跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/07/31 03:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林鈞雯
研究生(外文):Jun-Wen Lin
論文名稱:側鏈含咔唑基團之芳香族聚醯胺與末端具咔唑或三苯胺基團的二醯胺及二醯亞胺所衍生的電聚合薄膜之製備及光電特性研究
論文名稱(外文):Preparation and Optoelectronic Properties of Aromatic Polyamides Bearing Pendent Carbazole Units and the Electropolymerized Films of Diamides and Dimides with Carbazole or Triphenylamine End-groups
指導教授:蕭勝輝
指導教授(外文):Sheng-Huei Hsiao
口試委員:陳志堅陳耀騰劉貴生
口試委員(外文):Jyh-Chien ChenYaw-Terng ChenGuey-Sheng Liou
口試日期:2012-07-30
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:98
中文關鍵詞:三苯胺聚醯胺電聚合光激發光電致變色
外文關鍵詞:carbazoletriphenylaminepolyamideelectropolymerizationphotoluminescenceelectrochromism
相關次數:
  • 被引用被引用:0
  • 點閱點閱:124
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文首先合成兩種側鏈帶有N-苯基咔唑基團之二胺單體N-(4-(3,6-di-tert-butylcarbazol-9-yl)phenyl)-3,5-diaminobenzamide和N-(4-(carbazol- 9-yl)phenyl)-3,5-diaminobenzamide,然後將它們與四種二羧酸進行磷酸化直接聚縮合反應而製得兩系列側鏈含咔唑基團之聚醯胺。所有的聚醯胺皆為非結晶性,並極易溶於多種極性的有機溶劑中;此外它們亦具備高的玻璃轉移溫度(Tg),因而有良好的熱安定性。這些聚醯胺在NMP的溶液(~10-5 M)螢光光譜(PL)顯示它們的最大放光強度的波長363~378 nm之間,屬於紫藍光區。所有的聚醯胺經由循環伏安法測定均會顯現可逆的氧化還原峰,薄膜顏色可從中性態的無色轉變成氧化態的藍色或綠色。咔唑基的活性位置具有tert-butyl取代基的聚醯胺展現明顯較佳的電化學穩定性及良好的電致變色特性。
在論文的第二部分,我們利用N-(4-aminophenyl)carbazole 與二羧酸或二酸酐的縮合反應製備兩系列末端含咔唑結構之雙醯胺與雙醯亞胺。兩系列末端具咔唑結構的單體經由循環伏安法在電位0.0~2.0 V之間重複掃描數圈後可在工作電極表面生成平整的高分子薄膜。這些高分子膜的循環伏安圖會在0.98~1.09 V 與1.26~1.35 V附近出現兩對可逆的氧化還原波峰,而且會伴隨明顯的電致變色現象,顏色可由無色的中性態轉變至黃色、綠色、藍色的氧化態。
第三部分探討末端含三苯胺結構之雙醯胺及雙醯亞胺單體的合成與電化學,其中只有雙醯亞胺單體會進行電聚合反應在電極表面形成高分子薄膜。這些高分子膜具有可逆的氧化還原行為,半波電位約在0.96 V,且具備穩定的電致變色能力及光學穿透對比度,顏色可由無色的中性態轉變至橘色、藍色的氧化態。這些高分子薄膜做成的電致變色元件具有高的變色效率和電致變色穩定度以及快速的顏色變化。

In the first part of this thesis, two series of electroactive polyamides with pendent carbazole units were synthesized from two diamine monomers, namely N-(4-(3,6-di-tert-butylcarbazol-9-yl)phenyl)-3,5-diaminobenzamide and N-(4-(carbazol- 9-yl)phenyl)-3,5-diaminobenzamide, with four dicarboxylic acids via the phosphorylation polyamidation technique. These polyamides were amorphous with good solubility in many organic solvents and showed useful levels of thermal stability. The dilute solutions of the polyamides showed a violet-blue photoluminescence with emission maxima around 363–378 nm. They showed well-defined and reversible redox couples upon electrochemical oxidation, together with a strong color change from a colorless neutral form to blue or green oxidized forms. The polyamides with tert-butyl-substituted carbazole pendants exhibited better redox-stability and electrochromic performance as compared to the corresponding analogs without tert-butyl substituents on the active sites of the carbazole unit.
