, T.-H.; Liou, G.-S. Novel aromatic poly(amine-imide)s bearing a pendent triphenylamine group:  Synthesis, thermal, photophysical, electrochemical, and electrochromic characteristics. Macromolecules 2005, 38, 307–316; (b) Hsiao, S.-H.; Chang, Y.-M.; Chen, H.-W.; Liou, G.-S. Novel aromatic polyamides and polyimides functionalized with 4-tert-butyltriphenylamine groups. J Polym Sci Part A: Polym Chem 2006, 44, 4579–4592; (c) Liou, G.-S.; Hsiao, S.-H.; Huang, N.-K.; Yang, Y.-L. Synthesis, photophysical, and electrochromic characterization of wholly aromatic polyamide blue-light-emitting materials. Macromolecules 2006, 39, 5337–5346; (d) Chang, C.-W.; Liou, G.-S.; Hsiao, S.-H. Highly stable anodic green electrochromic aromatic polyamides: synthesis and electrochromic properties. J Mater Chem 2007, 17, 1007–1015; (e) Hsiao, S.-H.; Liou, G.-S.; Kung, Y.-C.; Yen, H.-J. High contrast ratio and rapid switching electrochromic polymeric films based on 4-(dimethylamino)triphenylamine-functionalized aromatic polyamides. Macromolecules 2008, 41, 2800–2808; (f) Kung, Y.-C.; Liou, G.-S.; Hsiao, S.-H. Synthesis and characterization of novel electroactive polyamides and polyimides with bulky 4-(1-adamantoxy)triphenylamine moieties. J Polym Sci Part A: Polym Chem 2009, 47, 1740–1755; (g) Hsiao, S.-H.; Liou, G.-S.; Wang, H.-M. Highly stable electrochromic polyamides based on N,N-bis(4-aminophenyl)-N’,N’-bis(4-tert-butylphenyl)-1,4-phenylene- diamine. J Polym Sci Part A: Polym Chem 2009, 47, 2330–2343; (h) Hsiao, S.-H.; Liou, G.-S.; Kung, Y.-C.; Chang, Y.-M. Fluorescent and electrochromic aromatic polyamides with 4-tert-butyltriphenylamine chromophore. J Polym Sci Part A: Polym Chem 2010, 48, 2798–2809; (i) Kung, Y.-C.; Hsiao, S.-H. Fluorescent and electrochromic polyamides with pyrenylamine chromophore. J Mater Chem 2010, 20, 5481-5492; (j) Wang, H.-M.; Hsiao, S.-H.; Multicolor electrochromic poly(amide-imide)s with N,N-diphenyl-N’,N’-di-tert-butylphenyl-1,4-phenylenediamine moieties. Polym Chem 2010, 1, 1013-1023; (k) Kung, Y.-C.; Hsiao, S.-H. Solution-processable, high-Tg, ambipolar polyimide electrochromics bearing pyrenylamine units. J Mater Chem 2011, 21, 1746-1754; (l) Yen, H.-J.; Liou, G.-S. Solution-processable triarylamine-based electroactive high performance polymers for anodically electrochromic applications. Polym Chem 2012, 3, 255-264.
28.Yang, C.-P.; Chen, R.-S.; Chen, K.-H. Light-colored and soluble fluorinated polyimides based on 2-trifluoromethyl-4,4’-diaminodiphenyl ether and various aromatic dianhydride. Colloid Polym Sci 2003, 281, 505-515.
29.Thelakkat, M.; Schmitz, C.; Hohle C.; Strohriegl, P.; Schmidt, H.-W.; Hofmann, U.; Schloter, S.; Haarer, D. Novel functional materials based on triarylamines–synthesis and application in electroluminescent devices and photorefractive systems. Phys Chem Chem Phys 1999, 1, 1693-1698

電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