跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/25 02:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:柯明青
研究生(外文):Ming-Qing Ke
論文名稱:熱還原石墨烯對超臨界流體二氧化碳發泡聚苯乙烯泡孔之影響
論文名稱(外文):Effect of thermally reduced graphene oxide on the Properties of Supercritical CO2 Foamed Polystyrene/Graphite Nanocomposites
指導教授:葉樹開
指導教授(外文):Shu-Kai Yeh
口試委員:閻琦蘇至善
口試委員(外文):Chi YenChie-Shaan Su
口試日期:2012-06-22
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:95
中文關鍵詞:石墨烯奈米碳管奈米碳纖維奈米層狀石墨聚苯乙烯超臨界二氧化碳發泡
外文關鍵詞:Graphenecarbon nanotubecarbon nanofibernano-Graphite plateletspolystyrenesupercritical CO2foam
相關次數:
  • 被引用被引用:5
  • 點閱點閱:327
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
高分子發泡材料有許多優點,包括節省成本、絕熱隔音、減輕重量、提高抗衝擊性及抗疲勞性等等,常用於民生工具和航太、汽車工業。另外近年來石墨烯的研究大幅提升,無論是電性、機械性質、導熱性質、比表面積,石墨烯都有驚人的表現,而未來石墨烯的價格可能會低於奈米碳管和奈米碳纖維,因此石墨烯很有發展的前途。因為石墨烯的高比表面積有利於發泡程序的成核速率,所以我們將石墨烯與聚苯乙烯製成高分子發泡材料,結合石墨烯與發泡材料的優點提升性能,創造新的可能。
本實驗第一階段先使用Hummers method把天然石墨氧化成氧化石墨,再將氧化石墨經由高溫熱還原成石墨烯。後續利用XRD、EDS、FTIR等儀器來分析氧化石墨和熱還原石墨製備的成效。第二階段我們使用溶劑混合法將石墨烯添加到聚苯乙烯中形成奈米複合材料,並以TEM確認石墨烯在複合材料中的分散性。最後使用超臨界二氧化碳作為發泡劑,對石墨烯/聚苯乙烯奈米複合材料做批次發泡程序,以120℃作為發泡溫度,改變發泡壓力和添加不同成核劑來做發泡結構之探討。
實驗結果表示,添加奈米顆粒可以明顯提升成核速率並且使泡孔縮小。分別以熱還原石墨烯、奈米碳管、奈米碳纖維、xGnP層狀石墨與滑石粉作為成核劑來比較發泡效果,而石墨烯的發泡效果最好,在發泡溫度為120℃,發泡壓力為2000 psi下,泡孔直徑只有7.8 μm;泡孔密度為3.54×109 cell/cm3。另外在低壓時添加奈米顆粒可以使泡孔直徑趨近於高壓下聚苯乙烯泡體的泡孔大小,如此一來在高分子加工過程中使用低壓就可得到性質優越的發泡材料。


Polymeric foam possesses many advantages such as cost reduction, insulation, weight saving, high modulus/density ratio and improved fatigue resistance. It has been commonly used in livelihood tools, aerospace and the automotive industry. In addition, the graphene research increased dramatically in recent years. It has great electrical properties, mechanical properties, thermal properties, high specific surface area. Due to the availability and easiness of production, the price of graphene could be lower than that of carbon nanotubes and carbon nano fibers in the future. One of the characteristics of graphene is its ultrahigh specific surface area which would improve the nucleation rate during the foaming process. Thus, graphene was compounded with polystyrene and polymer-graphene nanocomposite foam was prepared using a batch foaming technique. Combining the advantages of polymer nanocomposite and foam may create a new class of lightweight, high strength materials which could have many new possibilities.
In the first part of this study, natural graphite was oxidized by Hummers method and followed by thermal reduction to obtain graphene nanoplatelets. The graphene and graphite oxide nanoparticles were characterized by XRD, EDS and FTIR .In the second part of this study, graphene was compounded with polystyrene by solvent blending. The dispersion of grapheme was characterized by TEM. Finally, the polymer-graphene nanocomposites were foamed using supercritical carbon dioxide as the blowing agent using a batch foam process. The graphene/polystyrene nanocomposites were foamed at 120 ° C and various foaming pressure. The foam structure was characterized by SEM.
