跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/08/06 01:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳昭榮
研究生(外文):Chao-Jung Chen
論文名稱:液晶材料與苯並咪唑衍生物作為液態和膠態電解質之添加物對染料敏化太陽能電池長效穩定性影響
論文名稱(外文):Impact of liquid crystals and bis-benzimidazole derivative used as liquid and gel electrolyte additives on the performance and long-term stability of dye-sensitized solar cells
指導教授:楊重光楊重光引用關係黃聲東
口試委員:廖朝光
口試日期:2012-05-14
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:83
中文關鍵詞:染料敏化太陽能電池膠態電解質苯並咪唑向列型液晶膽固醇型液晶長效穩定性
外文關鍵詞:Dye-sensitized solar cells (DSSC)Gel electrolyteBenzimidazoleNematic liquid crystalCholesteric liquid crystalLong-term stability
相關次數:
  • 被引用被引用:2
  • 點閱點閱:149
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究重點是將苯並咪唑衍生物(Bis-benzimidazole derivative)、向列型液晶(Nematic liquid crystal)和膽固醇型液晶(Cholesteric liquid crystal)作為電解質添加物,分別製備成液態電解質和以聚二氟乙烯-六氟丙烯(PVDF-HFP)為基礎的膠態電解質,目的在改善染料敏化太陽能電池之光電轉換效率與克服液態電解質因易揮發與封裝困難導致的漏液問題。藉由Solar simulator、IPCE與EIS等儀器,分析探討不同添加物對電池光電轉換效率的影響。
實驗發現,苯並咪唑衍生物(1,1''-(1,8-Octanediyl)bis[benzimidazole], ODBB-8),可有效提升電池之FF與Voc,判斷該添加物因分子排列方式於電解質中形成二維通道,而該傳遞通道將有利於I-/I3-的傳輸,使得以增加電池內部電子交換速率與降低電池整體串聯電阻,達到維持不錯的Jsc和增加FF的效果。且該添加物亦會影響二氧化鈦導電帶之能階,使得電池Voc亦有所上升,也因此有效提升電池之光電轉換效率。以膠態電解質為例,在太陽光模擬光源100mW/cm2照射下可得到Jsc=17.22mA/cm2、Voc=0.73V、FF=0.64、η=8.06±0.20% 的轉換效能。另一添加物膽固醇液晶Cholesteryl pelargonate,雖會妨礙電解質中I-/I3-的電化學行為,但因為該液晶添加物於電解質內部形成光捕捉系統,使得以提高入射光於電池內部的光繞路徑,促使電池之Jsc明顯上升連帶提升電池之光電轉換效率。
最後,在比較本實驗各條件之液態與膠態電解質,其組裝的太陽能電池長效穩定性部分,驗證結果發現在相同添加物條件下,膠態電解質之長效穩定性可優於液態電解質達5~10%。此外不同電解質添加物將會明顯影響電池的長效穩定性表現。以添加物ODBB-8的膠態電解質為例,電池經過1000小時(50mW/cm2、55℃)老化測試後可維持61%的穩定性,相較未添加電解質的54%有明顯之提升。

The focus of this thesis is to improve the energy conversion efficiency of dye-sensitized solar cells (DSSC) and to overcome the leakage problem due to the evaporation and sealing difficulties caused by the liquid electrolyte. In this study, we prepared the electrolytic additives of bis-benzimidazole derivative, nematic liquid crystal and cholesteric liquid crystal, and introduced them into the liquid electrolyte and poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) based gel electrolyte for DSSC. Further, the effects of electrolytes are analyzed by the solar simulator, IPCE and EIS on the photovoltaic performance of DSSC.
It was found that the bis-benzimidazole derivative (1,1''-(1,8-Octanediyl)bis [benzimidazole] ) (ODBB-8) can effectively enhance the Voc and FF of DSSC, which is caused by the formation of two-dimensional channel due to ODBB-8 in the electrolyte. This two-dimensional channel conducive to I-/I3- transmission and so increase the internal electronic exchange rate and reduce the series resistance, which maintain Jsc and increase FF. The ODBB-8 additive also affects the conduction band of the TiO2 that increase in Voc, resulting in the higher energy conversion efficiency of DSSC. A good conversion efficiency of 8.06±0.20% with Jsc of 17.22mA/cm2, an Voc of 0.73V and FF of 0.64 under illumination of 100mW/cm2 was obtained for the DSSC with gel electrolyte containing ODBB-8 derivative. Furthermore, the cholesteric liquid crystal additive (Cholesteryl pelargonate) although would hinder I-/I3- electrochemical behavior in the electrolyte, it could also promote Jsc and enhance the energy conversion efficiency of DSSC, because the formation of the light trapping scheme in the electrolyte.
