跳到主要內容

臺灣博碩士論文加值系統

(3.237.6.124) 您好!臺灣時間:2021/07/24 04:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林晏輝
研究生(外文):Yan-Huei Lin
論文名稱:聚乳酸材料之阻燃及增韌:I.聚乳酸/碳纖維/氫氧化鋁/奈米黏土複合材料之阻燃性質II.利用分枝狀高分子增韌聚乳酸材料
論文名稱(外文):Flame retardant and Toughening Properties of Polylactide Composites:I.Thermal Properties and Flammability of Polylactide Nanocomposites with Aluminum Trihydrate/Carbon Fiber/OrganoclayII.Toughening Properties of Polylactide Composites with branched Polymer
指導教授:莊祖煌莊祖煌引用關係
指導教授(外文):Tsu-Hwang Chuang
口試委員:董崇民郭文正鄭國忠
口試委員(外文):Trong-Ming DonWenjeng GuoKuo-Chung Cheng
口試日期:2012-06-28
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:126
中文關鍵詞:熔融混煉聚乳酸奈米黏土阻燃複合材料分枝高分子增韌複合材料
外文關鍵詞:Melt blendingFlame retardantpolylactidemontmorilloniteHyperbranchedToughness
相關次數:
  • 被引用被引用:0
  • 點閱點閱:371
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究第一部分以氫氧化鋁(ATH)結合奈米黏土(Clay30B)作為無鹵素阻燃劑,另外,添加碳纖維試圖提升其複合材料之機械性質。藉由塑譜儀以熔融混煉法製備聚乳酸/碳纖維/氫氧化鋁/奈米黏土之阻燃性複合材料。首先,我們利用了XRD、SEM及TEM觀察複合材料混合後的分散型態。接著,藉由LOI、UL-94、圓錐量熱儀及TGA來分析其奈米複合材料的熱穩定性及耐燃性質。最後由萬能拉力機來分析其機械性質。由分析結果顯示,由XRD及TEM觀察到,奈米黏土經熔融混煉過後能達到其插層及脫層的型態。隨著奈米黏土取代碳纖維的比例增加,其複合材料的LOI值及UL-94等級都有顯著的提升。觀察圓錐量熱儀的分析,也明顯的看出其平均熱釋速率降低不少。加入碳纖維後,與只添加氫氧化鋁的複合材料相互比較,其機械性質也有明顯的提升。由這幾組的的複合材料之中,以PLA:CF:ATH:Clay30B重量比為60:15:20:5之阻燃複合材料表現最好,LOI值能達32.0,高於PLA的20.5,UL-94的阻燃等級也能達到V-0等級,並且沒有垂滴及引燃棉花的現象。第二部分以自行合成的分枝高分子(BP6)當作可塑劑,試圖提升聚乳酸的韌性性質。藉由塑譜儀以熔融混煉法製備聚乳酸/分枝狀高分子增韌複合材料。藉由DSC及TGA分析其樣品的熱穩定性及相容性,由萬能拉力機及Izod衝擊試驗來分析其機械性質,最後以SEM觀察材料的微結構及斷裂的機制。由DSC分析得知,隨著BP6添加的量越多,其玻璃轉移溫度Tg、結晶溫度Tc、熔融溫度Tm相較於純PLA,其溫度都有降低的趨勢。觀察其機械性質,隨著BP6添加量越多,屈服強度下降;但在添加到10wt%以上BP6其伸長率有大幅的提升,其中以PLA:BP6為80:20的281.6%為最好。觀察耐衝擊強度,添加入BP6後,衝擊強度都有所提升,而衝擊強度最好的以PLA:BP6為80:20的 476.7J/m為最高,由此可看出添加量20wt%BP6的表現最好。最後由SEM圖觀察其拉伸斷裂截面及衝擊斷裂截面的表面形態。

In Part I. Polylactide (PLA) nanocomposites with aluminum hydroxide (ATH),carbon fiber and montmorillonite (Clay30B) were prepared via direct melting blending using a twin-screw mixer. In addition, add carbon fiber to try to enhance the mechanical properties of nanocomposites. The exfoliated and intercalated structures of clay in the matrix were observed by TEM and XRD. The thermal degradation temperature of the PLA/CF/ATH/MMT nanocomposite determined by thermogravimetric analysis are higher than that addition ATH and carbon fiber without organoclay. The V-0 rating of the PLA nanocomposites has been achieved, and there is no melt dripping and ignited cotton. And then add carbon fiber, the mechanical properties of the PLA/CF/ATH/Clay30B nanocomposites is higher than PLA/ATH/Clay30B nanocomposites. Results showed that adding carbon fiber to replace ATH of the nanocomposites, not only enhance the mechanical properties, also maintain the flame retardancy.