The experiment results showed that adding nanoparticles can significantly enhance the nucleation rate and decrease the cell size. To compare the nucleation effect of different nanoparticles, thermally reduced graphene (TRG), carbon nanotubes, carbon nano fiber, commercially available nanographite platelets and talc were used as nucleating agents. Among the different nanoparticles, graphene showed the best nucleating efficiency. The cell size is 7.8 μm while the cell density is 3.54×109cell/cm3foamed at 120˚C and 2000 psi. In addition, it is worth noting that adding nanoparticles as a nucleating agent can make foams of similar cell size and cell density with a much lower foaming pressure.


目錄

摘要 i
Abstract iii
誌謝 v
目錄 vi
表目錄 ix
圖目錄 x
第一章 緒論 1
第二章 相關理論與文獻回顧 3
2.1高分子聚苯乙烯 3
2.2 碳材料介紹 6
2.2-1 碳元素的同素異形體 6
2.2-2奈米碳管 7
2.2-3 碳纖維 9
2.3石墨烯 12
2.3-1 機械剝離法(Mechanical exfoliation) 14
2.3-2化學氣相沉積法(Chemical vapor deposition;CVD) 14
2.3-3 磊晶成長法(Epitaxial growth) 15
2.3-4氧化石墨法(graphite oxide;GO) 15
2.4高分子發泡技術 18
2.4-1發泡程序 20
1. 泡體成核階段(cell nucleation) 20
2. 泡體成長階段(cell growth) 27
3. 泡體固化階段(solidification) 28
2.4-2發泡劑 28
1. 化學發泡劑(Chemical blowing agents): 28
2. 物理發泡劑(Physical blowing agents): 29
2.4-3 玻璃轉移溫度探討 31
第三章 實驗方法 33
3.1 實驗藥品 33
3.2實驗儀器、用品 38
3.3 實驗步驟 41
3.3-1 實驗流程圖 41
3.3-2 聚苯乙烯製備 42
3.3-2.1苯乙烯純化作業 42
3.3-2.2原位聚合法 42
3.3-3熱還原石墨烯製備 44
3.3-3.1製備氧化石墨 44
3.3-3.2製備熱還原氧化石墨烯 45
3.3-4溶劑混合法(PS複合材料製備) 45
3.3-5批次發泡設備 46
3.3-6掃瞄式電子顯微鏡(SEM) 47
3.3-7能量散射光譜儀(EDS) 48
3.3-8 X-ray繞射儀量(XRD) 49
3.3-9穿透式電子顯微鏡(TEM) 50
3.3-10傅利葉轉換紅外線光譜儀(FTIR) 51
3.3-11 泡孔孔徑尺寸(cell size)計算 52
3.3-12 泡孔密度(cell density)計算 52
3.3-13 表面電阻測試 53
第四章 結果與討論 54
4.1 熱還原石墨烯分析 54
4.1-1 X-ray繞射儀分析 54
4.1-2傅利葉轉換紅外線光譜儀分析 55
4.1-3能量散射光譜儀分析 55
4.2TRG/PS複合材料分析 56
4.3穿透式電子顯微鏡圖像分析 56
4.4 十一點探針頭之表面電阻測量 57
4.5 超臨界二氧化碳發泡探討 57
4.5-1 添加成核劑對發泡成核階段探討 58
4.5-2 成核劑對發泡結構影響分析 59
4.5-3壓力對發泡結構影響分析 60
4.5-4溫度對發泡結構影響分析 62
4.5-5分子量對發泡結構影響分析 62
4.5-6 比表面積測量分析儀 63
第五章 結論 75
參考文獻 78
附錄A 88
附錄B 91







表目錄

表2.1. 聚苯乙烯結構分 4
表2.2.聚苯乙烯與其他高分子共聚產品 5
表2.3. 在不同維度下,碳分子結構模型圖 6
表3.1. 不同溫度下水的比重 48
表3.2.紅外光譜區的劃分 51
表4.1. SP-1、GO、TRG之EDS分析表 65
表4.2. 溫度:120℃,各壓力對泡孔直徑整理總表,單位:μm 66
表4.3. 溫度:120℃,各壓力對泡孔密度整理總表,單位:cell/cm3 66












圖目錄
圖2.1.苯乙烯單體聚合成聚苯乙烯示意圖 3
圖2.2.(a) 聚丙烯腈環化示意圖(b)脫氫環鏈聚合 (c) 脫氮環鏈聚合 12
圖2.3. Graphene與Graphene composites 每年文獻數目 13
