跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/08/03 06:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱郁婷
研究生(外文):Yu-Ting Chiu
論文名稱:含三蝶烯結構之聚(醯胺-醯亞胺)及 聚(醯胺-三芳香胺)的合成與性質研究
論文名稱(外文):Synthesis and Properties of Triptycene-containing Poly(amide-imide)s and Poly(amide- triarylamine)s
指導教授:蕭勝輝郭文正郭文正引用關係
指導教授(外文):Sheng-Huei HsiaoWen-Jeng Guo
口試委員:李文福劉貴生
口試委員(外文):Wen-Fu LeeGuey-Sheng Liou
口試日期:2012-07-31
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:76
中文關鍵詞:三蝶烯聚醯胺醯亞胺熱性質溶解度電聚合電致變色電化學光譜電化學
外文關鍵詞:triptycenepoly(amide-imide)sthermal propertiessolubilityelectropolymerizationelectrochromismelectrochemistryspectroelectrochemistry
相關次數:
  • 被引用被引用:0
  • 點閱點閱:144
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
具有三蝶烯結構之二胺化合物1,4-bis(4-aminophenoxy)triptycene與苯偏三酸酐(trimellitic anhydride)進行縮合反應製成為一具有兩個醯亞胺環的二羧酸單體1,4-bis(4-trimellitimidophenoxy)triptycene。一系列含三蝶烯之聚醯胺醯亞胺[poly(amide-imide)s; PAIs]是由此二醯亞胺二羧酸單體與數種芳香族二胺進行Yamazaki磷酸化聚縮合反應而製得。此系列PAIs之固有黏度值介於0.38-0.61 dL/g之間,大部分的PAIs可溶於多種常見的有機溶劑中並可鑄成強軔的薄膜。這些PAIs的玻璃轉移溫度(Tg)約在274-305℃之間,在氮氣環境下加熱到500℃ 時仍不會產生明顯的熱分解,顯示它們具有優良的熱穩定性。若與不含三蝶烯結構的PAI相比,此系列PAIs展現較佳的溶解度,低的結晶性以及較好的可成膜性。
此外,含三蝶烯結構之二胺化合物1,4-bis(4-aminophenoxy)triptycene與二羧酸化合物1,4-bis(4-carboxyphenoxy)triptycene 分別與具有三苯胺 (triphenylamine; TPA) 或咔唑 (carbazole) 基團的單羧酸及單胺化合物縮合成分子中央具有三蝶烯結構及尾端具有三苯胺或咔唑基團的二醯胺化合物,這些二醯胺化合物的電化學及電聚合反應將在本論文中加以探討。藉由電聚合反應在ITO導電玻璃表面上生成的聚(醯胺-三芳香胺)[poly(amide-triarylamine)s]薄膜具有可逆的電化學氧化還原反應及明顯的電致變色現象,我們並以光譜電化學及多次開關測試探討電聚合薄膜的電致變色特性。


First, a diimide-diacid monomer bearing the triptycene unit, namely 1,4-bis(4-trimellitimidophenoxy)triptycene, was synthesized from the condensation reaction of 1,4-bis(4-aminophenoxy)triptycene and two equivalent amount of trimellitic anhydride. A series of new poly(amide-imide)s (PAIs) with triptycene units in the main chain were prepared by the phosphorylation polyamidation reactions from the diimide-diacid monomer with several aromatic diamines including commercially available diamines and 1,4-bis(4-aminophenoxy)triptycene. All the resulting PAIs were readily soluble in many organic solvents and could be solution-cast into tough and flexible polymer films. These PAIs exhibited glass-transition temperatures (Tgs) in the range of 274-305 °C, and they did not show significant weight-loss before 500 oC. In comparison with the structurally similar PAIs without the triptycene unit, the present PAIs exhibited higher solubility, lower crystallization tendency, and better film formability.
In addition, four diamide derivatives featuring a triptycene as an interior core and terminal electroactive triphenylamine (TPA) or carbazole groups were prepared by the condensation reactions from 1,4-bis(4-aminophenoxy)triptycene with 4-carboxytriphenylamine and N-(4-carboxyphenyl)carbazole, respectively, and from 1,4-bis(4-carboxyphenoxy)triptycene with 4-aminotriphenylamine and N-(4-aminophenyl)carbazole, respectively. The electrochemistry and electropolymerization of these diamide derivatives were investigated. The electrogenerated poly(amide-triarylamine) films exhibited reversible electrochemical oxidation processes and strong color changes upon electro-oxidation, which can be switched by potential modulation. The electrochromic properties of the films were evaluated by the spectroelectrochemical and electrochromic switching studies.


