跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2025/01/20 10:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉宇哲
研究生(外文):Yu-Che Liu
論文名稱:超臨界二氧化碳發泡製備法奈米孔徑之熱塑性聚氨酯奈米複合材料研究
論文名稱(外文):Production of Nanoporous Thermoplastic Polyurethane Nanocomposites by Supercritical Carbon Dioxide
指導教授:葉樹開
指導教授(外文):Shu-Kai Yeh
口試委員:張光欽蘇至善
口試委員(外文):Kuang-Chin ChangChie-Shaan Su
口試日期:2012-06-26
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:105
中文關鍵詞:TPU成核劑奈米複合材料奈米黏土泡孔大小泡孔大小奈米泡機械性質
外文關鍵詞:TPUnucleation agentnanocompositesnanoclaycell sizecell densitynanofoammechanical properties
相關次數:
  • 被引用被引用:3
  • 點閱點閱:742
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究是利用超臨界二氧化碳製造TPU發泡材料,並探討其操作條件如含浸溫度與泡孔形態之關係。之後在熱塑性聚氨酯中添加少量不同的無機奈米顆粒,製備成奈米複合發泡材料,觀察其泡孔形態,找尋最佳之奈米填充材料。將TPU奈米複合材料進行分散形態、黏度、力學性質等表徵之測試。最後,也將TPU奈米複合發泡材料進行力學性能之測試,探討泡孔型態對力學性能之影響。
實驗結果顯示,在TPU內添加五種不同的奈米顆粒(Clay30B、Clay20A、CNT、CNF、H05),以Clay30B作為異相成核劑之效果最好,明顯縮小泡孔及提升泡孔密度。添加Caly30B含量增加,cell density上升,且foam density隨之下降,而含浸溫度下降到50℃,成功獲得cell size小至450nm之奈米泡,且cell density維持在1011cells/cm3。添加奈米顆粒可以增加材料之機械性質,經拉伸試驗結果,在未發泡時Clay30B添加量提升,楊氏模數和降伏強度上升,但是斷裂伸長率會下降。而材料經發泡程序後,泡孔大小會影響材料之機械性質,當泡孔小至數百奈米時,其機械性質下降程度也愈小,添加1wt%的Clay30B可以增加發泡體的楊氏模數和降伏強度,而且材料的斷裂伸長率不變。因此可以利用含浸溫度及Clay30B含量來操控泡孔大小和發泡材之密度,獲得理想之發泡材料。

In this study, thermoplastic polyurethane (TPU) was foamed by batch foaming using CO2 as the blowing agent, and the effect of saturation temperature on cell morphology TPU foam was examined. Five different nanoparticles were compounded with TPU as the nucleation agent. Among the five different nanoparticles(Clay30B、Clay20A、CNT、CNF、H05), Clay30B seems to be the best nucleation agent, because it had the smallest cell size and the highest cell density in the result of batch foaming.
Adding 1wt% 30B nanoclay resulted in submicron sized foam. With the increasing content of Clay30B led to increase in the cell density, while the foam density decreases. The cell size could be as low as 450 nm while the cell density could be as high as 1011 cells/cm3.
Finally, the effect of cell morphology to the mechanical properties of foamed samples was also investigated. It was found that adding 1wt% nanoclay not only could improve the mechanical properties of the solid, it can also increase the modulus of the foamed nanocomposite significantly.