圖2.4. CVD製程流程圖 15
圖2.5. GO結構模型圖 17
圖2.6. 熱還原氧化石墨烯實驗流程 18
圖2.7. 1 mg/mL的(左邊)GO溶於DMF中,(中間)苯基異氰酸酯接枝GO溶於水中, 18
(右邊) 苯基異氰酸酯接枝GO溶於DMF 18
圖2.8.以超臨界流體發泡射出成型系統示意圖 20
圖2.9. 同相成核及異相成核示意圖 21
圖2.10. 同相成核及異相成核之ΔG比較圖 23
圖2.11. ΔG與成核半徑關係 23
圖2.12. 固液界面之表面張力關係 24
圖2.13. f function 與w關係圖 26
圖2.14. 聚合物發泡劑分類 31
圖2.15.粗線:吸附二氧化碳的PS在不同壓力下Tg變化量; 32
細線:不同溫度壓力下二氧化碳在PS中的溶解度 32
圖3.1.實驗流程圖 41
圖3.2.旋轉濃縮機 42
圖3.3.原位聚合設備 43
圖3.4.高溫爐設備 45
圖3.5.批次發泡設備示意圖 47
圖3.6. 掃瞄式電子顯微鏡及能量散射光譜儀 48
圖3.7.X-ray繞射儀量 50
圖3.8. 穿透式電子顯微鏡 51
圖3.9. 傅利葉轉換紅外線光譜儀 52
圖4.1. SP-1、GO、TRG之XRD圖 67
圖4.2. SP-1、GO、TRG之FTIR圖 67
圖4.3. (a) SP-1、(b) GO、(c) TRG之元素分析圖 68
圖4.4. 溶劑混合法製備之1% (a) TRG/PS,(b) CNT/PS (c) CNF/PS 69
圖4.5. TRG/PS複合材料表面電阻測量 70
圖4.6. 發泡溫度:120℃,發泡壓力:1100 psi。各種成核劑發泡結構,倍率:×500。 71
圖4.7. 溫度:120℃,各壓力對泡孔直徑作圖 72
圖4.8. 溫度:120℃,各壓力對泡孔密度作圖 72
圖4.9. 硬脂酸鋅濃度與成核速率關係圖,模擬(實線)及實驗(點) 73
圖4.10. 發泡壓力為2000 psi,發泡溫度為120℃與90℃的SEM比較圖 74
圖A.壓縮因子圖 89
圖B.1 2000 psi,120℃各樣品發泡比較圖 91
Cell size單位:μm;Cell density單位:cell/cm3 91
圖B.2 1700 psi,120℃各樣品發泡比較圖 92
Cell size單位:μm;Cell density單位:cell/cm3 92
圖B.3 1500 psi,120℃各樣品發泡比較圖 93
Cell size單位:μm;Cell density單位:cell/cm3 93
圖B.4 1300 psi,120℃各樣品發泡比較圖 94
Cell size單位:μm;Cell density單位:cell/cm3 94
圖B.5 1200 psi,120℃各樣品發泡比較圖 95
Cell size單位:μm;Cell density單位:cell/cm3 95


1郭信良, 劉偉仁, “石墨烯的發展與應用上,”工業材料雜誌274期, 2009, pp.119-122.
2V. Singh,D. Joung, L. Zhai, S. Das,S.I. Khondaker and S. Seal,“Graphene based materials: past, present and future,” Progress in Materials Science, vol. 56, issue. 8, 2011, pp.1178-1271.
3A. Zhamu and B.Z. Jang, “Supercritical fluid process for producing nano graphene platelets,” US Patent No: 2010/0044646A1.
4H.B. Zhang, Q. Yan, Z.Z. Yu, W.G. Zheng and Z. He, “Tough graphene-polymer microcellular foams for electromagnetic interference shielding,” ACS Applied Materials & Interfaces, vol. 3, issue. 3, 2011, pp.918-924.
5O. Secretariat, "The montreal protocol on substances that deplete the ozone layer," Nairobi, Kenya, Nnited Nations Environment Programme, 2000.
6K.T. Okamoto, “Microcellular processing,” Munich, Hanser Verlag, 2003, pp. 15-25.
7K.A. Arora, T.J. McCarthy and A.J. Lesser,“Preparation and characterization of microcellular polystyrene foams processed in supercritical carbon dioxide,” Macromolecules, vol. 31, issue. 14, 1998, pp.4614-4620.