摘要 i
ABSTRACT iii
ACKNOWLEDGEMENTS v
TABLE OF CONTENTS vi
LIST OF SCHEMES viii
LIST OF TABLES ix
LIST OF FIGURES x

Part I
ABSTRACT 2
CHAPTER 1 INTRODUCTION 3
CHAPTER 2 EXPERIMENTAL 6
2.1 Materials 6
2.2 Monomer Synthesis 7
2.2.1 1,4-dihydroxytriptycene (1) 7
2.2.2 1,4-Bis(4-nitrophenoxy)triptycene (2) 7
2.2.3 1,4-Bis(4-aminophenoxy)triptycene (3) 8
2.2.4 1,4-Bis(4-trimellitimidophenoxy)triptycene (4) 8
2.3 Synthesis of PAIs 9
2.4 Preparation of the PAI Films 10
2.5 Measurements 10
CHAPTER 3 RESULTS AND DISCUSSION 12
3.1 Monomer Synthesis 12
3.2 Polymer Synthesis 17
3.3 Organo-solubility and Film Properties 21
3.4 Thermal Properties 24
3.5 Optical and Colorimetric Properties 29
3.6 Tensile Properties 30
CHPTER 4 CONCLUSIONS 31
REFERENCES 32

Part II
ABSTRACT 37
CHAPTER 1 INTRODUCTION 38
CHAPTER 2 EXPERIMENTAL 40
2.1 Materials 40
2.2 Monomer Synthesis 41
2.2.1 T-TPA-C 41
2.2.2 T-CBZ-C 42
2.2.3 T-TPA-N 43
2.2.4 T-CBZ-N 43
2.3 Electrochemistry and Spectroelectrochemistry 44
2.4 Instrumentation 45
CHAPTER 3 RESULTS AND DISCUSSION 45
3.1 Monomer Synthesis 46
3.2 Electrochemical Polymerization 55
3.3 Electrochemistry 59
3.4 Spectroelectrochemistry and Elctrochromic Switching 62
CHPTER 4 CONCLUSIONS 69
REFERENCES 70


PART I

1. (a) Mittal, K. L., Polyimides: Synthesis, Characterization and Application. Plenum: New York, 1984; (b) Wilson, D.; Stenzenberger, M. D., Polyimides. Chapman & Hall: New York, 1990; (c) Sroog, C. E., Polyimides. Prog. Polym. Sci. 1991, 16 (4), 561-694.
2. (a) Tamai, S.; Yamaguchi, A.; Ohta, M., Melt processible polyimides and their chemical structures. Polymer 1996, 37 (16), 3683-3692; (b) Hsiao, S.-H.; Yu, C.-H., Aromatic poly(ether imide)s bearing isopropylidene or hexafluoroisopropylidene links in the main chain. Polym. J. 1997, 29, 944; (c) Yagci, H.; Mathias, L. J., Synthesis and characterization of aromatic polyamides and polyimides from trimethyl- and di-butylhydroquinone-based ether-linked diamines. Polymer 1998, 39 (16), 3779-3786; (d) Liaw, D.-J.; Liaw, B.-Y.; Chen, Y.-S., Synthesis and properties of new soluble poly(amide-imide)s from 3,3,5,5-tetramethyl-2,2-bis[4-(4-trimellitimidophenoxy) phenyl] propane with various diamines. Polymer 1999, 40, 4041-4047; (e) Im, J.-K.; Jung, J.-C., Synthesis and properties of polyimides derived from N-[4-(4-aminophenyloxy)phenyl]-4-aminophthalimide. Polymer 2000, 41, 8709-8716.
3. Walsh, C. J.; Mandal, B. K., A New Class of Aromatic Dianhydrides for Thermostable Polyimides. Chem. Mater. 2001, 13, 2472-2475.
4. (a) Chung, I.-S.; Kim, S.-Y., Soluble Polyimides from Unsymmetrical Diamine with Trifluoromethyl Pendent Group. Macromolecules 2000, 33, 3190-3193; (b) Hsiao, S.-H.; Lin, K.-H., Polyimides derived from novel asymmetric ether diamine. Journal of Polymer Science Part A: Polymer Chemistry 2005, 43 (2), 331-341; (c) Sonmez, G., Polymeric electrochromics. Chem. Commun. 2005, (42), 5251-9; (d) Li, Z.-X.; Lin, L.-Q.; Zhang, W.-M.; Wu, T.; Pu, J.-L., Synthesis and characterization of polyimides derived from (3-amino-2,4,6 trimethylphenyl)-(3''-aminophenyl)methanone and aromatic dianhydrides. Journal of Polymer Science Part A: Polymer Chemistry 2006, 44 (3), 1291-1298; (e) Ding, M.-X., Isomeric polyimides. Progress in Polymer Science 2007, 32(6), 623-668.