In PartII. Polylactide (PLA) composites with Hyperbranched polymer were prepared via direct melting blending using a twin-screw mixer.Beacause the Hyperbranched polymer has abundant functional end groups. So add Hyperbranched polymer to try to enhance the Toughness properties of PLA composites. The thermal degradation temperature of the PLA/BP6 composite determined by thermogravimetric analysis are higher than that pure PLA.The Differential scanning calorimetry was observed the glass transition temperature(Tg) decreased with the HBP content increase in the PLA/BP6 composite. The elongation of break and impact strength of the PLA/BP6 composites huge increase when the HBP cotent over 10 percent.The SEM photos was observed brittle fracture to change ductile fracture with the HBP content increase in the PLA/BP6 composite.


摘 要 i
ABSTRACT iii
目 錄 v
圖目錄 viii
表目錄 xi
第一章 緒論 1
第二章 相關原理與文獻回顧 3
2.1 聚乳酸之簡介 3
2.2 阻燃劑的選擇與發展 4
2.3 層狀奈米黏土之簡介 5
2.4 碳纖維簡介 6
2.5分枝狀高分子簡介 7
2.6 高分子韌化機制 8
2.7 高分子裂紋 8
2.8 聚合物的剪切屈服 9
2.9 高分子混摻原理 9
2.10 高分子/奈米黏土複合材料 10
2.11 聚乳酸阻燃性複合材料 11
2.12 氫氧化鋁於阻燃複材上之研究 13
2.13 奈米黏土於阻燃複材上之應用 18
2.14 PLA/Clay複合材料 21
2.15 聚乳酸添加各種材料之增塑性質研究 25
第三章 實驗方法 39
3.1 實驗藥品 39
3.2 實驗儀器 41
3.3實驗流程 44
3.4 實驗樣品比例配方與製備:聚乳酸/碳纖維/氫氧化鋁/奈米黏土阻燃複合材料 46
3.4.1樣品比例 46
3.4.2聚乳酸阻燃複合材料樣品製備 47
3.5 實驗樣品比例配方與製備:聚乳酸/分枝狀高分子增韌複合材料 48
3.5.1分枝高分子合成 48
3.5.2樣品比例 49
3.5.3聚乳酸增韌複合材料製備 49
3.6測試方法 50
3.6.1熱重分析儀(TGA) 50
3.6.2.限氧指數檢測(Limiting Oxygen Index,LOI) 50
3.6.3垂直燃燒檢測UL-94 51
3.6.4材料機械性質 53
3.6.5 X-ray繞射分析 54
3.6.6圓錐量熱儀 55
3.6.7 GPC分子量測量 56
3.6.8 DSC樣品分析 57
3.6.9 Izod衝擊測試 57
第四章 結果與討論:Part I 58
4.1 PLA/碳纖維/ATH/Clay複合材料微結構探討 58
4.1.1 X-ray繞射分析 58
4.1.2 穿透式電子顯微鏡分析 58
4.1.3 掃描式電子顯微鏡分析 59
4.2 PLA/CF/ATH/Clay複合材料燃燒性質 60
4.2.1 限氧指數LOI及垂直燃燒UL-94檢測 60
4.2.2圓錐量熱儀分析 63
4.2.3圓錐量熱儀燃燒後殘餘物型態分析 65
4.3 PLA/CF/ATH/Clay複合材料熱分解性質分析 66
4.3.1熱重分析儀檢測 66
4.4 PLA/CF/ATH/Clay複合材料機械性質探討 69
4.4.1拉伸性質檢測 69
第五章 結果與討論:Part II 72
5.1 合成物BP6分子量測定 72
5.2 PLA/BP6複合材料機械性質探討 73
5.2.1萬能拉力機數據分析 73
5.2.2 Izod耐衝擊分析 74
5.3 PLA/BP6複合材料熱分解性質分析 76
5.3.1熱重分析儀檢測 76
5.4 PLA/BP6複合材料相容性探討 77
5.4.1 DSC分析 77
5.5 PLA/BP6複合材料微結構探討 80
5.5.1掃描式電子顯微鏡分析 80
5.5.2表面形態分析 82
第六章 結論 83
參考文獻 113
附錄A 118
附錄B 120


[1]Vink E.T.H. , Rabago K.R., Glassner D.A., and Gruber P.R., "Applications of life cycle assessment to NatureWorks™ polylactide (PLA) production," Polymer Degradation and Stability, vol. 80, pp. 403-419, 2003.
