跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.83) 您好!臺灣時間:2024/12/09 16:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴俊瑋
研究生(外文):Chun-Wei Lai
論文名稱:焚化飛灰資源化處理技術-氯含量與鉛重金屬削減之研究
論文名稱(外文):Reduction of Chloride and Lead Metal in MSWI Fly ash recycling technology
指導教授:章裕民章裕民引用關係
指導教授(外文):Y. M. Chamg
口試委員:陳慶和林奇剛席行正
口試委員(外文):Chen-Ching HuoChi-Kang LinHsi-Hsing Cheng
口試日期:2012-06-15
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:環境工程與管理研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:113
中文關鍵詞:焚化飛灰鉛重金屬加熱酸解
外文關鍵詞:MSWI Fly ashHeavy mentalThermal Degradation
相關次數:
  • 被引用被引用:4
  • 點閱點閱:358
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
基於「灰渣熔融」與「固化掩埋」終非垃圾焚化飛灰的最佳處理方式,甚至於難於符合「零廢棄」目標,開發一種新的低耗能低碳排放的飛灰資源化處理技術,使飛灰的再利用能符合綠色製程的「永續產品」,因此本研究承昔已有的成果基礎,將焚化飛灰與反應灰以1:1等比例混和,再利用直接加熱式酸解法、鹽析與中和等處理飛灰的有害性,在實驗設計與條件選擇下(改變加溫、酸解時間等),再以原子火焰吸收光譜儀測其萃取液中重金屬含量,使其皆合乎法規標準,期能同時削減飛灰中重金屬(以鉛為主),並同時控制飛灰中氯離子含量,降低飛灰(含反應生成灰)的有害性,使其無害化。
本研究可獲知焚化飛灰有害物質及氯離子含量之削減成效如下列重要結論:
1. 利用直接加熱式酸解及鹽析中和處理後,飛灰的主要化學性質發生了明顯改變,如氧化矽由23.21wt%降為20.38wt%,氧化鐵由2.05wt%降為0.74wt%,氧化鋁由4.70wt%降為1.86wt%,氧化鈣由25.95wt%降為8.34wt%,而這些物質極有可能形成與原氧化物不同的氫氧化物,或流失至酸液中。
2. 由相關實驗結果發現,Pb-TCLP削減成效約在63%~74%之間,氯全含量削減率約在15%~45%之間,若原飛灰(混合物)之TCLP值在控制40mg/L以內則可處理至法規要求5mg/L以下。

MSWI fly ash reutilitation is an issue of concern in the world. Because landfill disposal or thermal malting treatment does not meeting the reguirement of low GHG and energy-saving. The thermal degradation with salting precipitation studied in this work will be a promising technology to reduce Pb-metal and chloride in the MSWI fly ash.
According to this study, it shows that the reduction of hazardous substances from Fly ash and the content of Chlorine :
1. After direct heating of the acid solution and salting processing, main chemical properties of fly ash has been significantly changed, such as SiO2 by 23.21wt % reduced 20.38 wt % , Fe2O3from 2.05wt % to 0.74wt % , Al2O3 from 4.70wt % to 1.86wt % , CaO from 25.95wt % to 8.34wt % , this substances probably formation the other hydroxide or loss in acid.
2. Found by experimental results, Pb-TCLP Reduction effectiveness between 63%~74%, the content of Chlorine Reduction effectiveness between 15%~45%, If TCLP value of the original fly ash under controlled 40mg / L, it can deal with regulation states 5mg / L