5. (a) Eastmond, G. C.; Paprotny, J., Pendent adamantyl poly(ether imide)s: synthesis and a preliminary study of properties. Eur. Polym. J. 1999, 35, 2097; (b) Myung, B.-Y. K., J.-S.; Kim, J.-J.; Yoon, T.-H., Synthesis and Characterization of Novel Polyimides with 2,2-Bis[4(4-aminophenoxy)phenyl]phthalein-3'',5''-bis(trifluoromethyl)anilide. J. Polym. Sci. Part A: Polym. Chem. 2003, 41, 3361; (c) Reddy, D. S. C., C.-H.; Shu, C.-F.; Lee, G.-H., Synthesis and characterization of soluble poly(ether imide)s based on 2,20-bis(4-aminophenoxy)-9,9''-spirobifluoren. Polymer 2003, 44, 557-563; (d) Behniafar, H.; Jafari, A., Thermally stable and organosoluble cardo binaphthylene based poly(amide imide)s and poly(ester imide)s. Journal of Applied Polymer Science 2006, 100 (4), 3203-3211; (e) Huang, S.-Y.; Yang, C.-P.; Hsiao, S.-H., Processable and colorless fluorinated poly(ether imide)s based on an isopropylidene-containing bis(ether anhydride) and various aromatic bis(ether amine)s. J. Appl. Polym. Sci. 2007, 104 (1), 620-628; (f) Zhang, Q.-Y.; Li, S.-H.; Li, W.-M.; Zhang, S.-B., Synthesis and properties of novel organosoluble polyimides derived from 1,4-bis[4-(3,4-dicarboxylphenoxy)]triptycene dianhydride and various aromatic diamines. Polymer 2007, 48 (21), 6246-6253; (g) Kute, V.; Banerjee, S., Polyimides 7: Synthesis, characterization, and properties of novel soluble semifluorinated poly(ether imide)s. J. Appl. Polym. Sci. 2007, 103 (5), 3025-3044; (h) Wang, X.-L.; Li, Y.-F.; Gong, C.-L.; Zhang, S.-J.; Ma, T., Synthesis and characterization of novel soluble pyridine-containing polyimides based on 4-phenyl-2,6-bis[4-(4-aminophenoxy)phenyl]-pyridine and various aromatic dianhydrides. Journal of Applied Polymer Science 2007, 104 (1), 212-219.
6. (a) Abade, M. J. M.; Silicon, B., Polyimides and Other High Temperature Polymers. Elsevier: New York, 1991; (b) Yang, C.-P.; Chen, R.-S.; Wang, M.-J., Synthesis and properties of organosoluble poly(amide imide imide)s based on tetraimide dicarboxylic acid condensed from 4,4''-(hexafluoroisopropylidene)diphthalic anhydride, 4,4''-oxydianiline, and trimellitic anhydride and various aromatic diamines. J. Polym. Sci., Part A: Polym. Chem. 2002, 40 (8), 1092-1102; (c) Liaw, D.-J. H., P.-N.; Chen, W.-H.; Lin, S.-L., High Glass Transitions of New Polyamides, Polyimides, and Poly(amide-imide)s Containing a Triphenylamine Group: Synthesis and Characterization. Macromolecules 2002, 35, 4669-4676; (d) Wang, Y.; Goh, S.-H.; Chung, T.-S., Miscibility study of TorlonR polyamide-imide with MatrimidR 5218 polyimide and polybenzimidazole. Polymer 2007, 48 (10), 2901-2909.
7. Yang, J. S.; Yan, J. L., Central-ring functionalization and application of the rigid, aromatic, and H-shaped pentiptycene scaffold. Chem Commun (Camb) 2008, (13), 1501-12.
8. Bartlett, P. D.; Ryan, M. J.; Cohen, S. G., Triptycene (9,10-o-Benzenoanthracene). J. Am. Chem. Soc. 1942, 64, 2649-2653.
9. (a) Wittig, G.; Ludwig, R., Triptycen aus anthracen und dehydrobenzol Angew. Chem. 1956, 68, 40; (b) Wittig, G., Triptycene. Org. Synth. 1959, 39, 75.
10. Skvarchenko, V. R.; Shalaev, V. K.; Klabunovskii, E. I., Advances in the Chemistry of Triptycene. Russ. Chem. Rev. (Engl. Transl.) 1974, 43, 951-966.
11. (a) Iwamura, H.; Mislow, K., Stereochemical Consequences of Dynamic Gearing. Acc. Chem. Res. 1988, 21, 175-182; (b) Kelly, T. R., Progress toward a Rationally Designed Molecular Motor. Acc. Chem. Res. 2001, 34, 514-522.
12. (a) Zhang, C.; Chen, C.-F., Synthesis and Structure of A Triptycene-Based Nanosized Molecular Cage. J. Org. Chem. 2007, 72, 9339-9341; (b) Hu, S.-Z.; Chen, C.-F., Triptycene-derived oxacalixarene with expanded cavity: synthesis, structure and its complexation with fullerenes C60 and C70. Chem. Commun. 2010, 46 (23), 4199-201.
13. (a) Yang, J.-S.; Lee, C.-C.; Yau, S.-L.; Chang, C.-C.; Lee, C.-C.; Leu, J.-M., Conformation and Monolayer Assembly Structure of a Pentiptycene-Derived r,ω-Alkanedithiol. J. Org. Chem. 2000, 65, 871-877; (b) Yang, J.-S.; Liu, C.-P.; Lin, B.-C.; Tu, C.-W.; Lee, G.-H., Solid-State Molecular Folding and Supramolecular Structures of Triptycene-Derived Secondary Dicarboxamides. J. Org. Chem. 2002, 67, 7343-7354.
