跳到主要內容

臺灣博碩士論文加值系統

(3.236.68.118) 您好!臺灣時間:2021/07/31 20:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭鈞晏
研究生(外文):CHENG CHUN YEN
論文名稱:ABS/石墨奈米複合材料之電性質和機械性質的探討
論文名稱(外文):Electrical and Mechanical Property of ABS/graphite Nanocomposites
指導教授:葉樹開
指導教授(外文):Shu-Kai Yeh
口試委員:閻琦蘇至善
口試委員(外文):Chi YenChie-Shaan Su
口試日期:2012-06-22
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:78
中文關鍵詞:丙烯睛-丁二烯-苯乙烯高分子導電複合材料表面電阻率奈米層狀石墨
外文關鍵詞:Acrylonitrile Butadiene StyrenePolymer Conductive CompositeSurface ResistivityNano-Graphite Platelets
相關次數:
  • 被引用被引用:1
  • 點閱點閱:206
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
高分子材料在工程方面應用很廣,而高分子奈米複合材料其性質會因為添加物的不同而有更多的應用價值,例如:添加奈米層狀石墨因為其價格便宜,所以常被用來增加其基材本身的導電性質,由於高分子本身是絕緣體,加入導電填充料之後可讓高分子由絕緣體變成半導體,可應用於電磁遮蔽。除了電性之外,擁有高長寬比的填充料可增加高分子材料的機械性值。
本實驗目的想探討不同的加工方法對於複合材料其電性和機械性質的影響,所以將分為二個部分進行探討,第一部分為固態材料,第二部分為發泡材料。在固態材料部份使用不同長寬比的石墨利用溶液混合法和熔融混煉法加入高分子基材內,製備出高分子導電複合材料,在溶液混合法方面,由於石墨粒徑很小,石墨分子間常會因凡得瓦力的吸引產生聚集現象,所以石墨先以超音波分散後在與高分子進行混合。在熔融混煉法方面,則是利用預混方式來增加其分散性,並且將押出材料直接浸入冰水冷卻以避免降解。製備出的導電複合材料再經由熱壓成型探討其表面電阻率,再由射出成型探討拉伸性質。由溶液混合法的結果來看,長寬比較大的石墨在基材裡接觸的機會較高,其滲流閥值較低,但是熔融混合法的結果發現,兩種不同長寬比的石墨其滲流閥值相同,這是因為石墨的長寬比被破壞的關係,這點可由SEM觀察到,最後結果顯示出在溶液混合法所製備出的導電複合材料其電性最好,其percolation threshold最高可達3wt%。為了預測被剪切應力破壞的石墨長寬比,我們利用滲流閥值模型來預測,並用Halpin-Tsai方程式來進行模擬,發現在1wt%可準確預測材料的電性與力學性質之關連性,但是在3wt%和5wt%時因為石墨團聚和被破壞的關係,導致理論值和實驗值之間有差距。在導電發泡材料方面,我們發現,當泡材的密度越大,其電性越好,percolation threshold從14wt%提升到10wt%,而泡材密度為0.9時,雖然percolation threshold與固態材料一樣,但10wt%到12wt%的表面電阻率從3.7x1013降到3.1x108,比起固態材料表面電阻從3.8x1013降到1x1010的下降幅度還大,表示其電性有更好的現象。


Polymeric materials are used in many fields. Polymer nanocomposites can have more applications by adding different types of nanoparticles to the polymer matrix. For example, nanographite platelets(NGP) are common materials that are added to polymer matrices to increase the electrical conductivity of composites due to their lower price. Adding conductive fillers into a matrix can change a polymer from an insulator into a semiconductor. These conductive polymer composites can be used in electromagnetic interference applications. As well as the conductive properties, the mechanical properties of the composites can also be increased due to the rigidity of nanoparticles.
This article focuses on the different processes that could affect the electrical and mechanical property of materials. Two different issues were studied, one is solid material, while the other one is foamed material. In the case of solid material, compounding ABS with nanographites of different aspect ratios by solvent blending and by melt compounding to fabricate polymer conductive composites. In the case of solvent blending, due to the small size of NGP, the Van Der Waals force can make the graphite aggregated. Before blending, ultra-sonication was used. In the case of melt compounding, we pre-mixed the graphite powder with ABS particles before feeding it into the extruder. The compounded samples were either compression molded for electrical conductivity testing or injection molded for mechanical properties testing. In the case of solvent blending, since the aspect ratio of the nanographite can be maintained, the percolation threshold will be lower than samples made by compounding. Percolation threshold can be as low as3wt%. To predict the aspect ratio of graphite after compounding, the percolation model and the Halpin-Tasi equation were applied. It is found that the dispersion and aspect ratio of the filler in the polymer matrix are the important factors that decide the fitting result between the experimental modulus data and theoretical predictions using Halpin-Tsai equations.
