跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/07/31 11:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉芝佑
研究生(外文):Zhi-You Liu
論文名稱:RDF改質以研製人工煤之研究
論文名稱(外文):Study on Characteristies of Artificial Coal by RDF Improvement
指導教授:章裕民章裕民引用關係
口試委員:林奇剛陳慶和席行正
口試日期:2012-06-15
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:環境工程與管理研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:191
中文關鍵詞:RDF人工煤廢食用油熱值
外文關鍵詞:RDFCoalArtificial CoalEdible Oil WastesHeat Value
相關次數:
  • 被引用被引用:8
  • 點閱點閱:267
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
台灣目前的發電方式主要以火力發電廠為主,而火力發電廠主要以進口燃煤作為火力發電的主要原料。就熱力學與熱化學觀點而言,靠著燃燒方式來推動活塞的方式所產生的瞬間扭力比馬達作工大上許多,是馬達遠不足以取代燃燒的一個要點,這也是煤與化石燃料自始至今仍被視為重要「戰略物質」的原因之一,如此也可清楚的看見生質綠能在未來所佔有的重要性,「人工煤(或可以精進的RDF-5取代」的發展也是此領域的主流與趨勢。
本研究利用RDF改質以研製人工煤,基於廢棄物回收再資源化的觀點為出發點,利用自焚化廠採集後的垃圾進行物性與化性分析,在六大類垃圾中挑選發熱值高、含氯量低的物質作為製作RDF燃料的組成物料,並加入廢食用油、松香與碳粉製成六種含不同比例廢食用油之樣品以研製人工煤,並進行四項實驗:成型狀態、熱值分析、熱重分析與硬度分析,並與天然煤之性質進行對比。
六項樣品其所含之廢食用油其重量百分比分別為9%(樣品一)、19%(樣品二)、29%(樣品三)、39%(樣品四)、49%(樣品五)、54%(樣品六),在成型方面可得知廢食用油的添加量越少,其成型效果越佳。熱值分析的方面,六項樣品的發熱值分別為11,998.39cal/g、11,552.25 cal/g、10,735.48 cal/g、10,237.93 cal/g、9,574.07 cal/g、9,157.73 cal/g,實驗結果得知熱值隨著廢食用油添加量的增加而減少,是由於松香膠的比例相對的提高,而松香膠的熱值高於廢食用油。樣品在熱值上的理論估計與實驗結果皆可得知本實驗所配製之人工煤其熱值皆比天然煤的熱值8,180cal/g高,發熱值更為有效率。
熱重分析的部分經由實驗得知,樣品中廢食用油的添加量越多,熱重分析曲線越能貼近天然煤。計算熱重分析曲線下的百分比積分,天然煤為6945.93%、樣品一為2651.21%、樣品二為3009.31%,樣品三為3255.76%、樣品四為3300.94、樣品五為3234.61%、樣品六為3771.18%。
硬度測驗的方面,可得知添加廢食用油9%的樣品其硬度在莫氏硬度標準的鑑別中,硬度標準可達三,添加廢食用油19%的樣品其硬度可達二,添加廢食用油29%、39%、49%、54%的廢食用油樣品其硬度皆小於一,而天然煤的硬度範圍在一到四,實驗結果可得知廢食用油添加量越少的樣品,其硬度越能貼近天然煤。
在能源成本與效益評析的部分,台灣一年的垃圾焚化費用一個月約需耗費九億四千七百五十二萬元,一年則需要花費一百一十三億七千零二十四萬元。若使用百分之五十的將廢棄物回收利用研製人工煤,粗估在生產製作的過程中可至少可節省三分之一的垃圾處理費用,一個月則可節省一億五千七百九十二萬元,一年節省的費用可達十八億九千五百零四萬元。排放的空氣汙染量也較焚化與燃燒天然煤為少,著實有其不錯的經濟效益。


The most popular power plant in Taiwan is thermal power plant. All of this fuel for these thermal power plants is import. In thermal dynamics and thermal chemistry opinion, inflammation push the piston can generate more transitory torque than motor. This is way the motor can never replace the inflammation method. Coal and petroleum is the most important strategy supplier around the world. It can show the importance of biomass energy in the future. The development of artificial coal or RDF-5 will be the popular tendency.
The topic of this research is produce artificial coal by modified RDF. Base on junk recycle, analysis the 6 type of high thermal low chlorine junk collected from incinerator by physical and chemical method to make combination material of RDF. Add edible oil wastes, resin and carbon powder mix with six different ratios of edible oil wastes to make artificiacoal. This sample will take four different analysis: Formation status、Thermogravimetric、Thermogravimetric、Hardness, compare with the nature coal.