Finally, the evolution of energy conversion efficiencies with time in days for both the DSSC with gel electrolyte in absence and presence of ODBB-8 at the 50 mW/cm2, 55℃.The result in the efficiency of the DSSC containing 0.015M ODBB-8 observed 61% after 1000 hrs(50mW/cm2, 55℃), whereas that in absence of ODBB-8, the energy loss is 54%. It was demonstrated that the addition of ODBB-8 can improve the long-term stability of DSSC.

目錄
摘要 I
Abstrat III
誌謝 V
目錄 VI
圖目錄 IX
表目錄 XIII
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
第二章 文獻回顧 3
2.1 染料敏化太陽能電池及其發展概況 3
2.1.1 染料敏化太陽能電池之基本構造與工作原理 5
2.1.2 染料敏化太陽能電池之光電轉換效能定義 7
2.2 染料敏化太陽能電池之組件介紹 10
2.2.1 半導體薄膜電極 10
2.2.2 染料光敏化劑 11
2.2.3 反電極 14
2.2.4 電解質 15
2.2.4.1 液態電解質 15
2.2.4.2 膠態或半固態電解質 18
2.2.4.3 固態電解質 21
2.2.5 電解質添加物 22
2.2.5.1 電解質添加物文獻回顧 22
第三章 實驗藥品與儀器 27
3.1 實驗藥品 27
3.2 實驗儀器 28
3.3 染料敏化太陽能電池效能檢測儀器 29
3.3.1 太陽能電池之光電轉換效率分析(I-V Curve) 29
3.3.2 入射單色光子-電子轉換效率(IPCE) 31
3.3.3 電化學阻抗頻譜(EIS) 31
3.3.4 紫外/可見光分光光譜儀(UV/VIS/NIR spectrometers) 35
3.3.5 太陽能電池老化測試機(Suntest CPS+) 35
第四章 實驗流程與設計 36
4.1 實驗流程圖 36
4.2 清洗FTO導電玻璃基板 36
4.3 製備工作電極 37
4.4 製備反電極 38
4.5 電解質之製備 39
4.5.1 添加物1,1''-(1,8-Octanediyl)bis(benzimidazole)合成 39
4.5.2 添加物N-(4-Ethoxybenzylidene)-4-butylaniline之性質 40
4.5.3 添加物Cholesteryl pelargonate之性質 40
4.5.4 液態與膠態電解質配製流程 40
4.5.5 本實驗液態與膠態電解質條件說明 41
4.6 染料敏化太陽能電池之組裝 43
第五章 結果與討論 44
5.1 光電轉換效率量測(I-V Curve)之分析結果 44
5.1.1 光電轉換效率(η)之表現差異 47
5.1.2 短路電流密度(Jsc)之表現差異 48
5.1.3 開路電壓(Voc)之之表現差異 49
5.1.4 填充因子(FF)之表現差異 50
5.1.5光電轉換效率量測結果總整 51
5.2 入射單色光子-電子轉換效率(IPCE)之分析結果 51
5.3 紫外光/可見光光譜(UV/Vis)之分析結果 57
5.4 電化學交流阻抗(EIS)之分析結果 62
5.5 電解質對太陽能電池長效穩定性之影響 67
第六章 結論與未來展望 77
參考文獻 80


[1] B. O’ Reganoulos, M. Grätzel, Nature 353, 737 (1991).
[2] Aswani Yella, Hsuan-Wei Lee, Hoi Nok Tsao, Chenyi Yi,Aravind Kumar Chandiran, Md. Khaja Nazeeruddin, Eric Wei-Guang Diau, Chen-Yu Yeh, Shaik M Zakeeruddin, M. Grätzel, Science 334, 629 (2011).
[3] National Renewable Energy Laboratory, http://www.nrel.gov/ncpv.
[4] M. Grätzel, Nature 414, 338 (2001).