14. (a) Yang, J.-S. S., T. M., Fluorescent Porous Polymer Films as TNT Chemosensors: Electronic and Structural Effects. J. Am. Chem. Soc. 1998, 120, 11864-11873; (b) Tsui, N. T.; Paraskos, A. J.; Torun, L.; Swager, T. M.; Thomas, E. L., Minimization of Internal Molecular Free Volume: A Mechanism for the Simultaneous Enhancement of Polymer Stiffness, Strength, and Ductility. Macromolecules 2006, 39, 3350-3358; (c) Tsui, N.-T.; Torun, L.; Pate, B. D.; Paraskos, A. J.; Swager, T. M.; Thomas, E. L., Molecular Barbed Wire: Threading and Interlocking for the Mechanical Reinforcement of Polymers. Adv. Func. Mater. 2007, 17 (10), 1595-1602; (d) Chen, Z.; Swager, T. M., Synthesis and characterization of poly(2,6-triptycene). Macromolecules 2008, 41, 6880-6885; (e) Tsui, N. T.; Yang, Y.; Mulliken, A. D.; Torun, L.; Boyce, M. C.; Swager, T. M.; Thomas, E. L., Enhancement to the rate-dependent mechanical behavior of polycarbonate by incorporation of triptycenes. Polymer 2008, 49 (21), 4703-4712; (f) Swager, T. M., Iptycenes in the Design of High Performance Polymers. Acc. Chem. Res. 2008, 41, 1181-1189.
15. Long, T. M.; Swager, T. M., Molecular design of free volume as a route to low-κ dielectric materials. J. Am. Chem. Soc. 2003, 125, 14113-14119.
16. (a) Sydlik, A.; Chen, Z.; Swager, T. M., Triptycene Polyimides: Soluble Polymers with High Thermal Stability and Low Refractive Indices. Macromolecules 2011, 44 (4), 976-980; (b) Cho, Y.-J.; Park, H.-B., High performance polyimide with high internal free volume elements. Macromol. Rapid. Commun. 2011, 32 (7), 579-86.
17. Hsiao, S.-H.; Wang, H.-M.; Chen, W.-J.; Lee, T.-M.; C.-M., L., Synthesis and Properties of Novel Triptycene-Based Polyimides. J. Polym. Sci. Part A: Polym. Chem. 2011, 49, 3109-3120.
18. Yamazaki, N.; Matsumoto, M.; Higashi, F., Studies on Reactions of the N-Phosphonium Salts of Pyridines XIV. Wholly Aromatic Polyamides by the Direct Polycondensation Reaction by Using Phosphites in the Presence of Metal salts. J. Polym. Sci. Polym. Chem. 1975, 13, 1373-1380.

PARTII

1. (a) Mittal, K. L., Polyimides: Synthesis, Characterization and Application. Plenum: New York, 1984; (b) Wilson, D.; Stenzenberger, M. D., Polyimides. Chapman & Hall: New York, 1990; (c) Sroog, C. E., Polyimides. Prog. Polym. Sci. 1991, 16 (4), 561-694.
2. (a) Tamai, S.; Yamaguchi, A.; Ohta, M., Melt processible polyimides and their chemical structures. Polymer 1996, 37 (16), 3683-3692; (b) Hsiao, S.-H.; Yu, C.-H., Aromatic poly(ether imide)s bearing isopropylidene or hexafluoroisopropylidene links in the main chain. Polym. J. 1997, 29, 944; (c) Yagci, H.; Mathias, L. J., Synthesis and characterization of aromatic polyamides and polyimides from trimethyl- and di-butylhydroquinone-based ether-linked diamines. Polymer 1998, 39 (16), 3779-3786; (d) Liaw, D.-J.; Liaw, B.-Y.; Chen, Y.-S., Synthesis and properties of new soluble poly(amide-imide)s from 3,3,5,5-tetramethyl-2,2-bis[4-(4-trimellitimidophenoxy) phenyl] propane with various diamines. Polymer 1999, 40, 4041-4047; (e) Im, J.-K.; Jung, J.-C., Synthesis and properties of polyimides derived from N-[4-(4-aminophenyloxy)phenyl]-4 aminophthalimide. Polymer 2000, 41, 8709-8716.
3. Walsh, C. J.; Mandal, B. K., A New Class of Aromatic Dianhydrides for Thermostable Polyimides. Chem. Mater. 2001, 13, 2472-2475.