The ratios of six different edible oil wastes are:9%、19%、29%、39%、49%、54%. In formation status , add less edible oil waste will get better formation result. In thermogravimetric analysis, the heat emission from six samples are:11,998.39cal/g、11,552.25 cal/g、10,735.48 cal/g、10,237.93 cal/g、9,574.07 cal/g、9,157.73 cal/g. Resin has more heat value than edible oil wastes. Because of higher percentage of resin contain, heat emission will getting less by higher edible oil wastes ratio. In theory estimate and experiment result, the sample of this experiment has higher heat value and efficient than nature coal(8,180cal/g).
In thermogravimetric analysis, area of graphic overlay will getting smaller by more edible oil wastes added. Thermogravimetric analysis curve will more close to nature coal.Caculating percentage points under the thermogravimetric curve we can get the value for nature coal is 6,945.93%、sample1 is 2,651.21%、sample3 is 3,255.76%、sample4 is 3,300.94%、sample5 is 3,432.61%、sample 6 is3,771.18% .
In hardness test, Mons'' hardness scale can reach 3 by 9% of edible oil wastes added. Mons'' hardness scale can reach 2 by 19% of edible oil wastes added. The hardness will smaller than 1 by 29%、39%、49%、54% edible oil wastes added. The hardness range of nature coal is 1~4. The result of this experiment shows less edible oil wastes added will getting close to natural coal.
In cost of energy analysis, dispose of waste by incinerator will cost 947,520,000NTD/Month or 11,370,240,000NTD/Year. If use 50% of recycle to produce artificial coal, it can save 1/3 of money to dispose of waste.It can save 157,920,000 NTD/Month or 1,895,040,000NTD/Year. The airpollution after buring of artifial coal is also lower than incinerator and natural coal. It shows a great economic benefit.


摘要I
ABSTRACT III
誌 謝V
目 錄VI
表目錄VIX
圖目錄VI
第一章 緒論1
1.1 前言 1
1.2 研究動機3
1.3 研究目的5
第二章 文獻回顧6
2.1 廢棄物之特性6
2.1.1 廢棄物之來源 6
2.1.2 廢棄物之分析組成8
2.2 垃圾衍生燃料(refuse-derived fuel , RDF)12
2.2.1 垃圾衍生燃料RDF之分類與發展概況15
2.2.2 RDF原料成分與添加物之關係20
2.2.3影響製作RDF品質的各項因子24
2.3人工煤(artificial coal ) 27
2.3.1人工煤之發展概況29
2.3.2天然煤之分類與成因36
第三章 研究內容與方法44
3.1 研究內容與架構 44
3.2.垃圾樣本採集來源與方式45
3.3 實驗方法52
3.3.1 實驗流程53
3.3.2 RDF材料的挑選與備製53
3.3.3 實驗方法與器材57
第四章 結果與討論 62
4.1壓碇成型結果62
4.2熱值測定結果69
4.3熱重分析實驗結果76
4.4硬度分析實驗結果86
4.5評析人工煤之性質、成本與環境效益100
4.5.1 人工煤性質之評析指標100
4.5.2成本效益評析102
4.5.3環境效益評析106
第五章 結論與建議117
5.1 結論117
5.2 建議118
參考文獻120
附錄
附錄A:元素分析儀(EA)操作方法123
附錄B:熱重分析儀(TGA)操作方法134
附錄C:國外人造煤專利(一)142
附錄D:國外人造煤專利(二)146
附錄E:國外人造煤專利(三)157
附錄F:台灣專利:固態衍生燃料製造方法及其系統169
附錄G:台灣專利: 控制農作廢棄物含水量並配合成型溫度及
壓力產生固態燃料171
附錄H:台灣專利: 固態廢棄物衍生燃料之再生方法173
附錄I:99年度六大類垃圾之元素分析實驗結果 175
附錄J:99年度六大類垃圾之氯成份分析實驗結果186


[1]T. T. T. Dong,and B. K. Lee, ” Analysis of potential RD resources from Solid waste and their energy values in the largest industrial city of Korea”, Waste Management, Volume 29, Issue 5, May 2009, Pages 1725-1731.
[2] M. Kara, E. Gunay,Y. Tabak, and S. Yıldiz, ” Perspectives for pilot scale study of RDF in Istanbul, Turkey ”, Waste Management, Volume 29, Issue 12, December 2009, Pages 2976-2982.
[3] K. D. Wey, and S. C. Hong, ” Refuse-derivedfuel as asecondary energy in Taiwan—Usin Hotelling spacea llocation model“ Resources Policy, Volume 31, Issue 4, December 2006, Pages 204-210.