摘 要 I
ABSTRACT III
誌 謝 V
目錄 VI
表目錄 X
圖目錄 XI
第一章 緒論 1
1.1 前言 1
1.2 研究動機 3
第二章 相關理論與文獻回顧 5
2.1 熱塑性聚氨酯(Thermoplastic Polyurethane)簡介 5
2.1.1 熱塑性聚氨酯之反應及原料 5
2.1.2 熱塑性聚氨酯之機械性質 7
2.2 高分子發泡材料 8
2.2.1 發泡過程 9
2.2.2 發泡劑 12
2.2.2.1化學發泡劑 12
2.2.2.2物理發泡劑 13
2.2.3 超臨界微細發泡技術 14
2.2.3.1 超臨界流體之特性 14
2.2.3.2 超臨界CO2之溶解度 17
2.3 高分子奈米複合材料 22
2.3.1 高分子奈米複合材料之製備 22
2.3.2 高分子奈米複合材料之結構 24
2.3.3 高分子奈米複合材料之性能 25
2.3.3.1 機械性能(Mechanical property) 25
2.3.3.2 熱穩定性能(Thermal stability) 26
2.3.3.3 氣體阻隔性能(Barrier property) 26
2.3.3.4 阻燃性能(Flame retardancy) 27
2.4 黏土之簡介 27
2.5 碳材之簡介 31
第三章 實驗方法 35
3.1實驗藥品 35
3.2實驗儀器 39
3.3 實驗流程圖 42
3.4 實驗步驟 43
3.4.1 樣品比例 43
3.4.2熱塑性聚氨酯奈米複合材料之製備 44
3.4.3 批式發泡程序 46
3.4.3.1 顆粒發泡 46
3.4.3.2 啞鈴型試片發泡 47
3.5 測量方法 48
3.5.1 X-ray繞射儀(XRD) 48
3.5.2 穿透式電子顯微鏡(TEM) 49
3.5.3 掃描式電子顯微鏡(SEM) 49
3.5.4 流變測試 49
3.5.5 二氧化碳含浸量測量 50
3.5.6 發泡材之密度測量 50
3.5.7 泡孔孔徑尺寸(cell size)計算 51
3.5.8 泡孔密度(cell density)計算 51
3.5.9 機械性質之測量 51
3.5.10 FTIR 53
第四章 結果與討論 54
4.1 純TPU之二氧化碳含浸量測量 54
4.2 添加各種不同的奈米顆粒發泡之泡孔型態分析 56
4.3 TPU/CLAY30B奈米複合材料 58
4.3.1 TPU/Clay30B奈米複合材料之XRD分析 58
4.3.2 TPU/Clay30B奈米複合材料之TEM分析 60
4.3.3 TPU/Clay30B奈米複合材料之黏度分析 62
4.3.4 TPU/Clay30B奈米複合材料之FTIR分析 62
4.4 泡孔型態分析 65
4.4.1 含浸溫度對泡孔型態之影響 65
4.4.2 Clay30B的含量對泡孔型態之影響 66
4.5 TPU/Clay30B奈米複合材料之機械性質 72
4.5.1 固體之機械性質 72
4.5.2 發泡體之機械性質 75
第五章 結論 81
未來工作 82
參考文獻 83
附錄A 高壓批式發泡 93
第一章 實驗步驟 93
第二章 實驗結果 95
附錄B TPU之CO2含浸飽和時間計算 103



1傅明源,孫酣經,聚氨酯彈性體及其應用,北京:科學工業出版社,1999。
2方禹聲,朱呂民,聚氨酯泡沫塑料,北京:化學工業出版社,1999。
3J. E. Martini, F. A. Waldman, N. P. Suh, Microcellular closed cell foams and their method of manufacture, 1984, U.S. Patent 4,473,665.
4K. T. Okamoto, Microcellular Processing, Cincinnati: Hanser Gardner Publications, 2003.
5P. C. Lebaron, Z. Wang, T. J. Pinnavaia, "Polymer-layered silicate nanocomposites: An overview," Applied Clay Science, vol. 15, 1999, pp. 11-29.
6http://www.unep.ch/ozone/pdfs/Montreal-Protocol2000.pdf
7L. J. Lee, C. Zeng, X. Cao, X. Han, J. Shen, G. Xu, "Polymer nanocomposite foams," Composites Science and Technology, vol. 65, 2005, pp. 2344-2363.
8M. Okamoto, P. H. Nam, P. Maiti, T. Kotaka, T. Nakayama, M. Takada, M. Ohshima, A. Usuki, N. Hasegawa, H. Okamoto, "Biaxial flow-induced alignment of silicate layers in polypropylene/clay nanocomposite foam," Nano Letters, vol. 1, 2001, pp. 503-505.
9S. T. Lee, N. S. Ramesh. Polymeric Foams Mechanisms and Materials; CRC Press, 2004.
10G. Oertel, Polyurethane Handbook, Munich: Hanser Publisher, 1985.
11 http://www.plastemart.com/Plastic-Technical-Article.asp?LiteratureID=1674&
Paper=global-polyurethane-market-PU-foams-thermoplastic-elastomers.