In the case of foam materials, we find that the electrical properties increase with the foam density, percolation threshold rise from 14wt% to 10wt%. For the foam materials,surface resistivity dropped from 3.7x1013 to 3.1x108 with the concentration from 10wt% to 12wt%.


摘 要 I
ABSTRACT III
誌謝 V
第一章緒論 1
1.1前言 1
1.2 研究動機及目的 2
第二章相關理論與文獻回顧 4
2.1 ABS熱塑性高分子 4
2.1.1 製造ABS的三種方法 5
2.2導電高分子複合材料 6
2.3 影響導電高分子複合材料的因素 8
2.3.1 高分子材料的影響 8
2.3.2 導電填料的影響 8
2.3.3 製備方法和過程的影響 9
2.4 導電高分子複合材料的制備方法 9
2.4.1 熔融共混法 9
2.4.2 溶液共混法 10
2.4.3 原位聚合法 10
2.5 高分子/導電填料複合材料的導電機制 10
2.5.1 導電通道的形成機制 10
2.5.1.1 統計滲流模型 11
2.5.1.2 其他模型 17
2.5.2導電通道形成之後的導電機制 19
2.6石墨介紹 21
2.6.1 石墨改質: 22
2.7高分子發泡材料 26
2.8發泡劑 28
2.8.1 化學發泡劑 28
2.8.2 物理發泡劑 29
2.9高分子導電發泡材料 31
2.10 複合材料的機械性質 32
第三章實驗方法 33
3.1實驗藥品 33
3.2實驗儀器 34
3.3實驗流程圖 37
3.4實驗步驟 38
3.4.1 ABS/奈米石墨複合材料之製備 38
3.4.1.1熔融混煉法 38
3.4.1.2溶液混合法 38
3.4.1.3射出成型 38
3.4.1.4熱壓成型 41
3.4.2製備ABS/xGnP奈米複合發泡材料 41
3.5測量方法 42
3.5.1萬能拉力機 42
3.5.2掃瞄式電子顯微鏡(SEM) 44
3.5.3微量天秤量測比重 45
3.5.4表面電阻率的測試 46
3.5.5樣品泡孔孔徑尺寸(cell size)計算 46
3.5.6樣品泡孔密度(cell density)計算 46
3.5.7熱重分析儀 47
第四章結果與討論 48
4.1ABS/石墨奈米複合材料電性質和機械性質的 48
4.1.1不同長寬比的石墨對導電複合材料之表面電阻率的影響(溶液混合法) 48
4.1.2不同長寬比的石墨對導電複合材料之表面電阻率的影響(熔融混煉法) 50
4.1.3溶液混合法和熔融混煉法之表面電阻率比較討論 53
4.1.4以不同滲流模型來解釋導電複合材料之電性行為 55
4.1.5不同長寬比的石墨對導電複合材料機械性質 58
4.2ABS/石墨導電複合發泡材料之電性探討 64
第五章結論 67
未來工作 69
參考文獻 70
附錄A:熱重分析檢測 78


1http://www.sjc.com.tw/traditional/theme/word/01抗靜電劑.pdf
2P. G. Berberi, "Effect of processing on electrical resistivity of textile fibers," Journal of Electrostatics, vol. 51-52, 2001, pp. 358-544.
3H. S. Dahiya, N. Kishore, R. M. Mehra, "Effect of percolation on electrical and dielectric properties of acrylonitrile butadiene styrene/graphite composite," Journal of Applied Polymer Science, vol. 106, 2007, pp. 2101-2110.
4F. Gubbels, R. Jerome, P. Teyssie, E. Vanlathem, R. Deltour, A. Calderone, V. Parente, J. L. Bredas, "Selective localization of carbon black in immiscible polymer blends: a useful tool to design electrical conductive composites," Macromolecules, vol. 27, 1994, pp. 1972-1974.
5G. H. Motlagh, A. N. Hrymak, M. R. Thompson, "Improved through-plane electrical conductivity in a carbon-filled thermoplastic via foaming," Polymer Engineering and Science, vol. 48, 2008, pp. 687-696.
6H. B. Zhang, Q. Yan, W. G. Zheng, Z. He, Z. Z. Yu, "Tough graphene-polymer microcellular foams for electromagnetic interference shielding," ACS Applied Materials & Interfaces, vol. 3, 2011, pp. 918-924.