In the second part of this thesis, two series of novel carbazole-endcapped aromatic diamide and diimide monomers were synthesized from the condensation of N-(4-aminophenyl)carbazole with dicarboxylic acids and tetracarboxylic dianhydrides, respectively. Polymer thin films containing bis(N-phenylcarbazole) segments were successfully deposited onto the surface of the working electrode by repetitive cyclic voltammetry (CV) scanning of the monomers in an electrolyte solution between 0 and 2.0 V. The electrogenerated polymer films showed two reversible oxidation redox couples at 0.98~1.09 V and 1.26~1.35 V. The polymer films also revealed stable electrochromic properties, with coloration change from a colorless neutral state to yellow, green and blue oxidized forms.
The final part reports the synthesis and electrochemical properties of two series of triphenylamine (TPA)-terminated aromatic diimide and diamide derivatives from 4-aminotriphenylamine with tetracarboxylic dianhydrides and dicarboxylic acids, respectively. The imide ring-containing compounds can be electropolymerized into polymer films on the electrode surface in an electrolyte solution via the coupling reactions between TPA radical cations. The elecrtrochemically generated films showed a reversible oxidation redox couple with a half-wave potential (E1/2) of 0.96 V on their cyclic voltammograms. They exhibited stable electrochromic properties, with coloration change from a colorless neutral state to orange as a radical cation and blue when fully oxidized. In contrast, electro-oxidation of the diamide analogs produced stable TPA radical cations that did not undergo electropolymerization reactions.

摘 要 i
ABSTRACT iii
ACKNOWLEDGEMENTS v
CONTENTS vi
LIST OF SCHEMES x
LIST OF TABLES xi
LIST OF FIGURES xii

Part I Synthesis and Optoelectronic Properties of Aromatic Polyamides with Pendent Redox-active Carbazole Units 1
ABSTRACT 2
CHAPTER 1 INTRODUCTION 3
CHAPTER 2 EXPERIMENTAL 5
2.1 Materials 5
2.2 Monomer Synthesis 6
2.2.1 N-[4-(3,6-Di-tert-butylcarbazol-9-yl)phenyl]- 3,5-dinitrobenzamide (2) 6
2.2.2 N-[4-(3,6-Di-tert-butylcarbazol-9-yl)phenyl]- 3,5-diaminobenzamide (3) 7
2.3 Polymer Synthesis 8
2.4 Preparation of the Polyamide Films 8
2.5 Measurements 9
CHAPTER 3 RESULTS AND DISCUSSION 11
3.1 Monomer Synthesis 11
3.2 Polymer Synthesis 18
3.3 Polymer Properties 22
3.3.1 Basic Characterization 22
3.3.2 Thermal Properties 24
3.3.3 Optical Properties 26
3.3.4 Electrochemical Properties 28
3.3.5 Spectroelectrochemical and Electrochromic Properties 33
CHAPTER 4 CONCLUSION 35
REFERENCES 36

Part II Synthesis and Electrochromic Properties of Poly(amine-amide)s and Poly(amine-imide)s Obtained from the Electropolymerization of Diamide-dicarbazoles and Diimide-dicarbazoles 39
ABSTRACT 40
CHAPTER 1 INTRODUCTION 41
CHAPTER 2 EXPERIMENTAL 43
2.1 Materials and Instrumentation 43
2.1.1 Materials 43
2.1.2 Instrumentation 44
2.2 Monomer Synthesis 44
2.2.1 Cz6F-DA 44
2.2.2 Cz6F-DI 45
2.3 Electrochemical Polymerization 46
2.4 Fabrication of the Electrochromic Devices 47
CHAPTER 3 RESULTS AND DISCUSSION 48
3.1 Monomer Synthesis 48
3.2 Electrochemical Polymerization 52
3.3 Optical Properties 54
3.4 Electrochemical Properties of the Polymer Films 54
3.5 Spectroelectrochemical Properties 59
3.6 Electrochromic Devices 61
CHAPTER 4 CONCLUSION 63
REFERENCES 64

Part III Electrosynthesis and Properties of Novel Electroactive Polymers from the Diamide or Diimide Derivatives with Terminal Triphenylamino Groups 69
ABSTRACT 70
CHAPTER 1 INTRODUCTION 71
CHAPTER 2 EXPERIMENTAL 73
2.1 Materials and Instrumentation 73
2.1.1 Materials 73
2.1.2 Instrumentation 74
2.2 Monomer Synthesis 74
2.2.1 TPASO2-DI 74
2.2.2 TPASO2-DA 75
2.3 Electrochemical Polymerization 76
2.4 Fabrication of the Electrochromic Devices 76
CHAPTER 3 RESULTS AND DISCUSSION 77
3.1 Monomer Synthesis 77
3.2 Electrochemical Polymerization 82
3.3 Optical Properties 84
3.4 Electrochemical Properties of the Polymer Films 84
3.5 Spectroelectrochemical Properties 89
3.6 Electrochromic Device of TPASO2-PI 93
CHAPTER 4 CONCLUSION 95
REFERENCES 96

PART I
1.P. M. S. Monk, R. J. Mortimer, D. R. Rosseinsky, Electrochromism and Electrochromic Devices, Cambridge University Press, Cambridge, UK, 2007.