[5] Shogo Nakade, Yohei Makimoto, Wataru Kubo, Takayuki Kitamura, Yuji Wada and Shozo Yanagida, J. Phys. Chem. B 109, 3488 (2005).
[6] Jung-Kun Lee, Mengjin Yang, Materials Science & Engineering B 176, 1142 (2011).
[7] (a) I. Bedja, S. Hotchandani, P. V. Kamat, J. Phys. Chem. 98, 4133 (1994).
(b) S. Ferrere, A. Zaban, B. A. Gregg, J. Phys. Chem. B 101, 4490 (1997).
[8] (a) G. Redmond, D. Fitzmaurice, M. Grätzel, Chem. Mater. 6, 686 (1994).
(b) H. Rensmo, K. Keis, H. Lindström, S. Södergren, A. Solbrand, A. Hagfeldt, S. E. Lindquist, L. N. Wang, M. Muhammed, J. Phys. Chem. B 101, 2598 (1997).
(c) T. N. Rao, L. J. Bahadur, Electrochem. Soc. 144, 179 (1997).
[9] (a) K. Sayama, H. Sugihara, H. Arakawa, Chem. Mater. 10, 3825 (1998).
(b) P. Guo, M. A. Aegerter, Thin Solid Films, 351, 290 (1999).
[10] A. Turkovic, Z. Crnjak Orel, Sol. Energy Mater. Sol. Cells. 45, 275 (1997).
[11] M. Y. EI. El-Zayat, A. O. Saed, M. S. El-Dessouki, Int. J. Hydrogen Energy 23, 259 (1998).
[12] N. G. Park, J. vqn de Lagemaat, A. J. Frank, J. Phys. Chem. B 104, 8989 (2000).
[13] M. Grätzel, Journal of Photochemistry and Photobiology C: Photochemistry Reviews 4, 145 (2003).
[14] Md. K. Nazeeruddin, R. Humphry-Baker, P. Liska, M. Grätzel, J. Phys. Chem. B 107, 8981 (2003).
[15] A. Zaban, J. Zhang, Y. Diamant, O. Melemed, J. Bisquert, J. Phys. Chem. B 107, 6022 (2003).
[16] Seok-Soon Kim, Yoon-Chae Nah, Yong-Young Noh, Jang Jo, Dong-Yu Kim, Electrochimica Acta 51, 3814 (2006).
[17] X. Fang, T. Ma, G. Guan, M. Akiyama, T. Kida, E. Abe, J. Electroanal. Chem. 570, 257 (2004).
[18] G. Schlichthörl, N. G. Park, A. J. Frank, J. Phys. Chem. B 103, 782 (1999).
[19] N.-G. Park, S.-H. Chang, J. van de Lagemaat, K.-J. Kim, A. J. Frank, Bull. Korean Chem. Soc. 21, 985 (2000).
[20] Wataru Kubo, Takayuki Kitamura, Kenji Hanabusa, Yuji Wadaa, Shozo Yanagida, Chem. Commun. 374 (2002).
[21] Noriyo Yamanaka, Ryuji Kawano, Wataru Kubo, Naruhiko Masaki, Takayuki Kitamura,Yuji Wada, Masayoshi Watanabe, Shozo Yanagida, J. Phys. Chem. B 111, 4763 (2007).
[22] M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, T. Bessho, M. Grätzel, J. Am. Chem. Soc. 127, 16835 (2005).
[23] H. X. Wang, H. Li, B. F. Xue, Z. X. Wang, Q. B. Meng, L. Q. Chen, J. Am. Chem. Soc. 127, 6394 (2005).
[24] Nils Mohmeyer, Daibin Kuang, Peng Wang, Hans-Werner Schmidt, Shaik M. Zakeeruddin, M. Grätzel, J. Mater. Chem.16, 2978 (2006).
[25] Jong Hyeo Park, Byung-Woo Kim, Jun Hyuk Moonb, Electrochemical and Solid-State Letters. 11, B171 (2008).
[26] Vembu Suryanarayanan, Kun-Mu Lee, Wen-Hsien Ho, Hung-Chang Chen, Kuo Chuan Ho, Solar Energy Materials & Solar Cells 91, 1467 (2007).
[27] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humpbry-Baker, E. Muller, P. Liska, N. Vlachopoulos and M. Grätzel, J. Am. Chem. Soc. 115, 6382 (1993).