4. (a) Chung, I.-S.; Kim, S.-Y., Soluble Polyimides from Unsymmetrical Diamine with Trifluoromethyl Pendent Group. Macromolecules 2000, 33, 3190-3193; (b) Hsiao, S.-H.; Lin, K.-H., Polyimides derived from novel asymmetric ether diamine. Journal of Polymer Science Part A: Polymer Chemistry 2005, 43 (2), 331-341; (c) Sonmez, G., Polymeric electrochromics. Chem. Commun. 2005, (42), 5251-9; (d) Li, Z.-X.; Lin, L.-Q.; Zhang, W.-M.; Wu, T.; Pu, J.-L., Synthesis and characterization of polyimides derived from (3-amino-2,4,6 trimethylphenyl)-(3''-aminophenyl)methanone and aromatic dianhydrides. Journal of Polymer Science Part A: Polymer Chemistry 2006, 44 (3), 1291-1298; (e) Ding, M.-X., Isomeric polyimides. Progress in Polymer Science 2007, 32(6), 623-668.
5. (a) Eastmond, G. C.; Paprotny, J., Pendent adamantyl poly(ether imide)s: synthesis and a preliminary study of properties. Eur. Polym. J. 1999, 35, 2097; (b) Myung, B.-Y. K., J.-S.; Kim, J.-J.; Yoon, T.-H., Synthesis and Characterization of Novel Polyimides with 2,2-Bis[4(4-aminophenoxy)phenyl]phthalein-3'',5''-bis(trifluoromethyl)anilide. J. Polym. Sci. Part A: Polym. Chem. 2003, 41, 3361; (c) Reddy, D. S. C., C.-H.; Shu, C.-F.; Lee, G.-H., Synthesis and characterization of soluble poly(ether imide)s based on 2,20-bis(4-aminophenoxy)-9,9''-spirobifluoren. Polymer 2003, 44, 557-563; (d) Behniafar, H.; Jafari, A., Thermally stable and organosoluble cardo binaphthylene based poly(amide imide)s and poly(ester imide)s. Journal of Applied Polymer Science 2006, 100 (4), 3203-3211; (e) Huang, S.-Y.; Yang, C.-P.; Hsiao, S.-H., Processable and colorless fluorinated poly(ether imide)s based on an isopropylidene-containing bis(ether anhydride) and various aromatic bis(ether amine)s. J. Appl. Polym. Sci. 2007, 104 (1), 620-628; (f) Zhang, Q.-Y.; Li, S.-H.; Li, W.-M.; Zhang, S.-B., Synthesis and properties of novel organosoluble polyimides derived from 1,4-bis[4-(3,4-dicarboxylphenoxy)]triptycene dianhydride and various aromatic diamines. Polymer 2007, 48 (21), 6246-6253; (g) Kute, V.; Banerjee, S., Polyimides 7: Synthesis, characterization, and properties of novel soluble semifluorinated poly(ether imide)s. Journal of Applied Polymer Science 2007, 103 (5), 3025-3044; (h) Wang, X.-L.; Li, Y.-F.; Gong, C.-L.; Zhang, S.-J.; Ma, T., Synthesis and characterization of novel soluble pyridine-containing polyimides based on 4-phenyl-2,6-bis[4-(4-aminophenoxy)phenyl]-pyridine and various aromatic dianhydrides. J. Appl. Polym. Sci. 2007, 104 (1), 212-219.
6. (a) Abade, M. J. M.; Silicon, B., Polyimides and Other High Temperature Polymers. Elsevier: New York, 1991; (b) Yang, C.-P.; Chen, R.-S.; Wang, M.-J., Synthesis and properties of organosoluble poly(amide imide imide)s based on tetraimide dicarboxylic acid condensed from 4,4''-(hexafluoroisopropylidene)diphthalic anhydride, 4,4''-oxydianiline, and trimellitic anhydride and various aromatic diamines. J. Polym. Sci., Part A: Polym. Chem. 2002, 40(8), 1092-1102; (c) Liaw, D.-J. H., P.-N.; Chen, W.-H.; Lin, S.-L., High Glass Transitions of New Polyamides, Polyimides, and Poly(amide-imide)s Containing a Triphenylamine Group: Synthesis and Characterization. Macromolecules 2002, 35, 4669-4676; (d) Wang, Y.; Goh, S.-H.; Chung, T.-S., Miscibility study of TorlonR polyamide-imide with MatrimidR 5218 polyimide and polybenzimidazole. Polymer 2007, 48 (10), 2901-2909.
7. Yang, J. S.; Yan, J. L., Central-ring functionalization and application of the rigid, aromatic, and H-shaped pentiptycene scaffold. Chem Commun (Camb) 2008,(13), 1501-12.
8. Bartlett, P. D.; Ryan, M. J.; Cohen, S. G., Triptycene (9,10-o-Benzenoanthracene). J. Am. Chem. Soc. 1942, 64, 2649-2653.
9. (a) Wittig, G.; Ludwig, R., Triptycen aus anthracen und dehydrobenzol Angew. Chem. 1956, 68, 40; (b) Wittig, G., Triptycene. Org. Synth. 1959, 39, 75.