12C. B. Wang, S. L. Cooper, "Morphology and properties of segmented polyether polyurethaneureas," Macromolecules, vol. 16, 1983, pp. 775-786.
13呂靖國,「TPU熱可塑彈性體」,高分子工業,第98期,2002,第38-44頁。
14A. J. Ryan, J. L. Stanford, R. H. Still, "Thermal, mechanical and fracture properties of reaction injection-moulded poly(urethane-urea)s," Polymer, vol. 32, 1991, pp. 1426-1439.
15L. Ning, W. De-Ning, Y. Sheng-Kang, "Crystallinity and hydrogen bonding of hard segments in segmented poly(urethane urea) copolymers," Polymer, vol. 37, 1996, pp. 3577-3583.
16R. W. Seymour, G. M. Estes, S. L. Cooper, "Infrared studies of segmented polyurethan elastomers. I. Hydrogen bonding," Macromolecules, vol. 3, 1970, pp. 579-583.
17J. A. Miller, S. B. Lin, K. K. S. Hwang, K. S. Wu, P. E. Gibson, S. L. Cooper, "Properties of polyether-polyurethane block copolymers: Effects of hard segment length distribution," Macromolecules, vol. 18, 1985, pp. 32-44.
18W. Michaeli, R. Heinz, "Foam extrusion of thermoplastic polyurethanes (TPU) using CO2 as a blowing agent," Macromolecular Materials and Engineering, vol. 284, 2000, pp. 35-39.
19http://www.bccresearch.com/report/polymeric-foams-pls008g.html
20C. B. Park, N. P. Suh, "Filamentary extrusion of microcellular polymers using a rapid decompressive element," Polymer Engineering & Science, vol. 36, 1996, pp. 34-48.
21J. S. Colton, N. P. Suh, "The nucleation of microcellular thermoplastic foam with additives: Part I: Theoretical considerations," Polymer Engineering & Science, vol. 27, 1987, pp. 485-492.
22J. S. Colton, N. P. Suh, "The nucleation of microcellular thermoplastic foam with additives: Part II: Experimental results and discussion," Polymer Engineering & Science, vol. 27, 1987, pp. 493-499.
23S. K. Goel, E. J. Beckman, "Generation of microcellular polymeric foams using supercritical carbon dioxide. I: Effect of pressure and temperature on nucleation," Polymer Engineering & Science, vol. 34, 1994, pp. 1137-1147.
24L. J. Lee, C. C. Zeng, X. M. Han, K. W. Koelling, D. L. Tomasko, "Polymer-clay nanocomposite foams prepared using carbon dioxide," Advanced Materials, vol. 15, 2003, pp. 1743-174.
25D. Klempner, V. Sendijarevic, Polymeric Foams and Foam Technology, Munich: Hanser Publishers, 2004.
26D. F. Baldwin, C. B. Park, N. P. Suh, "An extrusion system for the processing of microcellular polymer sheets: Shaping and cell growth control," Polymer Engineering & Science, vol. 36, 1996, pp. 1425-1435.
27M. A. McHugh, V. J. Krukonis. Supercritical fluid extraction. Principles and practice, Stoneham: Butterworth Publisher, 1986.
28J. B. Hannay, J. Hogarth, "On the Solubility of Solids in Gases," Proceedings of the Royal Society of London, vol. 30, 1879, pp. 178-188.
29A. I. Cooper, "Polymer synthesis and processing using supercritical carbon dioxide," Journal of Materials Chemistry, vol. 10, 2000, pp. 207-234.
30Y.-T. Shieh, J.-H. Su, G. Manivannan, P. H. C. Lee, S. P. Sawan, W. Dale Spall, "Interaction of supercritical carbon dioxide with polymers. I. Crystalline polymers," Journal of Applied Polymer Science, vol. 59, 1996, pp. 695-705.
31Y.-T. Shieh, J.-H. Su, G. Manivannan, P. H. C. Lee, S. P. Sawan, W. Dale Spall, "Interaction of supercritical carbon dioxide with polymers. II. Amorphous polymers," Journal of Applied Polymer Science, vol. 59, 1996, pp. 707-717.
32K. P. Johnston, In Supercritical Fluid Science and Technology, Washington: American Chemical Society, 1989, pp. 207-223.