2.(a) R. D. Rauh, Electrochromic windows: an overview. Electrochim. Acta 1999, 44, 3165-3176. (b) R. Baetens, B. P. Jelle, A. Gustavsen, Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review. Sol. Energy Mater. Sol. Cells 2010, 94, 87-105.
3.http://www.gentex.com/ and associated pages.
4.G. Sonmez, H. B. Sonmez, Polymeric electrochromics for data storage. J. Mater. Chem. 2006, 16, 2473-2477.
5.(a) R. J. Mortimer, A. L. Dyer, J. R. Reynolds, Electrochromic organic and polymeric materials for display applications. Displays 2006, 27, 2-18. (b) P. M. Beaujuge, S. Ellinger, J. R. Reynolds, The donor–acceptor approach allows a black-to-transmissive switching polymeric electrochrome. Nat. Mater. 2008, 7, 795-799.
6.S. Beaupre, A.-C. Breton, J. Dumas, M. Leclerc, Multicolored electrochromic cells based on poly(2,7-carbazole) derivatives for adaptive camouflage. Chem. Mater. 2009, 21, 1504-1513.
7.Reviews: (a) R. J. Mortimer, Electrochromic materials. Chem. Soc. Rev. 1997, 26, 147-156. (b) D. R. Rosseinsky, R. J. Mortimer, Electrochromic systems and the prospects for devices. Adv. Mater. 2001, 13, 783-793. (c) P. R. Somani, S. Radhakrishnan, Electrochromic materials and devices: present and future. Mater. Chem. Phys. 2002, 77, 117-133.
8.P. M. Beaujuge, J. R. Reynolds, Color control in π-conjugated organic polymers for use in electrochromic devices. Chem. Rev. 2010, 110, 268-320.
9.(a) L. Groenendaal, G. Zotti, P.-H. Aubert, S. M. Waybright, J. R. Reynolds, Electrochemistry of poly(3,4-alkylenedixythiophene) derivatives. Adv. Mater. 2003, 15, 855-879. (b) J. Roncali, P. Blanchard, P. Frere, 3,4-Ethylenedioxythiophene (EDOT) as a versatile builing block for advanced functional π-conjugated systems. J. Mater. Chem. 2005, 15, 1589-1610.
10.(a) M. A. Invernale, Y. Ding, D. M. D. Mamangun, M. S. Yavuz, G. A. Sotzing, Preparation of conjugated polymers inside assembled solid-state devices. Adv. Mater. 2010, 22, 1379-1382. (b) P. M. Beaujuge, C. M. Amb, J. R. Reynolds, A side-chain defunctionalization approach yields a polymer electrochrome spray-processable from water. Adv. Mater. 2010, 22, 5383-5387. (c) C. M. Amb, A. L. Dyer, J. R. Reynolds, Navigating the color platte of solution-processable electrochromic polymers. Chem. Mater. 2011, 23, 397-415. (d) A. Balan, D. Baran, L. Toppare, Benzotriazole containing conjugated polymers for multipurpose organic electrochromic applications. Polym. Chem. 2011, 2, 1029-1043. (e) M. I. Ozkut, S. Atak, A. M. Onal, A. Cihaner, A blue to highly transmissive soluble electrochromic polymer based on poly(3,4-propylenedioxyselenophene) with a high stability and coloration efficiency. J. Mater. Chem. 2011, 21, 5268-5272. (f) F. B. Koyuncu, E. Sefer, S. Koyuncu, E. Ozdemir, The new branched multielectrochromic materials: enhancing the electrochromic performance via longer side alkyl chain. Macromolecules 2011, 44, 8407-8414. (g) H.-J. Yen, G.-S. Liou, Solution-processable triarylamine-based electroactive high performance polymers for anodically electrochromic applications. Polym Chem 2012, 3, 255-264.
11.J. P. Chen, A. Natansohn, Synthesis and characterization of novel carbazole-containing soluble polyimides. Macromolecules 1999, 32, 3171-3177.