7V. Eswaraiah, V. Sankaranarayanan, S. Ramaprabhu, "Functionalized graphene-PVDF foam composites for EMI shielding," Macromolecular Materials and Engineering, vol. 296, 2011, pp. 894-898.
8A. Fletcher, M. C. Gupta, K. L. Dudley, E. Vedeler, "Elastomer foam nanocomposites for electromagnetic dissipation and shielding applications," Composites Science and Technology, vol. 70, 2010, pp. 953-958.
9M. C. Hermant, M. Verhulst, A. V. Kyrylyuk, B. Klumperman, C. E. Koning, "The incorporation of single-walled carbon nanotubes into polymerized high internal phase emulsions to create conductive foams with a low percolation threshold," Composites Science and Technology, vol. 69, 2009, pp. 656-662.
10R. Sengupta, M. Bhattacharya, S. Bandyopadhyay, A. K. Bhowmick, "A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites," Progress in Polymer Science, vol. 36, 2011, pp. 638-670.
11R. E. Murray, J. E. Weller, V. Kumar, "Solid-State Microcellular Acrylonitrile-Butadiene-Styrene Foams," Cellular Polymers vol. 19, 2000, pp. 413-425.
12J. D. Moore, "Acrylonitrile-butadiene-styrene (ABS) - a review," Composites, vol. 4, 1973, pp. 118-130.
13 黃立本,張立基,趙旭濤,ABS樹酯及應用,北京:化學工業出版社,2001,
第375-387頁。
14D. J. Sommers, "Carbon black for electrically conductive plastics," Polymer-plastics technology and engineering, vol. 23, 1984, pp. 83-98.
15M. Q. Zhang, G. Yu, H. M. Zeng, H. B. Zhang, Y. H. Hou, "Two-step percolation in polymer blends filled with carbon black," Macromolecules, vol. 31, 1998, pp. 6724-6726.
16"New conductive carbon blacks offer electrostatic discharge and improved mechanical properties," Plastics, Additives and Compounding, vol. 5, 2003, pp. 28-33.
17I. Krupa, I. Chodak, "Physical properties of thermoplastic/graphite composites," European Polymer Journal, vol. 37, 2001, pp. 2159-2168.
18K. Kalaitzidou, H. Fukushima, L. T. Drzal, "A new compounding method for exfoliated graphite-polypropylene nanocomposites with enhanced flexural properties and lower percolation threshold," Composites Science and Technology, vol. 67, 2007, pp. 2045-2051.
19J. Li, J. K. Kim, "Percolation threshold of conducting polymer composites containing 3D randomly distributed graphite nanoplatelets," Composites Science and Technology, vol. 67, 2007, pp. 2114-2120.
20K. Nagata, H. Iwabuki, H. Nigo, "Effect of particle size of graphites on electrical conductivity of graphite/polymer composite," Composite Interfaces, vol. 6, 1999, pp. 483-495.
21J. W. Shen, X. M. Chen, W. Y. Huang, "Structure and electrical properties of grafted polypropylene/graphite nanocomposites prepared by solution intercalation," Journal of Applied Polymer Science, vol. 88, 2003, pp. 1864-1869.
22G. H. Chen, D. J. Wu, W. G. Weng, W. L. Yan, "Dispersion of graphite nanosheets in a polymer matrix and the conducting property of the nanocomposites," Polymer Engineering and Science, vol. 41, 2001, pp. 2148-2154.
23D. Stauffer, A. Aharony, Introduction to percolation theory, Taylor & Francis 1994.
24J. R. Jurado, C. Moure, P. Duran, M. Rodriguez, A. Linares, J. L. Acosta, "Electrical and morphological studies of polymeric composites based on carbon black," Journal of Materials Science, vol. 26, 1991, pp. 4022-4025.
25C. Rajagopal, M. Satyam, "Studies on electrical conductivity of insulator-conductor composites," Journal of Applied Physics, vol. 49, 1978, pp. 5536-5542.
26P. Sheng, "Fluctuation-induced tunneling conduction in disordered materials," Physical Review B, vol. 21, 1980, pp. 2180-2195.
27S. Kirkpatrick, "Percolation and Conduction," Reviews of Modern Physics, vol. 45, 1973, pp. 574-588.
28P. J. Flory, Principles of Polymer Chemistry, New York: Cornell University Press, 1953.
29M. Weber, M. R. Kamal, "Estimation of the volume resistivity of electrically conductive composites," Polymer Composites, vol. 18, 1997, pp. 711-725.