33Y. P. Handa, Z. Zhang, B. Wong, "Solubility, diffusivity, and retrograde vitrification in PMMA-CO2, and development of sub-micron cellular structures," Cellular Polymers, vol. 20, 2001, pp. 1-16.
34Y. Sato, T. Takikawa, S. Takishima, H. Masuoka, "Solubilities and diffusion coefficients of carbon dioxide in poly(vinyl acetate) and polystyrene," The Journal of Supercritical Fluids, vol. 19, 2001, pp. 187-198.
35Y. Zhang, K. K. Gangwani, R. M. Lemert, "Sorption and swelling of block copolymers in the presence of supercritical fluid carbon dioxide," The Journal of Supercritical Fluids, vol. 11, 1997, pp. 115-134.
36J. L. Lundberg, M. B. Wilk, M. J. Huyett, "Sorption Studies Using Automation and Computation," Industrial & Engineering Chemistry Fundamentals, vol. 2, 1963, pp. 37-43.
37D. R. Paul, W. J. Koros, "Effect of partially immobilizing sorption on permeability and the diffusion time lag," Journal of Polymer Science: Polymer Physics Edition, vol. 14, 1976, pp. 675-685.
38Y. Sato, M. Yurugi, K. Fujiwara, S. Takishima, H. Masuoka, "Solubilities of carbon dioxide and nitrogen in polystyrene under high temperature and pressure," Fluid Phase Equilibria, vol. 125, 1996, pp. 129-138.
39P. K. Davis, G. D. Lundy, J. E. Palamara, J. L. Duda, R. P. Danner, "New Pressure-Decay Techniques to Study Gas Sorption and Diffusion in Polymers at Elevated Pressures," Industrial & Engineering Chemistry Research, vol. 43, 2004, pp. 1537-1542.
40M. Perez-Blanco, J. R. Hammons, R. P. Danner, "Measurement of the solubility and diffusivity of blowing agents in polystyrene," Journal of Applied Polymer Science, vol. 116, 2010, pp. 2359-2365.
41I. C. Sanchez, R. H. Lacombe, "An elementary molecular theory of classical fluids. Pure fluids," The Journal of Physical Chemistry, vol. 80, 1976, pp. 2352-2362.
42I. C. Sanchez, R. H. Lacombe, "An elementary equation of state for polymer liquids," Journal of Polymer Science: Polymer Letters Edition, vol. 15, 1977, pp. 71-75.
43I. C. Sanchez, R. H. Lacombe, "Statistical Thermodynamics of Polymer Solutions," Macromolecules, vol. 11, 1978, pp. 1145-1156.
44X. Han, K. W. Koelling, D. L. Tomasko, L. J. Lee, "Continuous microcellular polystyrene foam extrusion with supercritical CO2," Polymer Engineering and Science, vol. 42, 2002, pp. 2094-2106.
45D. Liu, H. Li, M. S. Noon, D. L. Tomasko, "CO2-induced PMMA swelling and multiple thermodynamic property analysis using Sanchez-Lacombe EOS," Macromolecules, vol. 38, 2005, pp. 4416-4424.
46S. Pavlidou, C. D. Papaspyrides, "A review on polymer-layered silicate nanocomposites," Progress in Polymer Science (Oxford), vol. 33, 2008, pp. 1119-1198.
47H. R. Dennis, D. L. Hunter, D. Chang, S. Kim, J. L. White, J. W. Cho, D. R. Paul, "Effect of melt processing conditions on the extent of exfoliation in organoclay-based nanocomposites," Polymer, vol. 42, 2001, pp. 9513-9522.
48G. Beyer, "Nanocomposites: a new class of flame retardants for polymers," Plastics, Additives and Compounding, vol. 4, 2002, pp. 22-28.
49T. D. Fornes, P. J. Yoon, H. Keskkula, D. R. Paul, "Nylon 6 nanocomposites: the effect of matrix molecular weight," Polymer, vol. 42, 2001, pp. 09929-09940.
50N. Hasegawa, M. Kawasumi, M. Kato, A. Usuki, A. Okada, "Preparation and mechanical properties of polypropylene-clay hybrids using a maleic anhydride-modified polypropylene oligomer," Journal of Applied Polymer Science, vol. 67, 1998, pp. 87-92.