12.(a) J. V. Grazulevicius, P. Strohriegl, J. Pielichowski, K. Pielichowski, Carbazole-containing polymers: synthesis, properties and applications. Prog. Polym. Sci. 2003, 28, 1297-1353. (b) F. Liang, T. Kurata, H. Nishide, J. Kido, Synthesis and electrochemical and electroluminescent properties of N-phenylcarbazole-substituted poly(p-phenylenevinylene). J. Polym. Sci. Part A: Polym. Chem. 2005, 43, 5765-5773. (c) J.-F. Morin, M. Leclerc, D. Ades, A. Siove, Polycarbazoles: 25 years of progress. Macromol. Rapid Commun. 2005, 26, 761-778. (d) P.-L. T. Boudreault, S. Beaupre, M. Leclerc, Polycarbazoles for plastic electronics. Polym. Chem. 2010, 1, 127-136. (e) C.-C. Lee, M.-k. Leung, P.-Y. Lee, T.-L. Chiu, J.-H. Lee, C. Liu, P.-T. Chou, Synthesis and properties of oxygen-linked N-phenylcarbazole dendrimers. Macromolecules 2012, 45, 751-765.
13.(a) G.-S. Liou, S.-H. Hsiao, H.-W. Chen, Novel high-Tg poly(amine-imide)s bearing pendent N-phenylcarbazole units: synthesis and photophysical, electrochemical and electrochromic properties. J. Mater. Chem. 2006, 16, 1831-1842. (b) G.-S. Liou, H.-W. Chen, H.-J. Yen, Synthesis and photoluminescent and electrochromic properties of aromatic poly(amine amide)s bearing pendent N-carbazolylphenyl moieties. J. Polym. Sci. Part A: Polym. Chem. 2006, 44, 4108-4121. (c) G.-S. Liou, S.-H. Hsiao, N.-K. Huang, Y.-L Yang, Synthesis, photophysical, and electrochromic characterization of wholly aromatic polyamides blue-light-emitting materials. Macromolecules 2006, 39, 5337-5346.
14.H.-M. Wang, S.-H. Hsiao, G.-S. Liou, C.-H. Sun, Synthesis, photoluminescence, and electrochromism of polyamides containing (3,6-di-tert-butylcarbazol-9-yl)triphenylamine units. J. Polym. Sci. Part A: Polym. Chem. 2010, 48, 4775-4789.
15.M. Ghaemy, R. Alizadeh, H. Behmadi, Synthesis of soluble and thermally stable polyimide from new diamine bearing N-[4-(9H-carbazol-9-yl)phenyl]formamide pendent group. Eur. Polym. J. 2009, 45, 3108-3115.
16.N. Yamazaki, M. Matsumoto, F. Higashi, Studies on reactions of the N-phosphonium salts of pyridines. XIV. Wholly aromatic polyamides by the direct polycondensation reaction by using phosphites in the presence of metal salts. J. Polym. Sci. Polym. Chem. Ed. 1975, 13, 1375-1380.
17.J. F. Ambrose, R. F. Nelson, Anodic oxidation pathways of carbazoles I. Carbazole and N-substituted derivatives. J. Electrochem. Soc. 1968, 115, 1159-1164.

PART II
1.P. M. S. Monk, R. J. Mortimer, D. R. Rosseinsky, Electrochromism and Electrochromic Devices, Cambridge University Press, Cambridge, UK, 2007.
2.(a) D. R. Rosseinsky, R. J. Montimer, Electrochromic systems and the prospects for devices. Adv. Mater. 2001, 13, 783–793. (b) A. Michaelis, H. Berneth, D. Haarer, S. Kostromine, R. Neigl, R. Schmidt, Electrochromic dye system for smart window applications. Adv. Mater. 2001, 13, 1825–1828. (c) H. W. Heuer, R. Wehrmann, S. Kirchmeyer, Electrochromic window based on conducting poly(3,4-ethylenedioxythiophene)–poly(styrene sulfonate). Adv. Funct. Mater. 2002, 12, 89–94. (d) G. Sonmez, H. B. Sonmez, Polymeric electrochromics for data storage. J. Mater. Chem. 2006, 16, 2473–2477. (e) P. Anderson, R. Forchheimer, P. Tehrani, M. Berggren, Printable All-Organic Electrochromic Active-Matrix Displays. Adv. Funct. Mater. 2007, 17, 3074–3082. (f) R. Baetens, B. P. Jelle, A. Gustavsen, Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review. Sol. Energy Mater. Sol. Cells 2010, 94, 87–105. (g) S. Beaupre, A.-C. Breton, J. Dumas, M. Leclerc, Multicolored Electrochromic Cells Based On Poly(2,7-Carbazole) Derivatives For Adaptive Camouflage. Chem. Mater. 2009, 21, 1504–1513.