10. Skvarchenko, V. R.; Shalaev, V. K.; Klabunovskii, E. I., Advances in the Chemistry of Triptycene. Russ. Chem. Rev. (Engl. Transl.) 1974, 43, 951-966.
11. (a) Iwamura, H.; Mislow, K., Stereochemical Consequences of Dynamic Gearing. Acc. Chem. Res. 1988, 21, 175-182; (b) Kelly, T. R., Progress toward a Rationally Designed Molecular Motor. Acc. Chem. Res. 2001, 34, 514-522.
12. (a) Zhang, C.; Chen, C.-F., Synthesis and Structure of A Triptycene-Based Nanosized Molecular Cage. J. Org. Chem. 2007, 72, 9339-9341; (b) Hu, S.-Z.; Chen, C.-F., Triptycene-derived oxacalixarene with expanded cavity: synthesis, structure and its complexation with fullerenes C60 and C70. Chem. Commun. 2010, 46 (23), 4199-201.
13. (a) Yang, J.-S.; Lee, C.-C.; Yau, S.-L.; Chang, C.-C.; Lee, C.-C.; Leu, J.-M., Conformation and Monolayer Assembly Structure of a Pentiptycene-Derived r,ω-Alkanedithiol. J. Org. Chem. 2000, 65, 871-877; (b) Yang, J.-S.; Liu, C.-P.; Lin, B.-C.; Tu, C.-W.; Lee, G.-H., Solid-State Molecular Folding and Supramolecular Structures of Triptycene-Derived Secondary Dicarboxamides. J. Org. Chem. 2002, 67, 7343-7354.
14. (a) Yang, J.-S. S., T. M., Fluorescent Porous Polymer Films as TNT Chemosensors: Electronic and Structural Effects. J. Am. Chem. Soc. 1998, 120, 11864-11873; (b) Tsui, N. T.; Paraskos, A. J.; Torun, L.; Swager, T. M.; Thomas, E. L., Minimization of Internal Molecular Free Volume: A Mechanism for the Simultaneous Enhancement of Polymer Stiffness, Strength, and Ductility. Macromolecules 2006, 39, 3350-3358; (c) Tsui, N.-T.; Torun, L.; Pate, B. D.; Paraskos, A. J.; Swager, T. M.; Thomas, E. L., Molecular Barbed Wire: Threading and Interlocking for the Mechanical Reinforcement of Polymers. Adv. Func. Mater. 2007, 17 (10), 1595-1602; (d) Chen, Z.; Swager, T. M., Synthesis and characterization of poly(2,6-triptycene). Macromolecules 2008, 41, 6880-6885; (e) Tsui, N. T.; Yang, Y.; Mulliken, A. D.; Torun, L.; Boyce, M. C.; Swager, T. M.; Thomas, E. L., Enhancement to the rate-dependent mechanical behavior of polycarbonate by incorporation of triptycenes. Polymer 2008, 49 (21), 4703-4712; (f) Swager, T. M., Iptycenes in the Design of High Performance Polymers. Acc. Chem. Res. 2008, 41, 1181-1189.
15. Long, T. M.; Swager, T. M., Molecular design of free volume as a route to low-κ dielectric materials. J. Am. Chem. Soc. 2003, 125, 14113-14119.
16. (a) Sydlik, A.; Chen, Z.; Swager, T. M., Triptycene Polyimides: Soluble Polymers with High Thermal Stability and Low Refractive Indices. Macromolecules 2011, 44(4), 976-980; (b) Cho, Y.-J.; Park, H.-B., High performance polyimide with high internal free volume elements. Macromol. Rapid. Commun. 2011, 32 (7), 579-86.
17. Hsiao, S.-H.; Wang, H.-M.; Chen, W.-J.; Lee, T.-M.; C.-M., L., Synthesis and Properties of Novel Triptycene-Based Polyimides. J. Polym. Sci. Part A: Polym. Chem. 2011, 49, 3109-3120.
18. Yamazaki, N.; Matsumoto, M.; Higashi, F., Studies on Reactions of the N-Phosphonium Salts of Pyridines XIV. Wholly Aromatic Polyamides by the Direct Polycondensation Reaction by Using Phosphites in the Presence of Metal salts. J. Polym. Sci. Polym. Chem. 1975, 13, 1373-1380.
19. (a) Grigoras, M.; Antonoaia, N.-C., Synthesis and characterization of some carbazole-based imine polymers. Eur. Polym. J. 2005, 41(5), 1079-1089; (b) Monk, P. M. S.; Mortimer, R. J.; Rosseinsky, D. R., Electrochromism and Electrochromic Devices. Cambridge University Press: Cambridge,UK, 2007.