51M. A. Osman, J. E. P. Rupp, U. W. Suter, "Tensile properties of polyethylene-layered silicate nanocomposites," Polymer, vol. 46, 2005, pp. 1653-1660.
52A. Blumstein, "Polymerization of adsorbed monolayers. II. Thermal degradation of the inserted polymer," Journal of Polymer Science Part A: General Papers, vol. 3, 1965, pp. 2665-2672.
53S. Sinha Ray, K. Yamada, M. Okamoto, K. Ueda, "New polylactide-layered silicate nanocomposites. 2. Concurrent improvements of material properties, biodegradability and melt rheology," Polymer, vol. 44, 2003, pp. 857-866.
54K. Yano, A. Usuki, A. Okada, "Synthesis and properties of polyimide-clay hybrid films," Journal of Polymer Science Part A: Polymer Chemistry, vol. 35, 1997, pp. 2289-2294.
55G. Gorrasi, M. Tortora, V. Vittoria, E. Pollet, B. Lepoittevin, M. Alexandre, P. Dubois, "Vapor barrier properties of polycaprolactone montmorillonite nanocomposites: effect of clay dispersion," Polymer, vol. 44, 2003, pp. 2271-2279.
56K. Yano, A. Usuki, A. Okada, T. Kurauchi, O. Kamigaito, "Synthesis and properties of polyimide–clay hybrid," Journal of Polymer Science Part A: Polymer Chemistry, vol. 31, 1993, pp. 2493-2498.
57J. W. Gilman, "Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites," Applied Clay Science, vol. 15, 1999, pp. 31-49.
58E. Giannelis, R. Krishnamoorti, E. Manias, "Polymer-Silicate Nanocomposites: Model Systems for Confined Polymers and Polymer Brushes," Advances in Polymer Science, 1999, pp. 107-147.
59D. Y. Zhang, C. E. Wearer, Clay Minerals, Geology Press, 1973.
60X. Kornmann, H. Lindberg, L. A. Berglund, "Synthesis of epoxy–clay nanocomposites: influence of the nature of the clay on structure," Polymer, vol. 42, 2001, pp. 1303-1310.
61T. Lan, P. D. Kaviratna, T. J. Pinnavaia, "Epoxy self-polymerization in smectite clays," Journal of Physics and Chemistry of Solids, vol. 57, 1996, pp. 1005-1010.
62M. A. Osman, V. Mittal, M. Morbidelli, U. W. Suter, "Epoxy-Layered Silicate Nanocomposites and Their Gas Permeation Properties," Macromolecules, vol. 37, 2004, pp. 7250-7257.
63T. D. Fornes, P. J. Yoon, D. L. Hunter, H. Keskkula, D. R. Paul, "Effect of organoclay structure on nylon 6 nanocomposite morphology and properties," Polymer, vol. 43, 2002, pp. 5915-5933.
64G. Lagaly, "Interaction of alkylamines with different types of layered compounds," Solid State Ionics, vol. 22, 1986, pp. 43-51.
65A. K. Geim, K. S. Novoselov, "The rise of graphene," Nat Mater, vol. 6, 2007, pp. 183-191.
66Q. L. Zhang, S. C. O''Brien, J. R. Heath, Y. Liu, R. F. Curl, H. W. Kroto, R. E. Smalley, "Reactivity of large carbon clusters: spheroidal carbon shells and their possible relevance to the formation and morphology of soot," The Journal of Physical Chemistry, vol. 90, 1986, pp. 525-528.
67S. Iijima, T. Ichihashi, "Single-shell carbon nanotubes of 1-nm diameter," Nature, vol. 363, 1993, pp. 603-605.
68D. S. Bethune, C. H. Klang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, "Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls," Nature, vol. 363, 1993, pp. 605-607.
69Y. S. Park, Y. C. Choi, K. S. Kim, D.-C. Chung, D. J. Bae, K. H. An, S. C. Lim, X. Y. Zhu, Y. H. Lee, "High yield purification of multiwalled carbon nanotubes by selective oxidation during thermal annealing," Carbon, vol. 39, 2001, pp. 655-661.
70F. H. Gojny, J. Nastalczyk, Z. Roslaniec, K. Schulte, "Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites," Chemical Physics Letters, vol. 370, 2003, pp. 820-824.