3.(a) R. J. Mortimer, Electrochromic materials. Chem. Soc. Rev. 1997, 26, 147-156. (b) R. J. Mortimer, Organic electrochromic materials. Electrochim. Acta 1999, 44, 2971–2981. (c) N. M. Rowley, R. J. Mortimer, New electrochromic materials. Sci. Prog. 2002, 85, 243–262. (d) R. J. Mortimer, A. L. Dyer, J. R. Reynolds, Electrochromic organic and polymeric materials for display applications. Displays 2006, 27, 2–18.
4.(a) S.-H. Baeck, K.-S. Choi, T. F. Jaramillo, G. D. Stucky, E. W. McFarland, Enhancement of photocatalytic and electrochromic properties of electrochemically fabricated mesoporous WO3 thin films. Adv. Mater. 2003, 15, 1269–1273. (b) S.-H. Lee, R. Deshpande, P. A. Parilla, K. M. Jones, B. To, H. Mahan, A. C. Dillon, Crystalline WO3 nanoparticles for highly improved electrochromic applications. Adv. Mater. 2006, 18, 763–766. (c) G. A. Niklasson, C. G. Granqvist, Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these. J. Mater. Chem. 2007, 17, 127–156.
5.(a) G. Sonmez, Polymeric electrochromics. Chem. Commun. 2005, 5251–5259. (b) P. M. Beaujuge, J. R. Reynolds, Color control in π-conjugated organic polymers for use in electrochromic devices. Chem. Rev. 2010, 110, 268–320. (c) A. Patra, M. Bendikov, Polyselenophenes. J. Mater. Chem. 2010, 20, 422–433.
6.(a) D. M. Welsh, A. Kumar, M. C. Morvant, J. R. Reynolds, Fast electrochromic polymers based on new poly(3,4-alkylenedioxythiophene) derivatives. Synth. Met. 1999, 102, 967–968. (b) L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, J. R. Reynolds, Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future. Adv. Mater. 2000, 12, 481–494. (c) L. Groenendaal, G. Zotti, P.-H. Aubert, S. M. Waybright, J. R. Reynolds, Electrochemistry of poly(3,4-alkylenedioxythiophene) derivatives. Adv. Mater. 2003, 15, 855–879. (d) A. A. Argun, P.-H. Aubert, B. C. Thompson, I. Schwendeman, C. L. Gaupp, J. Hwang, N. J. Pinto, D. B. Tanner, A. G. MacDiarmid, J. R. Reynolds, Multicolored electrochromism in polymers: structures and devices. Chem. Mater. 2004, 16, 4401–4412.
7.(a) P. Schottland, K. Zong, C. L. Gaupp, B. C. Thompson, C. A. Thomas, I. Giurgiu, R. Hickman, K. A. Abboud, J. R. Reynolds, Poly(3,4-alkylenedioxypyrrole)s: highly stable electronically conducting and electrochromic polymers. Macromolecules 2000, 33, 7051–7061. (b) K. Zong, J. R. Reynolds, 3,4-Alkylenedioxypyrroles: functionalized derivatives as monomers for new electron-rich conducting and electroactive polymers. J. Org. Chem. 2001, 66, 6873–6882. (c) G. Sonmez, I. Schwendeman, P. Schottland, K. Zong, J. R. Reynolds, N-Substituted poly(3,4-propylenedioxypyrrole)s: high gap and low redox potential switching electroactive and electrochromic polymers. Macromolecules 2003, 36, 639–647. (d) R. M. Walczak, J. R. Reynolds, Poly(3,4-alkylenedioxypyrroles): the PXDOPs as versatile yet underutilized electroactive and conducting polymers. Adv. Mater. 2006, 18, 1121–1131. (e) R. M. Walczak, J.-H. Jung, J. Cowart, Jr. S., J. R. Reynolds, 3,4-Alkylenedioxypyrrole-based conjugated polymers with finely tuned electronic and optical properties via a flexible and efficient N-functionalization method. Macromolecules 2007, 40, 7777–7785.