20. (a) Michaelis, A. B., H.; Haarer, D.; Kostromine, S.; Neigl, R.; Schmidt, R., Electrochromic Dye System for Smart Window Applications. Adv. Mater. 2001, 13, 1825-1828; (b) Heuer, H. W.; Wehrmann, R.; Kirchmeyer, S., Electrochromic Window Based on Conducting Poly(3,4-ethylenedioxythiophene)-Poly(styrene sulfonate). Adv. Funct. Mater. 2002, 12, 89; (c) Niklasson, G. A.; Granqvist, C. G., Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these. Journal of Materials Chemistry 2007, 17(2), 127; (d) Baetens, R.; Jelle, B.; Gustavsen, A., Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review. Solar Energy Materials and Solar Cells 2010, 94(2), 87-105.
21. Sonmez, G.; Sonmez, H. B., Polymeric electrochromics for data storage. J. Mater. Chem. 2006, 16 (25), 2473.
22. (a) Rosseinsky, D. R.; Mortimer, R. J., Electrochromic Systems and the Prospects for Devices. Adv. Mater. 2001, 13, 783-793; (b) Sonmez, G.; Wudl, F., Completion of the three primary colours: the final step toward plastic displays. J. Mater. Chem. 2005, 15 (1), 20; (c) Mortimer, R. J.; Dyer, A. L.; Reynolds, J. R., Electrochromic organic and polymeric materials for display applications. Displays 2006, 27 (1), 2-18; (d) Andersson, P.; Forchheimer, R.; Tehrani, P.;Berggren, M., Printable All-Organic Electrochromic Active-Matrix Displays. Adv. Func. Mater. 2007, 17 (16), 3074-3082.
23. (a) Bach, U.; Corr, D.; Lupo, D.; Pichot, F.; Ryan, M., Nanomaterials-Based Electrochromics for Paper-Quality Displays. Adv. mater. 2002, 14, 845-848; (b) Kobayashi, N.; Miura, S.; Nishimura, M.; Urano, H., Organic electrochromism for a new color electronic paper. Sol. Energy Mater. Sol. Cells 2008, 92 (2), 136-139; (c) Tehrani, P.; Hennerdal, L.-O.; Dyer, A. L.; Reynolds, J. R.; Berggren, M., Improving the contrast of all-printed electrochromic polymer on paper displays. J. Mater. Chem. 2009, 19 (13), 1799.
24. Beaupre, S.; Breton, A.-C.; Dumas, J.; Leclerc, M., Multicolored Electrochromic Cells Based On Poly(2,7-Carbazole) Derivatives For Adaptive Camouflag. Chem. Mater. 2009, 21, 1504–1513.
25. Somani, P. R.; Radhakrishnan, S., Electrochromic materials and devices: present and future. Mater. Chem. Phys. 2002, 77, 117–133.
26. (a) Thompson, B. C.; Schottland, P.; Zong, K.; Reynolds, J. R., In Situ Colorimetric Analysis of Electrochromic Polymers and Devices. Chem. Mater. 2000, 12, 1563-1571; (b) Sonmez, G.; Sonmez, H. B.; Shen, C. K. F.; Jost, R. W.; Rubin, Y.; Wudl, F., A Processable Green Polymeric Electrochromic. Macromolecules 2005, 38, 669; (c) Durmus, A.; Gunbas, G. E.; Camurlu, P.; Toppare, L., A neutral state green polymer with a superior transmissive light blue oxidized state. Chem Commun (Camb) 2007, (31), 3246-8.
27. Ak, M.; Ak, M. S.; Kurtay, G.; Gullu, M.; Toppare, L., Synthesis and electropolymerization of 1,2-bis(thiophen-3-ylmethoxy)benzene and its electrochromic properties and electrochromic device application. Solid State Sciences 2010, 12(7), 1199-1204.
28. Chang, C.-C.; Her, L.-J.; Hong, J.-L., Copolymer from electropolymerization of thiophene and 3,4-ethylenedioxythiophene and its use as cathode for lithium ion battery. Electrochimica Acta 2005, 50 (22), 4461-4468.
29. Inaoka, S.; Roitman, D. B.; Advincula, R. C., Cross-Linked Polyfluorene Polymer Precursors: Electrodeposition, PLED Device Characterization, and Two-Site Co-deposition with Poly(vinylcarbazole). Chem. Mater. 2005, 17, 6781-6789.