8Y.W. Kim and C.B. Park,“Processing of microcellular preceramics using carbon dioxide,” Composites Science and Technology, vol. 63, issue. 16, 2003, pp.2371-2377.
9J.E. Martini-Vvedensky, N.P. Suh and F.A. Waldman, “Microcellular closed cell foams and their method of manufacture,” US Patent No: 4473665, 1984.
10http://highscope.ch.ntu.edu.tw/wordpress/?p=3098.
11J.C. Slonczewski and P.R.Weiss, “Band structure of graphite,” Physical Review Letters, vol. 109, issue. 2, 1958, pp.272-279.
12O. Greis, Y. Xu, T. Asano, J. Petermann, “Morphology and structure of syndiotactic polystyrene,” Polymer, vol. 30, issue. 4, 1989, pp.590-594.
13蔣見超, “The preparation of new copolymers that contain parts of syndiotactic polystyrene (sPS) structure and their processes studies,” 國科會計畫, 國立中正大學化工所, 嘉義, 2002.
14毛永成, “乙烯基矽烷化物誘導之選擇性鏈轉移反應:合成含同位聚苯乙烯之雙嵌段共聚物之新合成方法,”碩士論文, 國立中正大學化學工程研究所, 嘉義, 2009.
15M. Terrones, A.R. Botello-Mendez, J. Campos-Delgado, F. Lopez-Urias, Y.I. Vega-Cantu, F.J. Rodriguez-Macias, A.L. Elias, E. Munoz-Sandoval, A.G. Cano-Marquez, J.C. Charlier and H. Terrones, “Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications,” Nano Today, vol. 5, issue. 4, 2010, pp.351-372.
16H.W. Kroto, J.R. Heath, S.C. O''Brien, R.F. Curl and R.E. Smalley, “C60: Buckminsterfullerene,” Nature, vol. 318, no. 14, 1985, pp.162-163.
17S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, no. 7, 1991, pp.56-58.
18J. Hone, B. Batlogg, Z. Benes, A.T. Johnson and J.E. Fischer, “Quantized phonon spectrum of single-wall carbon nanotubes,” Science, vol. 289, no. 5485, 2000, pp.1730-1733.
19G. Ruess and F. Vogt, “Hochstlamellarer kohlenstoff aus graphitoxyhydroxyd,” Chemistry and Materials Science, vol. 78, no. 3-4, 1948, pp.222-242.
20A. Kelly, N.H. Macmillan, “Strong Solids,” USA, Clarendon Press, 1986, pp.423.
21Y. Zhang,Z. Shi, Z. Gu and S. Iijima, “Structure modification of single-wall carbon nanotubes,” Carbon, vol. 38, issue. 15, 2000, pp.2055-2059.
22G. Che, B.B. Lakshmi, C.R. Martin, E.R. Fisher and R.S. Ruoff, “Chemical vapor deposition based synthesis of carbon nanotubes and nanofibers using a template method,” Chemistry of Materials, vol. 10, issue. 1, 1998, pp.260-267.
23W. Zhou, Y.H. Ooi, R. Russo, P. Papanek, D.E. Luzzi, J.E. Fischer, M.J. Bronikowski, P.A. Willis and R.E. Smalley, “Structural characterization and diameter-dependent oxidative stability of single wall carbon nanotubes synthesized by the catalytic decomposition of CO,” Chemical Physics Letters, vol. 350, issue. 1-2, 2001, pp.6-14.
24Y.H. Yang and W.Z. Li, “Radial elasticity of single-walled carbon nanotube measured by atomic force microscopy,” Applied Physics Letters, vol. 98, issue. 4, 2011, 041901.
25G.G. Tibbetts, C.P. Beetz Jr, “Mechanical properties of vapour-grown carbon fibres,” Journal of Physics D: Applied Physics, vol. 20, no. 3, 1987, pp.292-297.
26成會明, “奈米碳管,”台灣, 五南出版社, 2004, pp.1-53.
27H. Shiroishi, T. Oda, N. Fujima, “Electronic structure and magnetism of Fe wire in carbon nanotubes,” Journal of Magnetism and Magnetic Materials, vol. 310, issue. 2, 2007, pp.1640-1641.
28A.G. Rinzler, J.H. Hafner and P. Nikolaev, “Unraveling nanotubes: Field emission from an atomic wire,” Science, vol. 269, no. 5230, 1995, pp.1550-1553.