[28] S. A. Haque, E. Plomares, B. M. Cho, A. N. M. Green, N. Hirata, D. R. Klug, J. R. Dueeant, J. Am. Chem. Soc. 127, 3456 (2005).
[29] S. Y. Huang, G. Schlichthörl, A. J. Nozik, M. Grätzel, A. J. Frank, J. Phys. Chem. B, 101, 2576 (1997).
[30] Changneng Zhang, Jun Dai, Zhipeng Huo, Xu Pan, Linhua Hu, Fantai Kong, Yang Huang,Yifeng Sui, Xiaqin Fang, KongjiaWang, Songyuan Dai, Electrochimica Acta 53, 5503 (2008).
[31] H.Kusama, H.Arakawa, Journal of Photochemistry and Photobiology A: Chemistry 160, 171 (2003).
[32] H. Kusama, H. Arakawa, Solar Energy Materials & Solar Cells. 81, 87 (2004).
[33] H. Kusama, H. Arakawa, Journal of Photochemistry and Photobiology A: Chemistry 164, 103 (2004).
[34] H. Kusama, H. Arakawa, Journal of Photochemistry and Photobiology A: Chemistry 165, 157 (2004).
[35] H. Kusama, H. Arakawa, Solar Energy Materials & Solar Cells. 85, 333 (2005).
[36] Meng Wang, Xu Pan, Xiaqin Fang, Lei Guo, Changneng Zhang, Yang Huang, Zhipeng Huo, Songyuan Dai, Journal of Power Sources 196, 5784 (2011).
[37] N. Yamanaka, R. Kawano, W. Kubo, N. Masaki, T. Kitamura, Y. Wada, M. Watanabe, S. Yanagida, J. Phys. Chem. B 111, 4763 (2007).
[38] R. Kawano, M.K. Nazeeruddin, A. Sato, M. Grätzel, M. Watanabe, Electrochem. Commun. 9, 1134 (2007).
[39] K. Binnemans. Chem. Rev. 105, 4148 (2005).
[40] A.D. Kiselev, L. Dolgov, J. Phys.: Condens. Matter 16, 7183 (2004).
[41] S.C. Kim, M. Song, T.I. Ryu, M.J. Lee, S.H. Jin, Y.S. Gal, H.K. Kim, G.D. Lee, Y.S. Kang, Macromol. Chem. Phys. 210, 1844 (2009).
[42] (a) H. K. Kim, M. J. Lee, S. H. Jin, G. D. Lee, Mol. Cryst. Liq. Cryst. 510, 323 (2009).
(b) H. K. Kim, S.Y. Hur, W.S. Kang, G.D. Lee, Journal of the Korean Physical Society. 56, 1519 (2010).
[43] C. Longo, J. Freitas, M.A. De Paoli, J. Photochem. Photobiol. A: Chem. 159, 33 (2003).
[44] Q. Wang, J.-E. Moser, M. Grätzel, J. Phys. Chem. B 109, 14945 (2005).
[45] Kuan-Chieh Huang, Po-YenChen, R.Vittal, Kuo-Chuan Ho, Solar Energy Materials & Solar Cells 95, 1990 (2011).
[46] Kun-Mu Lee, Vembu Suryanarayanan, Kuo-Chuan Ho, Journal of Photochemistry and Photobiology A: Chemistry 207, 224 (2009).
[47] S. H.Hausner, C. A. F. Striley, J. A. Krause-Bauer and H. Zimmer, J. Org. Chem., 70, 5804 (2005).
[48] T. Itahara, K. Imaizumi, J. Phys. Chem. B 111, 2025 (2007).
[49] G. Vijayakumar, Meyoung Jin Lee, Myungkwan Song, Sung Ho Jin, Macromolecular Research. 17, 963 (2009).
[50] Shufang Zhang, Masatoshi Yanagida, Xudong Yang, Liyuan Han, Applied Physics Express, 4 (2011).
[51] G. Schlichtho1rl, S. Y. Huang, J. Sprague, and A. J. Frank, J. Phys. Chem. B 101, 8141 (1997).
[52] M. Adachi, M. Sakamoto, J. Jiu, Y. Ogata, S. Isoda, J. Phys. Chem. B 110, 13872 (2006).


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