[2]Hornsby P.R., "Application of magnesium hydroxide as a fire retardant and smoke-suppressing additive for polymers," Fire and Materials, vol. 18, pp. 269-276, 1994.
[3]Qiu L., Lu J., Xie R., and Qu B., "Structural characteristics and flame-retardant properties of nanosized magnesium hydroxide," Pan Tao Ti Hsueh Pao/Chinese Journal of Semiconductors, vol. 24, pp. 81-84, 2003.
[4]陳振泰, 鄒慶齡, and 陳文億, "無機填充材--氫氧化鎂在高分子阻燃的應用及發展," 強化塑膠, vol. 87, pp. 34-40, 2001.
[5]W. H. Carothers. and J. A. Arvin., "STUDIES ON POLYMERIZATION AND RING FORMATION. II. POLY-ESTERS," Journal of the American Chemical Society, vol. 51, pp. 2560–2570, 1929.
[6]Gross R.A. and Kalra B., "Biodegradable polymers for the environment," Science, vol. 297, p. 803, 2002.
[7]沈永清, 張信貞, 莊學平, and 張榮樹, "高分子難燃機構及原理," 化工資訊, vol. 9, pp. 15-31, 1995.
[8]陳光榮 and 黃素珍, "難燃劑國內市場現況及走向," 化工資訊, vol. 7, pp. 24-37, 1993.
[9]廖建勛, "奈米無機層狀材料之發展與應用," 化工技術, vol. 11, pp. 168-179, 2003.
[10]C. Nguyen, C. J. Hawker, E. H. R. D. Miller, J. L. Hedrick, R. Gauderon, and J. G. Hilborn, "Hyperbranched polyesters as nanoporosity templating agents for organosilicates," Macromolecules, vol. 33, pp. 4281-4284, 2000.
[11]H. Liu, J. H. Nasman, and M. Skrifvars, "Radical alternating copolymerization: A strategy for hyperbranched materials,," Journal of Polymer Science Part A: Polymer Chemistry, vol. 38, pp. 3074-3085, 2000.
[12]Y. H. Kim, "Hyperbranched polymers 10 years after," Journal of Polymer Science Part A: Polymer Chemistry, vol. 36, 1998.
[13]T. Sato, N. Higashida, T. Hirano, and M. Seno, "Initiator-fragment incorporation radical copolymerization of divinylbenzene and N-isopropylacrylamide with dimethyl 2,2?-azobisisobutyrate: Formation of soluble hyperbranched polymer nanoparticle,," Journal of Polymer Science Part A: Polymer Chemistry, vol. 42, pp. 1609-1617, 2004.
[14]Y. Bai, N. Song, J. P. Gao, X. Sun, X. Wang, G. Yu, and Z. Y. Wang, "A new approach to highly electrooptically active materials using cross-linkable, hyperbranched chromophore-containing oligomers as a macromolecular dopant," J. Am. Chem. Soc., vol. 127, pp. 2060-2061, 2005.
[15]Y. Tezuka, R. Komiya, and M. Washizuka, "Designing 8-shaped polymer topology by metathesis condensation with cyclic poly(THF) precursors having allyl groups," Macromolecules, vol. 36, pp. 12-17, 2003.
[16]Anderson T.L, Fracture mechanics:fundamentals and applications., 2005.
[17]Kramer E.J., "Microscopic and molecular fundamentals of crazing," Advances in Polymer Science, vol. 52-53, pp. 1-56, 1983.
[18]Huggins M.L., "Theory of Solution of High Polymers," J. Am. Chem. Soc., vol. 64, pp. 1712-1719, 1942.
[19]Alexandre M. and Dubois P, "Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials," Materials Science and Engineering R: Reports, vol. 28, pp. 1-63, 2000.
[20]Morgan A.B. and Gilman J.W., "Characterization of polymer-layered silicate (clay) nanocomposites by transmission electron microscopy and X-ray diffraction: a comparative study," 87, vol. 8, 2002.
[21]Yanagisawa T., Kiuchi Y., and Iji M., "Enhanced flame retardancy of polylactic acid with aluminum tri-hydroxide and phenolic resins," Kobunshi Ronbunsh, vol. 66, pp. 49-54, 2009.
[22]Zhan J., Song L., Nie S., and Hu Y., "Combustion properties and thermal degradation behavior of polylactide with an effective intumescent flame retardant," 94, vol. 3, 2009.
[23]Reti C., Casetta M., Duquesne S., Bourbigot S., and Delobel R., "Flammability properties of intumescent PLA including starch and lignin," Polymers for Advanced Technologies, vol. 19, pp. 628-635, 2008.