71Z. Jin, K. P. Pramoda, S. H. Goh, G. Xu, "Poly(vinylidene fluoride)-assisted melt-blending of multi-walled carbon nanotube/poly(methyl methacrylate) composites," Materials Research Bulletin, vol. 37, 2002, pp. 271-278.
72K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, "Electric Field Effect in Atomically Thin Carbon Films," Science, vol. 306, 2004, pp. 666-669.
73C. Lee, X. Wei, J. W. Kysar, J. Hone, "Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene," Science, vol. 321, 2008, pp. 385-388.
74S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, "Graphene-based composite materials," Nature, vol. 442, 2006, pp. 282-286.
75Z. Xu, C. Gao, "In situ Polymerization Approach to Graphene-Reinforced Nylon-6 Composites," Macromolecules, vol. 43, 2010, pp. 6716-6723.
76M. L. Shofner, F. J. Rodrı́guez-Macı́as, R. Vaidyanathan, E. V. Barrera, "Single wall nanotube and vapor grown carbon fiber reinforced polymers processed by extrusion freeform fabrication," Composites Part A: Applied Science and Manufacturing, vol. 34, 2003, pp. 1207-1217.
77J. Karippal, H. Narasimha Murthy, K. Rai, M. Krishna, M. Sreejith, "Effect of amine functionalization of CNF on electrical, thermal, and mechanical properties of epoxy/CNF composites," Polymer Bulletin, vol. 65, 2010, pp. 849-861.
78B. J. Briscoe, C. T. Kelly, "The effect of structure on gas solubility and gas induced dilation in a series of poly(urethane) elastomers," Polymer, vol. 37, 1996, pp. 3405-3410.
79S. Ito, K. Matsunaga, M. Tajima, Y. Yoshida, "Generation of microcellular polyurethane with supercritical carbon dioxide," Journal of Applied Polymer Science, vol. 106, 2007, pp. 3581-3586.
80J. Shen, C. Zeng, L. J. Lee, "Synthesis of polystyrene–carbon nanofibers nanocomposite foams," Polymer, vol. 46, 2005, pp. 5218-5224.
81F. Chavarria, D. R. Paul, "Morphology and properties of thermoplastic polyurethane nanocomposites: Effect of organoclay structure," Polymer, vol. 47, 2006, pp. 7760-7773.
82C. H. Dan, M. H. Lee, Y. D. Kim, B. H. Min, J. H. Kim, "Effect of clay modifiers on the morphology and physical properties of thermoplastic polyurethane/clay nanocomposites," Polymer, vol. 47, 2006, pp. 6718-6730.
83T. K. Chen, Y. I. Tien, K. H. Wei, "Synthesis and characterization of novel segmented polyurethane/clay nanocomposites," Polymer, vol. 41, 2000, pp. 1345-1353.
84Y. I. Tien, K. H. Wei, "High-tensile-property layered silicates/polyurethane nanocomposites by using reactive silicates as pseudo chain extenders," Macromolecules, vol. 34, 2001, pp. 9045-9052.
85A. Pattanayak, S. C. Jana, "Thermoplastic polyurethane nanocomposites of reactive silicate clays: Effects of soft segments on properties," Polymer, vol. 46, 2005, pp. 5183-5193.
86Y. I. Tien, K. H. Wei, "Hydrogen bonding and mechanical properties in segmented montmorillonite/polyurethane nanocomposites of different hard segment ratios," Polymer, vol. 42, 2001, pp. 3213-3221.
87田運宜,有機蒙特納石/聚胺基甲酸酯奈米複合材料之製備與分析,博士論文,國立交通大學材料科學與工程學系,新竹縣,2001。
88J. A. Reglero Ruiz, P. Viot, M. Dumon, "Microcellular foaming of polymethylmethacrylate in a batch supercritical CO2 process: Effect of microstructure on compression behavior," Journal of Applied Polymer Science, vol. 118, 2010, pp. 320-331.
89黃建雄,奈米層狀石墨對超臨界流體二氧化碳發泡聚苯乙烯泡孔之影響,碩士論文,國立臺北科技大學化學工程所,台北市,2011。
90http://en.wikipedia.org/wiki/Compressibility_factor


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