8.(a) C.-G. Wu, M.-I. Lu, S.-J. Chang, C.-S. Wei, A solution-processable high-coloration-efficiency low-switching-voltage electrochromic polymer based on polycyclopentadithiophene. Adv. Funct. Mater. 2007, 17, 1063–1070. (b) A. Durmus, G. E. Gunbas, L. Toppare, New, highly stable electrochromic polymers from 3,4-ethylenedioxythiophene-bis-substituted quinoxalines toward green polymeric materials. Chem. Mater. 2007, 19, 6247–6251. (c) G. E. Gunbas, A. Durmas, L. Toppare, Could green be greener? novel donor–acceptor-type electrochromic polymers: towards excellent neutral green materials with exceptional transmissive oxidized states for completion of RGB color space. Adv. Mater. 2008, 20, 691–695. (d) G. E. Gunbas, A. Durmus, L. Toppare, A unique processable green polymer with a transmissive oxidized state for realization of potential RGB-based electrochromic device applications. Adv. Funct. Mater. 2008, 18, 2026–2030. (e) A. Balan, G. Gunas, A. Durmus, L. Toppare, Enabling thermoreversible physically cross-linked polymerized colloidal array photonic crystals. Chem. Mater. 2008, 20, 7510–7513. (f) A. Balan, D. Baran, L. Toppare, Benzotriazole containing conjugated polymers for multipurpose organic electronic applications. Polym. Chem. 2011, 2, 1029-1043. (g) A. Cihaner, F. Algi, A novel neutral state green polymeric electrochromic with superior n- and p-doping processes: closer to red-blue-green (RGB) display realization. Adv. Funct. Mater. 2008, 18, 3583–3589. (h) M. Icli, M. Pamuk, F. Algi, A. M. Onal, A. Cihaner, Donor−acceptor polymer electrochromes with tunable colors and performance. Chem. Mater. 2010, 22, 4034–4044. (i) M. I. Ozkut, S. Atak, A. M. Onal, A. Cihaner, A blue to highly transmissive soluble electrochromic polymer based on poly(3,4-propylenedioxyselenophene) with a high stability and coloration efficiency. J. Mater. Chem. 2011, 21, 5268-5272. (k) S. Koyuncu, M. Kus, S. Demic, I. Kaya, E. Ozdemir, S. Icli, Electrochemical and optical properties of novel donor-acceptor thiophene-perylene-thiophene polymers. J. Polym. Sci. Part A: Polym. Chem. 2008, 46, 1974–1989. (l) O. D. Is, F. Baycan Koyuncu, S. Koyuncu, E. Ozdemir, A new imine coupled pyrrole–carbazole–pyrrole polymer: Electro-optical properties and electrochromism. Polymer 2010, 51, 1663–1669. (m) F. Baycan Koyuncu, E. Sefer, S. Koyuncu, E. Ozdemir, The new branched multielectrochromic materials: enhancing the electrochromic performance via longer side alkyl chain. Macromolecules 2011, 44, 8407-8414.
9.(a) J. V. Grazulevicius, P. Strohriegl, J. Pielichowski, K. Pielichowski, Carbazole-containing polymers: synthesis, properties and applications. Prog. Polym. Sci. 2003, 28, 1297-1353. (b) F. Liang, T. Kurata, H. Nishide, J. Kido, Synthesis and electrochemical and electroluminescent properties of N-phenylcarbazole-substituted poly(p-phenylenevinylene) J. Polym. Sci. Part A: Polym. Chem. 2005, 43, 5765-5773. (c) J.-F. Morin, M. Leclerc, D. Ades, A. Siove, Polycarbazoles: 25 years of progress. Macromol. Rapid Commun. 2005, 26, 761-778. (d) P.-L. T. Boudreault, S. Beaupre, M. Leclerc, Polycarbazoles for plastic electronics. Polym. Chem. 2010, 1, 127-136. (e) C.-C. Lee, M.-k. Leung, P.-Y. Lee, T.-L. Chiu, J.-H. Lee, C. Liu, P.-T. Chou, Synthesis and properties of oxygen-linked N-phenylcarbazole dendrimers. Macromolecules 2012, 45, 751-765.
10.H.-J. Yen, G.-S. Liou, Solution-processable triarylamine-based electroactive high performance polymers for anodically electrochromic applications. Polym. Chem. 2012, 3, 255-264.
11.J. F. Ambrose, R. F. Nelson, Anodic oxidation pathways of carbazoles I. Carbazole and N-substituted derivatives. J. Electrochem. Soc. 1968, 115, 1159-1164.