29B. Gao, A. Kleinhammes, X.P. Tang, C. Bower, L. Fleming, Y. Wuand and O. Zhou, “Electrochemical intercalation of single-walled carbon nanotubes with lithium,” Chemical Physics Letters, vol. 307, issues. 3-4, 1999, pp.153–157.
30W. Cheung, F. Pontoriero, O. Taratula, A.M. Chen and H. He, “DNA and carbon nanotubes as medicine,” Advanced Drug Delivery Reviews, vol. 62, issues. 6, 2010, pp.633-649.
31N. Yusof and A.F. Ismail,“Post spinning and pyrolysis processes of polyacrylonitrile (PAN)-based carbon fiber and activated carbon fiber: A review,” Journal of Analytical and Applied Pyrolysis, vol. 93, 2012, pp.1-13.
32M.A. Montes-Moran, W. Gauthier, A. Martinez-Alonso and J.M.D. Tascon, “Mechanical properties of high-strength carbon fibres. Validation of an end-effect model for describing experimental data,” Carbon, vol. 42, issue. 7, 2004, pp.1275-1278.
33T. Koyama and M. Endo, “Electrical resistivity of carbon fibers prepared from benzene,” Japanese Journal of Applied Physics, vol. 3, issue. 7,1974, pp.1175–1176.
34T. Koyama, M. Endo and Y. Hishiyama, “Structure and properties of graphitized carbon fiber,” Japanese Journal of Applied Physics, vol. 13, no. 12, 1974, pp.1933-1939.
35T.V. Sreekumar, T. Liu, B.G. Min, H. Guo1, S. Kumar, R.H. Hauge and R.E. Smalley,“Polyacrylonitrile single-walled carbon nanotube composite fibers,” Advanced Materials, vol. 16, no. 1, 2004, pp.58-61.
36http://pslc.ws/macrog//carfsyn.htm.
37K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva and A.A. Firsov, “Electric field in atomically thin carbon films,” Science, vol. 306, no. 5696, 2004, pp.666-669.
38P.R. Somani, S.P. Somani and M. Umeno, “Planer nano-graphenes from camphor by CVD,” Chemical Physics Letters, vol. 430, issue. 1-3, 2006, pp.56-59.
39陳姿吟,李連忠, “以化學氣相沉積法成長大面積之石墨烯,” 中央研究院週報, 第1342期, pp.5-6.
40W.A. de Heer, C. Berger, X. Wu, P.N. First, E.H. Conrad, X. Li, T. Li, M. Sprinkle, J. Hass, M.L. Sadowski, M. Potemski and G.Martinez, “Epitaxial graphene,” Solid State Communications, vol. 143, issue. 1-2, 2007, pp.92-100.
41T. Nakajima and Y. Matsuo, “Formation process and structure of graphite oxide,” Carbon, vol. 32, issue. 3, 1994, pp.469-475.
42W.S. Hummers Jr. and R.E. Offeman, “Preparation of graphitic oxide,” Journal of the American Chemical Society, vol. 80, issue. 6, 1958, pp.1339-1339.
43H.P. Boehm and W. Scholz, “New results on the chemistry of graphite oxide,” Carbon, vol. 6, issue. 2, 1968, pp.226-226.
44I.A. Aksay, H.C. Schniepp, J.L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso, D.H. Adamson, R.K. Prud''homme, R. Car and D.A. Saville,“Functionalized single graphene sheets derived from splitting graphite oxide,” Journal of Physical Chemistry B, vol. 110, issue. 17, 2006, pp.8535-8539.
45S.T. Nguyen, S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu and R.S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon, vol. 45, issue. 7, 2007, 45, pp.1558-1565.
46楊永崗, 陳成猛, 溫月芳, 楊全紅, 王茂章, “氧化石墨烯及其與聚合物的複合,” New Carbon Materials, vol. 23, no. 3, 2008, pp.193-200.
47S. Stankovich, R.D. Piner, S.T. Nguyen and R.S. Ruoff, “Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets,” Carbon, vol. 44, issue. 15, 2006, pp.3342-3347.
48C.W. Macosko, H. Kim and A.A. Abdala, “Graphene/polymer nanocomposites,” Macromolecules, vol. 43, issue. 16, 2010, pp.6515-6530.
49陳燕芳, 陳志勇, “高分散性石墨烯之製備,” 工業材料雜誌304期, 2012, pp.82-87.