30F. Lux, "Models proposed to explain the electrical conductivity of mixtures made of conductive and insulating materials," Journal of Materials Science, vol. 28, 1993, pp. 285-301.
31H. B. Zhang, W. G. Zheng, Q. Yan, Y. Yang, J. W. Wang, Z. H. Lu, G.-Y. Ji, Z. Z. Yu, "Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding," Polymer, vol. 51, 2010, pp. 1191-1196.
32S. Nakamura, K. Saito, G. Sawa, K. Kitagawa, "Percolation threshold of carbon black-polyethylene composites," Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, vol. 36, 1997, pp. 5163-5168.
33J. Janzen, "On the critical conductive filler loading in antistatic composites," Journal of Applied Physics, vol. 46, 1975, pp. 966-969.
34http://en.wikipedia.org/wiki/Monte_Carlo_method
35K. Kalaitzidou, H. Fukushima, H. Miyagawa, L. T. Drzal, "Flexural and tensile moduli of polypropylene nanocomposites and comparison of experimental data to Halpin-Tsai and Tandon-Weng models," Polymer Engineering and Science, vol. 47, 2007, pp. 1796-1803.
36M. Sumita, S. Asai, N. Miyadera, E. Jojima, K. Miyasaka, "Electrical conductivity of carbon black filled ethylene-vinyl acetate copolymer as a function of vinyl acetate content," Colloid & Polymer Science, vol. 264, 1986, pp. 212-217.
37M. Sumita, K. Sakata, S. Asai, K. Miyasaka, H. Nakagawa, "Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black," Polymer Bulletin, vol. 25, 1991, pp. 265-271.
38B. Wessling, "Electrical conductivity in heterogenous polymer systems (V) (1): Further experimental evidence for a phase transition at the critical volume concentration," Synthetic Metals, vol. 41, 1991, pp. 1057-1062.
39B. Wessling, "Electrical conductivity in heterogenous polymer systems (IV) [1] a new dynamic interfacial percolation model," Synthetic Metals, vol. 27, 1988, pp. A83-A88.
40D. S. McLachlan, "Equation for the conductivity of binary mixtures with anisotropic grain structures," Journal of physics. C. Solid state physics, vol. 20, 1987, pp. 865-877.
41M. D. Via, J. A. King, J. M. Keith, G. R. Bogucki, "Electrical conductivity modeling of carbon black/polycarbonate, carbon nanotube/polycarbonate, and exfoliated graphite nanoplatelet/polycarbonate composites," Journal of Applied Polymer Science, vol. 124, 2012, pp. 182-189.
42M. D. Via, J. A. King, J. M. Keith, I. Miskioglu, M. J. Cieslinski, J. J. Anderson, G. R. Bogucki, "Tensile modulus modeling of carbon black/polycarbonate, carbon nanotube/polycarbonate, and exfoliated graphite nanoplatelet/polycarbonate composites," Journal of Applied Polymer Science, vol. 124, 2011, pp. 2269-2277.
43A. I. Medalia, "Electrical condition in carbon black composites," Rubber Chemistry and Technology, vol. 59, 1986, pp. 432-454.
44P. Sheng, E. K. Sichel, J. I. Gittleman, "Fluctuation-induced tunneling conduction in carbon-polyvinylchloride composites," Physical Review Letters, vol. 40, 1978, pp. 1197-1200.
45E. K. Sichel, J. I. Gittleman, P. Sheng, "Transport properties of the composite material carbon-poly(vinyl chloride)," Physical Review B, vol. 18, 1978, pp. 5712-5716.
46T. A. Ezquerra, M. Kulescza, C. Santa Cruz, F. J. Balta-Calleja, "Charge transport in polyethylene-graphite composite materials," Advanced Materials, vol. 2, 1990, pp. 597-600.
47A. K. Geim, K. S. Novoselov, "The rise of graphene," Nature Materials, vol. 6, 2007, pp. 183-191.
48K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, "Electric field in atomically thin carbon films," Science, vol. 306, 2004, pp. 666-669.
49M. J. McAllister, J. L. Li, D. H. Adamson, H. C. Schniepp, A. A. Abdala, J. Liu, M. Herrera-Alonso, D. L. Milius, R. Car, R. K. Prud''homme, I. A. Aksay, "Single sheet functionalized graphene by oxidation and thermal expansion of graphite," Chemistry of Materials, vol. 19, 2007, pp. 4396-4404.