12.(a) J. Natera, L. Otero, F. D’Eramo, L. Sereno, F. Fungo, N.-S. Wang, Y.-M. Tsai, K.-T. Wong, Synthesis and properties of a novel cross-linked electroactive polymer formed from a bipolar starburst monomer. Macromolecules 2009, 42, 626-635. (b) S. Koyuncu, B. Gultekin, C. Zafer, H. Bilgili, M. Can, S. Demic, I. Kaya, S. Icli, Electrochemical and optical properties of biphenyl bridged-dicarbazole oligomer films: Electropolymerization and electrochromism. Electrochim. Acta 2009, 54, 5694-5702. (c) B. Wang, J. Zhao, R. Liu, J. Liu, Q. He, Electrosyntheses, characterizations and electrochromic properties of a copolymer based on 4,4′-di(N-carbazoyl)biphenyl and 2,2′-bithiophene. Sol. Energy Mater. Sol. Cells 2011, 95, 1867-1874. (d) C. Xu, J. Zhao, M. Wang, Z. Wang, C. Cui, Y. Kong, X. Zhang, Electrosynthesis and characterization of a neutrally colorless electrochromic material from poly(1,3-bis(9H-carbazol-9-yl)benzene) and its application in electrochromic devices. Electrochim. Acta 2012, 75, 28-34.
13.G.-S. Liou, S.-H. Hsiao, H.-W. Chen, Novel high-Tg poly(amine-imide)s bearing pendent N-phenylcarbazole units: synthesis and photophysical, electrochemical and electrochromic properties. J. Mater. Chem. 2006, 16, 1831-1842.
14.C. Lambert, G. Noll, The class II/III transition in triarylamine redox systems. J. Am. Chem. Soc. 1999, 121, 8434-8442.

PART III
1.P. M. S. Monk, R. J. Mortimer and D. R. Rosseinsky, Electrochromism and Electrochromic Devices, Cambridge University Press, Cambridge, UK, 2007.
2.(a) A. Michaelis, H. Berneth, D. Haarer, S. Kostromine, R. Neigl, R. Schmidt, Electrochromic dye system for smart window applications. Adv. Mater. 2001, 13, 1825–1828. (b) H. W. Heuer, R. Wehrmann, S. Kirchmeyer, Electrochromic window based on conducting poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate). Adv. Funct. Mater. 2002, 12, 89–94. (c) G. Sonmez, H. B. Sonmez, Polymeric electrochromics for data storage. J. Mater. Chem. 2006, 16, 2473-2477. (d) R. J. Mortimer, A. L. Dyer, J. R. Reynolds, Electrochromic organic and polymeric materials for display applications. Displays 2006, 27, 2-18. (e) P. Anderson, R. Forchheimer, P. Tehrani, M. Berggren, Printable all-organic electrochromic active-matrix displays. Adv. Funct. Mater. 2007, 17, 3074–3082. (f) G. A. Niklasson, C. G. Granqvist, Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these. J. Mater. Chem. 2007, 17, 127-156. (g) S. Beaupre, A.-C. Breton, J. Dumas, M. Leclerc, Multicolored electrochromic cells based on poly(2,7-carbazole) derivatives for adaptive camouflage. Chem. Mater. 2009, 21, 1504-1513. (h) R. Baetens, B. P. Jelle, A. Gustavsen, Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: a state-of-the-art review. Sol. Energy Mater. Sol. Cells 2010, 94, 87–105.
3.(a) R. J. Mortimer, Electrochromic materials. Chem. Soc. Rev. 1997, 26, 147-156. (b) D. R. Rosseinsky, R. J. Mortimer, Electrochromic systems and the prospects for devices. Adv. Mater. 2001, 13, 783-793. (c) P. R. Somani, S. Radhakrishnan, Electrochromic materials and devices: present and future. Mater. Chem. Phys. 2002, 77, 117-133. (d) D. T. Gillaspie, R. C. Tenent, A. C. Dillon, Metal-oxide films for electrochromic applications: present technology and future directions. J. Mater. Chem. 2010, 20, 9585-9592.
4.(a) P. M. Beaujuge, J. R. Reynolds, Color control in π-conjugated organic polymers for use in electrochromic devices. Chem. Rev. 2010, 110, 268-320. (b) P. M. Beaujuge, C. M. Amb, J. R. Reynolds, Spectral engineering in π-conjugated polymers with intramolecular donor-acceptor interactions. Acc. Chem. Res. 2010, 43, 1395-1407. (c) C. M. Amb, A. L. Dyer, J. R. Reynolds, Navigating the color palette of solution-processable electrochromic polymers. Chem. Mater. 2011, 23, 397-415.