30. (a) Hsiao, S.-H.; Liou, G.-S.; Kung, Y.-C.; Yen, H.-J., High contrast ratio and rapid switching electrochromic polymeric films based on 4-(dimethylamino)triphenylamine-functionalized aromatic polyamides. Macromolecules 2008, 41, 2800-2808; (b) Hsiao, S.-H.; Liou, G.-S.; Kung, Y.-C.; Pan, H.-Y.; Kuo, C.-H., Electroactive aromatic polyamides and polyimides with adamantylphenoxy-substituted triphenylamine units. Eur. Polym. J. 2009, 45, 2234-2248; (c) Kung, Y.-C.; Liou, G.-S.; Hsiao, S.-H., Synthesis and characterization of novel electroactive polyamides and polyimides with bulky 4-(1-adamantoxy)triphenylamine moieties. J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 1740-1755 ; (d) Wang, H.-M.; Hsiao, S.-H.; Liou, G.-S.; Sun, C.-H., Synthesis, photoluminescence, and electrochromism of polyamides containing (3,6-di-tert-butylcarbazol-9-yl)triphenylamine units. J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 4775-4789; (e) Hsiao, S.-H.; Liou, G.-S.; Kung, Y.-C.; Lee, Y.-J., Synthesis and characterization of electrochromic poly(amide–imide)s based on the diimide-diacid from 4,4''-diamino-4"-methoxytriphenylamine and trimellitic anhydride. Eur. Polym J. 2010, 46(6), 1355-1366; (f) Hsiao, S.-H.; Liou, G.-S.; Kung, Y.-C.; Chang, Y.-M., Fluorescent and electrochromic aromatic polyamides with 4-tert butyltriphenylamine chromophore. J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 2798-2809; (g) Wang, H.-M.; Hsiao, S.-H., Enhanced redox stability and electrochromic properties of aromatic polyamides based on N,N-bis(4-carboxyphenyl)-N'',N''-bis(4-tert-butylphenyl)-1,4-phenylenediamine. J. Polym. Sci. Part A: Polym. Chem. 2011, 49(2), 337-351; (h) Hsiao, S.-H.; Guo, W.-J.; Kung, Y.-C.; Lee, Y.-L., Redox-active and electrochromic aromatic poly(amide-imide)s with 2,4-dimethoxytriphenylamine chromophores. J. Polym. Res. 2011, 18, 1353-1364.
31. Ho, M.-H.; Balaganesan, B.; Chu, T.-Y.; Chen, T.-M.; Chen, C.-H., A morphologically stable host material for efficient phosphorescent green and red organic light emitting devices. Thin Solid Films 2008, 517 (2), 943-947.
32. (a) Oral, A.; Koyuncu, S.; Kaya, I., Polystyrene functionalized carbazole and electrochromic device application. Synth. Met. 2009, 159 (15-16), 1620-1627; (b) Koyuncu, S.; Gultekin, B.; Zafer, C.; Bilgili, H.; Can, M.; Demic, S.; Kaya, İ.; Icli, S., Electrochemical and optical properties of biphenyl bridged-dicarbazole oligomer films: Electropolymerization and electrochromism. Electrochim. Acta 2009, 54 (24), 5694-5702.
33. (a) Seo, E. T. N., R. F.; Fritsch, J. M.; Marcoux, L. S.; Leedy, D.; W.; Adams, R. N., Anodic Oxidation Pathways of Aromatic Amines. Electrochemical and Electron Paramagnetic Resonance Studies. J. Am. Chem. Soc. 1966, 88, 3498; (b) Hagopian, L. K., G.; Walter, R. I., Substituent Effects on the Properties of Stable Aromatic Free Radicals. Oxidation-Reduction Potentials of Triarylamine-Triarylaminium Ion Systems. J. Phys. Chem. 1967, 71, 2290.
34. (a) Ambrose, J. F.; Nelson, R. F., Anodic Oxidation Pathways of Carbazoles. Electrochem. Soc. 1968, 115, 1159; (b) Creason, S. C.; Wheeler, J.; Nelson, R. F., Electrochemical and spectroscopic studies of cation radicals. I. Coupling rates of 4-substituted triphenylaminium ion. J. Org. Chem. 1972, 37, 4440; (c) Zhang, T.; Toth, B., On-Line Investigation of the Generation of Nonaqueous Intermediate Radical Cations by Electrochemistry/Mass Spectrometry. Anal. Chem. 2000, 72, 2533; (d) Kimoto, A.; Cho, J.-S.; Higuchi, M.; Yamamoto, K., Synthesis of Asymmetrically Arranged Dendrimers with a Carbazole Dendron and a Phenylazomethine Dendron. Macromolecules 2004, 37, 5531-5537.
35. Hsiao, S.-H.; Wang, H.-M.; Chou, J.-S.; Guo, W.-J.; Tsai, T.-H., Synthesis and characterization of novel organosoluble and thermally stable polyamides bearing triptycene in their backbones. J. Polym. Res. 2012, 19 (7).
36. Lee, W.-Y.; Kurosawa, T.; Lin, S.-T.; Higashihara, T.; Ueda, M.; Chen, W.-C., New Donor–Acceptor Oligoimides for High-Performance Nonvolatile Memory Devices. Chem. Mater. 2011, 23 (20), 4487-4497.
37. Liou, G.-S. H., S.-H.; Huang, N.-K.; Yang, Y.-L., Synthesis, Photophysical, and Electrochromic Characterization of Wholly Aromatic Polyamide Blue-Light-Emitting Materials. Macromolecules 2006, 39, 5337-5346.
38. Yigitsoy, B.; Varis, S.; Tanyeli, C.; Akhmedov, I. M.; Toppare, L., Electrochromic properties of a novel low band gap conductive copolymer. Electrochimica Acta 2007, 52 (23), 6561-6568.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