50H. Podall, W. E. Foster, A. P. Giraitis, "Catalytic graphite inclusion compounds. I. Potassium graphite as a polymerization catalyst," Journal of Organic Chemistry, vol. 23, 1958, pp. 82-85.
51I. M. Panayotov, I. B. Rashkov, "Anionic polymerization and copolymerization in heterogeneous systems on surfaces with aromatic structure," Journal of Polymer Science Part A: Polymer Chemistry, vol. 11, 1973, pp. 2615-2622.
52L. R. Bunnell," Method for producing thin graphite flakes with large aspect ratios," US Patent NO: US5186919, 1993.
53Y. X. Pan, Z. Z. Yu, Y. C. Ou, G. H. Hu, "New process of fabricating electrically conducting nylon 6/graphite nanocomposites via intercalation polymerization," Journal of Polymer Science, Part B: Polymer Physics, vol. 38, 2000, pp. 1626-1633.
54H. Zois, L. Apekis, M. Omastova. In Secondary "Electrical Properties and Percolation Phenomena in Carbon Black Filled Polymer Composites,”10th Internatiaiial Symposium on Electreis, 1999, pp. 529-532.
55W. Zheng, S. C. Wong, "Electrical conductivity and dielectric properties of PMMA/expanded graphite composites," Composites Science and Technology, vol. 63, 2003, pp. 225-235.
56D. R. Dreyer, S. Park, C. W. Bielawski, R. S. Ruoff, "The chemistry of graphene oxide," Chemical Society reviews, vol. 39, 2010, pp. 228-240.
57A. Lerf, H. He, M. Forster, J. Klinowski, "Structure of graphite oxide revisited," Journal of Physical Chemistry B, vol. 102, 1998, pp. 4477-4482.
58L. J. Lee, C. Zeng, X. Cao, X. Han, J. Shen, G. Xu, "Polymer nanocomposite foams," Composites Science and Technology, vol. 65, 2005, pp. 2344-2363.
59http://www.bccresearch.com/report/polymeric-foams-pls008g.html.
60A. I. Cooper, "Polymer synthesis and processing using supercritical carbon dioxide," Journal of Materials Chemistry, vol. 10, 2000, pp. 207-234.
61Y. Yang, M. C. Gupta, K. L. Dudley, R. W. Lawrence, "Novel carbon nanotube - Polystyrene foam composites for electromagnetic interference shielding," Nano Letters, vol. 5, 2005, pp. 2131-2134.
62Y. Yang, M. C. Gupta, K. L. Dudley, R. W. Lawrence, "Conductive carbon nanofiber-polymer foam structures," Advanced Materials, vol. 17, 2005, pp. 1999-2003.
63X. B. Xu, Z. M. Li, L. Shi, X. C. Bian, Z. D. Xiang, "Ultralight conductive carbon-nanotube-polymer composite," Small, vol. 3, 2007, pp. 408-411.
64M. Antunes, M. Mudarra, J. I. Velasco, "Broad-band electrical conductivity of carbon nanofibre-reinforced polypropylene foams," Carbon, vol. 49, 2011, pp. 708-717.
65T. D. Fornes, D. R. Paul, "Modeling properties of nylon 6/clay nanocomposites using composite theories," Polymer, vol. 44, 2003, pp. 4993-5013.
66余承儐,聚乳酸/氫氧化鋁/奈米黏土複合材料之阻燃性質,碩士論文,國立臺北科技大學化學工程所,台北,2010
67C. W. Macosko, H. Kim, "Processing-property relationships of polycarbonate/graphene composites," Polymer, vol. 50, 2009, pp. 3797-3809.
68J. C. Halpin, J. L. Kardos, "Halpin-Tsai equations: a review," Polymer Engineering and Science, vol. 16, 1976, pp. 344-352.
69http://www.xgsciences.com/.
70G. R. Ruschau, S. Yoshikawa, R. E. Newnham, "Resistivities of conductive composites," Journal of Applied Physics, vol. 72, 1992, pp. 953-959.
71J. S. Colton, N. P. Suh, "The Uncleation of microcellular Thermoplastic foam with additives:part I: Theoretical considerations," Polymer Engineering and Science, vol. 27, 1987, pp. 485-492.
72J. Shen, C. Zeng, L. J. Lee, "Synthesis of polystyrene-carbon nanofibers nanocomposite foams," Polymer, vol. 46, 2005, pp. 5218-5224.
73D. Chen, J. Yang, G. Chen, "The physical properties of polyurethane/graphite nanosheets/carbon black foaming conducting nanocomposites," Composites Part A: Applied Science and Manufacturing, vol. 41, 2010, pp. 1636-1638.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top