50D.R. Dreyer, C.W. Bielawski and R.S. Ruoff, “The chemistry of graphene oxide,” Chemical Society Reviews, vol.39, issue. 1, 2010, pp.228-240.
51http://www.trexel.com/.
52http://www.moldex3d.com/ch/.
53D. Miller and V. Kumar, “Microcellular and nanocellular solid-state polyetherimide (PEI) foams using sub-critical carbon dioxide II. Tensile and impact properties,” Polymer, vol. 52, no. 13, 2011, pp.2910-2919.
54M. Volmer and A. Weber, “Nucleus formation in supersaturated systems,” Zeitschrift fur Physikalische Chemie, vol. 119, 1926, pp.277.
55M. Blander and J.L. Katz, “Bubble nucleation in liquids,” Aiche Journal, vol. 21, issue. 5, 1975, pp.833-848.
56S.F. Jones, G.M. Evans and K.P. Galvin, “Bubble nucleation from gas cavities-a review,” Advances in Colloid and Interface Science, vol. 80, issue. 1, 1999, pp.27-50.
57何繼敏, “新型聚合物發泡材料及技術,” 北京, 化學工業出版社, 2008, pp.1-21.
58N.H. Fletcher, “Size effect in heterogeneous nucleation,” The Journal of Chemical Physics, vol. 29, no. 3, 1958, pp.572-576.
59J. Shen, C. Zeng and L.J. Lee, “Synthesis of polystyrene-carbon nanofibers nanocomposite foams,” Polymer, vol. 46, issue. 14, 2005, pp.5218-5224.
60J.B. Bao, T. Liu, L. Zhao and G.H. Hu, “A two-step depressurization batch process for the formation of bi-modal cell structure polystyrene foams using scCO2,” The Journal of Supercritical Fluids, vol. 55, issue. 3, 2011, pp.1104-1114.
61J.A.R. Ruiz, P. Viot and M. Dumon, “Microcellular Foaming of Polymethylmethacrylate in a Batch Supercritical CO2 Process: Effect of Microstructure on Compression Behavior,” Journal of Applied Polymer Science, vol. 118, issue. 1, 2010, pp.320–331.
62葉樹開, “超臨界流體二氧化碳發泡技術在高分子加工上的應用,” 高分子加工工程專輯, 化工技術第18卷8期, 2010, pp.112-130.
63M. Molina and F.S. Rowland, “Stratospheric sink for chlorofluoromethanes chlorine atom-catalysed destruction of ozone,” Nature, vol. 249, no. 5460, 1974, pp.810-812.
64Y. Sato, T. Takikawa, S. Takishima and H. Masuoka, “Solubilities and diffusion coefficients of carbon dioxide in poly (vinyl acetate) and polystyrene,” Journal of Supercritical Fluids, vol. 19, issue. 2, 2001, pp.187-198.
65X. Han, “Continuous production of microcellular foams,” Ph.D. Thesis, Ohio State University, Ohio State, USA, 2003.
66J.S. Chiou, J.W. Barlow and D.R. Paul, “Plasticization of glassy polymers by CO2,” Journal of Applied Polymer Science, vol. 30, issue. 6, 1985, pp.2633-2642.
67D. Liu, H. Li, M.S. Noon and D.L. Tomasko, “CO2-induced PMMA swelling and multiple thermodynamic property analysis using Sanchez−Lacombe EOS,” Macromolecules, vol. 38, issue.10, 2005, pp.4416-4424.
68M.J. Wingert, S. Shukla, K.W. Koelling, D.L. Tomasko and L.J. Lee, “Shear viscosity of CO2-plasticized polystyrene under high static pressures,” Industrial & Engineering Chemistry Research, vol.48, issue. 11, 2009, pp.5460-5471.
69R. Sengupta, M. Bhattacharya, S. Bandyopadhyay and A. Bhowmick, “A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites,” Progress in Polymer Science, vol. 36, issue. 5, 2010, pp.638-670.
70C.W. Macosko, H. Kim and Y. Miura, “Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity,” Chemistry of Materials, vol. 22, issue. 11, 2010, pp.3441-3450.
71A. Lerf, A. Buchsteiner, J. Pieper, S. Schottl, I. Dekany, T. Szabo and H.P. Boehm,“Hydration behavior and dynamics of water molecules in graphite oxide,” Journal of Physics and Chemistry of Solids, vol. 67, issue.5-6, 2006, pp.1106-1110.