[4] 张焕芬、喜文华, ”日本垃圾衍生燃料(RDF)的研究开发” ,中国科学院广州能源研究
所,1999。
[5] W. Ma, G. Hoffmann, M. Schirmer, G. Chen, and V. S. Rotter, ” Chlorine characterization and thermal behavior in MSW and RDF” ,Journal of Hazardous Materials, Volume 178, Issues 1–3, 15 June 2010, Pages 489-498.
[6]T. Crujeira, H. Lopes, P. Abelha, C. Sargaço,R. Gonçalves, M. Freire, I. Cabrita, and I. Gulyurtlu, ” Study of Toxic Metals during Combustion of RDF in a Fluidized Bed Pilot”, ENVIRONMENTAL ENGINEERING SCIENCE ,2005,Volume 22, Number 2.
[7]C. S. Chyang, Y. L. Han, L. W. Wu, H. P. Wan, H.T. Lee, and Y. H. Chang, ”An investigation on pollutant emissions from co-firing of RDF and coal” ,Waste Management, Volume 30, Issue 7, July 2010, Pages 1334-1340.
[8]F. D. H. Atonal, C. Ryu, V. N. Sharifi, and J.Swithenbank,”Combustion of
refuse-derived fuel in a fluidised bed”, Chemical Engineering Science 62,2007, Pages 627–635.
[9]G. Q. Liu, Y. Itaya, R. Yamazaki, S. Mori, M. Yamaguchi, M. Kondoh,“Fundamental study of the behavior of chlorine during the combustion of single RDF", Waste Management 21, 2001,427–433.
[10] X. Wei, Y.Wang, D.Liu, H. Sheng., W. Tian, Y. Xiao, ” Release of Sulfur and Chlorine during Cofiring RDF and Coal in an Internally Circulating Fluidized Bed”, Energy & Fuels 23, 2009, Pages 1390–1397.
[11]G Mckay ,”Dioxin characterisation, formation and minimisation during municipal solid waste (MSW) incineration: review”, Chemical Engineering Journal 86, 2002, Pages 343–368.
[12] R. Marsh, A.J. Griffiths, K.P. Williams, S.J. Wilcox , ”Physical and thermal properties of extruded refuse derived fuel”, Fuel Processing Technology, Volume 88, Issue 7, July 2007, Pages 701-706.
[13] R. Marsh , A.J. Griffiths, K.P. Williams,”Measurement of heat transfer and change in compressive strength of waste derived solid fuels due to devolatisation”,Fuel Processing Technology, Volume 88, Issue 7, July 2007, Pages 701-706.
[14] 蘇宛珊,成型方法及界面活性劑添加對ASRDF熱值之影響研究,碩士論文,國立高雄第一科技大學環境與安全衛生工程系,高雄,2006。
[15]蔡智琦,添加廢食用油影響RDF性質之研究,碩士論文,國立臺北科技大學環境規劃與管理研究所,台北,2007。
[16]J. L. Romsox,”ARTIFICIA COAL”,Application field August 30 Erdal,1921,No.496,962.
[17]G. V. Khemchandani, B.Trichangendu, B. T. Ray ,and S. Sarkar,”Studies on artificial coal .1.Caking power and chloroform extracts ,“ Department of Chemical Engineering,Indian Institute of Technology,Powai Bombay 400076,India,14 January,2003.
[18] G. V. Khemchandani, and S. Sarkar,”Studies on artificial coal.2. Thermogravimetry and differential analysis",Fuel Volume 53,Issue3, July 1974,Pages 163-167.
[19] 劉曙剛譯,”人造煤的研製”,Chemical and Engineering News,第三卷第四期。
[20]尤連,”人造煤問世”,China Academic Journal Electronic Publishing House國內外能源訊息Vol.6,No.1。
[21] 頤生,”人造煤的製造",吉林建設局資料。
[22]陳佳芬,台灣中新世石底層煤中硫及微量元素含量之沉積含意,碩士論文,國立中央大學應用地質研究所,桃園,2001。
[23]E.Stach, M.T.Mackowsky, M.Teichmuller,G.H.Taylor,D.Chandra,and
R.Teichmuller,1982. Stach’s Textbook of coal petrology (3rd ed.), Berlin Stuttgar, Gebruder Borntraeger, 535pp.
[24]孫立中,”抑制鏡煤素反射率之量測成因—以分離台灣裕峰煤樣為例”,博士論文,國立中央大學地球物理研究所,桃園,2000。
[25] M. Teichmüller., 1989, “The genesis of coal from the view point of Coal Petrology.” In: P. C. Lyons and B. Alperns (Eds), Peat and Coal :Facies and Depositional Models. Int. Journ. Coal Geol., Vol. 12.
[26] Bilitewski, B., Hardtle, G., Marek, K., Weissbach, A., Boedddicker, H., “Waste Management”, Springer-Verlag Berlin Heideberg Editions, 1994.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