[24]Yeh J.T., Yang M.H., and Huang S.S., "Combustion of polyethylenes filled with metallic hydroxides and crosslinkable polyethylene," Polymer Degradation and Stability, vol. 50, pp. 229-234, 1995.
[25]Almeida Pinto U., Visconte L.L.Y., Gallo J., and Nunes R.C.R., "Flame retardancy in thermoplastic polyurethane elastomers (TPU) with mica and aluminum trihydrate (ATH)," Polymer Degradation and Stability, vol. 69, pp. 257-260, 2000.
[26]Ramazani S.A.A., Rahimi A., Frounchi M., and Radman S., "Investigation of flame retardancy and physical–mechanical properties of zinc borate and aluminum hydroxide propylene composites," 29, vol. 5, 2008.
[27]Cardenas M.A., Garcia-Lopez D., Gobernado-Mitre I., Merino J.C., Pastor J.M., Martinez J.d.D., Barbeta J., and Calveras D., "Mechanical and fire retardant properties of EVA/clay/ATH nanocomposites – Effect of particle size and surface treatment of ATH filler," Polymer Degradation and Stability, vol. 93, pp. 2032-2037, 2008.
[28]Jiao C. M. and Chen X. L., "Flame Retardant Synergism of Hydroxy Silicone Oil and Al (OH)3 in EVA Composites," Polymer-Plastics Technology and Engineering, vol. 48, pp. 665-670, 2009.
[29]Jiao C. M. and Chen X. L., "Synergistic flame retardant effect of lanthanum oxide in ethylene-vinyl acetate/aluminium hydroxide composites," Iranian Polymer Journal, vol. 18, pp. 723-730, 2009.
[30]Khattab M.A., "Decabromobiphenyl oxide-aluminum hydroxide system as a flame retardant for styrene-butadiene rubber," Journal of Applied Polymer Science, vol. 78, pp. 2134-2139, 2000.
[31]Zhu J. and Wilkie C.A., "Thermal and fire studies on polystyrene-clay nanocomposites," Polymer International, vol. 49, pp. 1158-1163, 2000.
[32]Zanetti M. and Costa L., "Preparation and combustion behaviour of polymer/layered silicate nanocomposites based upon PE and EVA," Polymer, vol. 45, pp. 4367-4373, 2004.
[33]Chang Y.W., Y. Yang, Ryu S., and Nah C., "Preparation and properties of EPDM/organomontmorillonite hybrid nanocomposites," Polymer International, vol. 51, pp. 319-324, 2002.
[34]Duquesne S., Jama C., Le Bras M., Delobel R., Recourt P., and Gloaguen J.M., "Elaboration of EVA-nanoclay systems - Characterization, thermal behaviour and fire performance," Composites Science and Technology, vol. 63, pp. 1141-1148, 2003.
[35]Zhang J., Hereid J., Hagen M., Bakirtzis D., Delichatsios M.A., Fina A., Castrovinci A., Camino G., Samyn F., and Bourbigot S., "Effects of nanoclay and fire retardants on fire retardancy of a polymer blend of EVA and LDPE," Fire Safety Journal, vol. 44, pp. 504-513, 2009.
[36]Wu D., Wu L., Wu L., and Zhang M., "Rheology and thermal stability of polylactide/clay nanocomposites", Polymer Degradation and Stability," 91, vol. 12, 2006.
[37]Lee S.Y., Chen H., and Hanna M.A., "Preparation and characterization of tapioca starch–poly(lactic acid) nanocomposite foams by melt intercalation based on clay type," Industrial Crops and Products, vol. 28, pp. 95-106, 2008.
[38]Nieddu E., Mazzucco L., Gentile P., Benko T., Balbo V., Mandrile R., and Ciardelli G., "Preparation and biodegradation of clay composites of PLA," Reactive and Functional Polymers, vol. 69, pp. 371-379, 2009.
[39]Urbanczyk L., Ngoundjo F., Alexandre M., Jerome C., Detrembleur C., and Calberg C., "Synthesis of polylactide/clay nanocomposites by in situ intercalative polymerization in supercritical carbon dioxide," European Polymer Journal, vol. 45, pp. 643-648, 2009.
[40]Fukushima K., Murariu M., Camino G., and Dubois P., "Effect of expanded graphite/layered-silicate clay on thermal, mechanical and fire retardant properties of poly(lactic acid)," Polymer Degradation and Stability, vol. 95, pp. 1063-1076, 2010.