72S. Ansari and E.P. Giannelis, “Functionalized graphene sheet-poly(vinylidene fluoride) conductive nanocomposites,” Journal of Polymer Science Part B: Polymer Physics, vol. 47, issue. 9, 2009, pp.888-897.
73P. Mukhopadhyay and R. K. Gupta, “Trends and frontiers in graphene-based polymer nanocomposites,” Plastics Engineering, vol. 67, issue. 1, 2011, pp.32-42.
74C.W. Macosko, H. Kim, S. Kobayashi, M.A. AbdurRahim, M.L.J. Zhang, A. Khusainova, M.A. Hillmyer and A.A. Abdala, “Graphene/polyethylene nanocomposites: Effect of polyethylene functionalization and blending methods,” Polymer, vol. 52, issue. 8, 2011, pp.1837-1846.
75J. Yang, M. Wu, F. Chen, Z. Fei and M. Zhong, “Preparation, characterization, and supercritical carbon dioxide foaming of polystyrene/graphene oxide composites,” The Journal of Supercritical Fluids, vol. 56, issue. 2, 2011, pp.201-207.
76S. Park, K.S. Lee, G. Bozoklu, W.C.S.T. Nguyen and R.S. Ruoff, “Graphene oxide papers modified by divalent ions—enhancing mechanical properties via chemical cross-linking,” American Chemical Society Nano, vol. 2, issue. 3, 2008, pp.572–578.
77W. Chen, L. Yan and P.R. Bangal, “Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves,” Carbon, vol. 48, issue. 4, 2010, pp.1146-1152.
78S. Park, D.A. Dikin, S.T. Nguyen and R.S. Ruoff, “Graphene oxide sheets chemically cross-linked by polyallylamine,” The Journal of Physical Chemistry C, vol. 113, issue. 36, 2009, pp.15801–15804.
79江偉宏,郭信良, “石墨烯於功能性高分子複合材料的應用,” 工業材料雜誌304期, 2012, pp.75-81.
80M.Q. Zhang, H.M. Zeng, H.B. Zhang, Y.H. Hen and G. Yu, “Two-step percolation in polymer blends filled with carbon black,” Macromolecules, vol. 31, no. 19, 1998, pp.6724-6726.
81T. Kuilla, S. Bhadra, D. Yao, N.H. Kim, S. Bose and J.H. Lee, “Recent advances in graphene based polymer composites,” Progress in Polymer Science, vol. 35, issue. 11, 2010, pp.1350-1375.
82H. Sacha, A.E.B. Se’verine, A.H. P. Agı’lio and J.P.E.Grolier,“Simultaneous measurement of the solubility of nitrogen and carbon dioxide in polystyrene and of the associated polymer swelling,” Journal of Polymer Science: Part B: Polymer Physics, vol. 39, issue. 17, 2001, pp.2063–2070.
83L.J. Lee, C. Zeng, X. Cao, X. Han, J. Shen and G. Xu, “Polymer nanocomposite foams,” Composites Science and Technology, vol. 65, issue. 15-16, 2005, pp.2344-2363.
84A. Wong and C.B. Park, “The effects of extensional stresses on the foamability of polystyrene–talc composites blown with carbon dioxide,” Chemical Engineering Science, vol. 75, 2012, pp.49-62.
85J.S. Colton and N.P. Suh,“Nucleation of microcellular foam: theory and practice,” Polymer Engineering and Science, vol. 27, issue. 7, 1987, pp.500-503.
86J.S. Colton and N.P. Suh,“The nucleation of microcellular thermoplastic foam with additives: Part II: Experimental results and discussion,” Polymer Engineering and Science, vol. 27, issue. 7, 1987, pp.493-499.
87J.S. Colton and N.P. Suh,“The nucleation of microcellular thermoplastic foam with additives: Part I: Theoretical considerations,” Polymer Engineering and Science, vol. 27, issue. 7, 1987, pp.485-492.
88T.J. McCarthy, C.M. Stafford and T.P. Russell, “Expansion of polystyrene using supercritical carbon dioxide: Effects of molecular weight, polydispersity, and low molecular weight components,” Macromolecules, vol. 32, issue. 22, 1999, pp.7610-7616.
89S. Brunauer, P.H. Emmett and E. Teller, “Adsorption of gases in multimolecular layers,” Journal of the American Chemical Society, vol. 60, issue. 2, 1938, pp.309-319.
90http://en.wikipedia.org/wiki/Compressibility_factor.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top