5.(a) M. Thelakkat, Star-shaped, dendrimeric and polymeric triarylamines as photoconductors and hole transport materials for electro-optical applications. Macromol. Mater. Eng. 2002, 287, 442-461. (b) Y. Shirota, H. Kageyama, Charge carrier transporting molecular materials and their applications in devices. Chem. Rev. 2007, 107, 953-1010.
6.(a) S.-H. Cheng, S.-H. Hsiao, T.-H. Su, G.-S. Liou, Novel aromatic poly(amine-imide)s bearing a pendent triphenylamine group: synthesis, thermal, photophysical, electrochemical, and electrochromic characteristics. Macromolecules 2005, 38, 307-316. (b) S.-H. Hsiao, Y.-M. Chang, H.-W. Chen, G.-S. Liou, Novel aromatic polyamides and polyimides functionalized with 4-tert-butyltriphenylamine groups. J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 4579-4592. (c) C.-W. Chang, G.-S. Liou, S.-H. Hsiao, Highly stable anodic green electrochromic aromatic polyamides: synthesis and electrochromic properties. J. Mater. Chem. 2007, 17, 1007-1015. (d) S.-H. Hsiao, G.-S. Liou, Y.-C. Kung, H.-J. Yen, High contrast ratio and rapid switching electrochromic polymeric films based on 4-(dimethylamino)triphenylamine-functionalized aromatic polyamides. Macromolecules 2008, 41, 2800-2808; (e) Y.-C. Kung, G.-S. Liou, S.-H. Hsiao, Synthesis and characterization of novel electroactive polyamides and polyimides with bulky 4-(1-adamantoxy)triphenylamine moieties. J. Polym. Sci. Part A: Polym. Chem. 2009, 47, 1740-1755. (f) H.-M. Wang, S.-H. Hsiao, G.-S. Liou, C.-H. Sun, Synthesis, photoluminescene, and electrochromism of polyamides containing (3,6-di-tert-butylcarbazol-9-yl)triphenylamine units, J. Polym. Sci. Part A: Polym. Chem. 2010, 48, 4775-4789. (g) Y.-C. Kung, S.-H. Hsiao, Fluorescent and electrochromic polyamides with pyrenylamine chromophores. J. Mater. Chem. 2010, 20, 5481-5492. (h) Y.-C. Kung, S.-H. Hsiao, Solution-processable, high-Tg, ambipolar polyimide electrochromics bearing pyrenylamine units. J. Mater. Chem. 2011, 21, 1746-1754. (i) H.-M. Wang, S.-H. Hsiao, Enhanced redox stability and electrochromic properties of aromatic polyamides based on N,N-bis(4-carboxyphenyl)-N’,N’-bis(4-tert-butylphenyl)-1,4-phenylenediamine. J. Polym. Sci. Part A: Polym. Chem. 2011, 49, 337-351. (j) H.-J. Yen, H.-Y. Lin, G.-S. Liou, Novel starburst triarylamine-containing electroactive aramids with highly stable electrochroism in near-infrared and visible light regions. Chem. Mater. 2011, 23, 1874-1882. (k) H.-J. Yen, H.-Y. Lin, G.-S. Liou, Transmissive to black electrochromic aramids with high near-infrared and multicolor electrochromism based on electroactive tetraphenylbenzidine units. J. Mater. Chem. 2011, 21, 6230-6237. (l) H.-J. Yen, G.-S. Liou, Solution-processable triarylamine-based electroactive high performance polymers for anodically electrochromic applications. Polym Chem 2012, 3, 255-264.
7.(a) E. T. Seo, R. F. Nelson, J. M. Fritsch, L. S. Marcoux, D. W. Leedy, R. N. Adams, Anodic oxidation pathways of aromatic amines. Electrochemical and electron paramagnetic resonance studies. J. Am. Chem. Soc. 1966, 88, 3498-3503. (b) R. R. Nelson, R. N. Adams, Anodic oxidation pathways of substituted triphenylamines. II. Quantitative studies of benzidine formation. J. Am. Chem. Soc. 1968, 90, 3925-3930. (c) S. C. Creason, J. Wheeler, R. F. Nelson, Electrochemical and spectroscopic studies of cation radicals. I. Coupling rates of 4-substituted triphenylaminium ions. J. Org. Chem. 1972, 37, 4440-4446.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