[41]Y. Lin, K. Y. Zhang, Z. M. Dong, L. S. Dong, and Y. S. Li, "Study of Hydrogen-Bonded Blend of Polylactide with Biodegradable Hyperbranched Poly(ester amide)," Macromolecules vol. 40, pp. 6257-6267, 2007.
[42]R. Bhardwaj and A. K. Mohanty, "Modification of Brittle Polylactide by Novel Hyperbranched Polymer-Based Nanostructures," Biomacromolecules vol. 8, pp. 2476-2484, 2007.
[43]X. Wen, Y. Lin, C. Han, L. Han, Y. Li, and L. Dong, "Dramatic Improvements in Mechanical Properties of Poly( L -lactide)/Silica Nanocomposites by Addition of Hyperbranched Poly(ester amide)," Macromolecular Materials and Engineering, vol. 295, pp. 415-4-19, 2010.
[44]I. Pillin, N. Montrelay, and Y. Grohens, "Thermo-mechanical characterization of plasticized PLA: Is the miscibility the only significant factor?," Polymer vol. 47, pp. 4676-4682, 2006.
[45]C. Courgneau, S. Domenek, A. Guinault, L. Ave’rous, and V. Ducruet, "Analysis of the Structure-Properties Relationships of Different Multiphase Systems Based on Plasticized Poly(Lactic Acid)," J Polym Environ vol. 19, pp. 362-371, 2011.
[46]F. Feng and L. Ye, "Morphologies and Mechanical Properties of Polylactide/Thermoplastic Polyurethane Elastomer Blends," Journal of Applied Polymer Science, vol. 119, pp. 2278-2783, 2011.
[47]Z. Jia, J. Tan, C. Han, Y. Yang, and L. Dong, "Poly(ethylene glycol-co-propylene glycol) as a Macromolecular Plasticizing Agent for Polylactide:Thermomechanical Properties and Aging," Journal of Applied Polymer Science, vol. 114, pp. 1105-1117, 2009.
[48]C.H. Ho, Wang C.H., Lin C.I., and Lee Y.D., "Synthesis and characterization of TPO–PLA copolymer and its behavior as compatibilizer for PLA/TPO blends," Polymer, vol. 49, pp. 3902-3910, 2008.
[49]Cheng C.K., Yu C.B., Guo W.J., Wang S.F., Chuang T.H., and Lin Y.H., "Thermal properties and flammability of polylactide nanocomposites with aluminum trihydrate and organoclay," Carbohydrate Polymers, vol. 87, pp. 1119-1123, 2012.
[50]王嘉淳, "分枝狀聚氧化乙烯鋰電解質之製備及特性分析," 國立臺北科技大學化學工程研究所, 台北 2010.
[51]柯以侃, "儀器分析," 台北市: 文京圖書有限公司, 1997, p. 405.
[52]J.R. Sarasua, R. E. Prud’homme, M. Wisniewski, B. A. Le, and N. Spassky, "Crystallization and Melting Behavior of Polylactides," Macromolecules vol. 31, pp. 3895–3905, 1998.
[53]L. Jiang, M. P. Wolcott, and J. Zhang, "Study of Biodegradable Polylactide/Poly(butyleneadipate-co-terephthalate) Blends," Biomacromolecules, vol. 7, pp. 199-207, 2006.
[54]L. L. Zhang, C. D. Xiong, and X. M. Deng, "Miscibility, crystallization and morphology of poly(β-hydroxybutyrate)/poly(d,l-lactide) blends," Polymer, vol. 37, pp. 235-241, 1996.
[55]S. Wong, R. A.Shanks, and A. Hodzic, "Mechanical Behavior and Fracture Toughness of Poly(L-lactic acid)-Natural Fiber Composites Modified with Hyperbranched Polymers," Macromol. Mater. Eng. , vol. 289, pp. 447-456, 2004.
[56]G. M. Kim, "Micromechanical deformation processes in toughened and particle filled semicrystalline polymers: Part 2. model representation for micromechanical deformation processes," Polymer, vol. 39, pp. 5699-5703, 1998.
[57]J. S. Wu, A. F. Yee, and Y. W. Mai, "Fracture toughness and fracture mechanisms of polybutylene-terephthalate/polycarbonate/ impact-modifier blends," JOURNAL OF MATERIALS SCIENCE, vol. 29, pp. 4510-4522, 1994.
[58]B. Li, F.X. Dong, X. L. Wang, J. Yang, D. Y. Wang, and Y. Z. Wang, "Organically modified rectorite toughened poly(lactic acid):Nanostructures, crystallization and mechanical properties," European Polymer Journal vol. 45, pp. 2996-3003, 2009.



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top