目錄
摘 要 I
誌 謝 III
目錄 IV
圖目錄 VI
表目錄 VIII
第一章 緒論 1
1.1引言 1
1.2研究動機 4
1.3研究目的 6
第二章 文獻回顧與理論背景 7
2.1 焚化飛灰來源與特性 7
2.1.1 焚化飛灰之來源 7
2.1.2 焚化飛灰之特性 9
2.1.3 焚化飛灰之處置 12
2.2 飛灰中重金屬性質 14
2.2.1 重金屬 14
2.3 飛灰之化學特性 19
2.3.1 焚化飛灰中重金屬之揮發性 21
2.3.2 焚化飛灰燃燒後之反應途徑 24
2.4 加熱酸解原理 27
2.4.1 強酸分解作用 27
2.4.2 重金屬溶出機制 33
2.5 鹽析中和/混凝原理與機制 36
2.5.1 鹽析中和 36
2.5.2 混凝 37
2.6 擴散理論 39
2.6.1 Fick’s第一擴散定律 40
2.6.2 Fick’s第二擴散定律 40
2.7 國內外加熱酸解及資源化技術應用概況 41
第三章 研究內容與方法 45
3.1 研究內容與架構 45
3.2 飛灰採樣及備料 47
3.3 研究設備 48
3.3.1 一般實驗設備 48
3.3.2 分析儀器 53
3.3.3 加熱酸解實驗條件、設備及輔助裝置 55
3.3.4 鹽析(中和)實驗 58
3.4 實驗器材與藥品 59
3.5 分析方法 62
3.5.1 飛灰基本性質及重金屬含量分析 62
3.6 加熱酸解/鹽析中和之實驗方法與步驟 69
第四章 結果與討論 71
4.1 實驗參數 71
4.2 飛灰特性及處理後變化 73
4.3 鉛-TCLP之處理成效 83
4.4 氯全含量之處理成效 90
4.5 工程規劃與設計 99
4.5.1 工程概述 99
4.5.2 工程成本概估 102
第五章 結論與建議 106
5.1 結論 106
5.2 建議 107
參考文獻 108



參考文獻
[1]魏銘彥、黃建沆、陳志成,焚化過程重金屬鉻、鉛及鎘之行為研究,第十一屆空氣污染防制技術研討會論文集,台中,pp.26~31,1994。
[2]顧順榮,鍾昀泰,張木彬,台灣地區都市垃圾焚化灰份中重金屬濃度及TCLP 溶出之評估,第十屆廢棄物處理技術研討會論文集,台南,1995。
[3]廖錦聰,徐文慶,劉子衙,許順珠,張蕙蘭,垃圾焚化灰渣資源化技術及應用,化工資訊第九卷第七期,pp.42~48,1995。
[4]李敏華譯,水質化學,復漢出版社,1996。
[5]黃奕叡,廢棄物焚化灰渣熱熔之研究,博士論文,國立成功大學環境工程學系,台南,2002。
[6]王鯤生,江康鈺,葉宗智,林仕敏,都市垃圾焚化灰渣重金屬濃度及TCLP溶出之評估,第十一屆廢棄物處理技術研討會,pp.68~76,1996。
[7]林芳玲、江康鈺、王鯤生,模擬都市垃圾焚化過程無機氯對重金屬分佈特性及物種形成之研究,第十三屆空氣污染控制技術研討會論文集,台北,pp.771~778,1996。
[8]林仕敏,有機氯與無機氯對焚化過程重金屬分佈特性及氯化物生成之影響,碩士論文,國立中央大學環境工程與科學研究所,桃園,1997。
[9]江康鈺,王鯤生,林仕敏,蔡啟昌,「廢棄物含氯量對焚化過程重金屬物種形成影響之研究」,第十二屆廢棄物處理技術研討會論文集,1997。
[10]孫常榮,劉建良,張君偉,王鯤生,都市垃圾焚化飛灰重金屬溶出之化學性分析,第十四屆廢棄物處理技術研討會,pp.7-39~7-49 頁,1999。
[11]余耀任,以微波消化處理焚化飛灰資源化之研究,碩士論文,淡江大學水資源及環境工程系,台北,2000。
[12]張晉魁,燃煤飛灰中金屬溶出潛力之研究,碩士論文,中興大學環境工程學系,台中,2002。
[13]陳慶隆,酸鹼值、液固比與醋酸鹽濃度對飛灰中金屬溶出之影響,碩士論文,中興大學環境工程學系,台中,2002。
[14]陳一銘,都市垃圾焚化飛灰水萃對其熱處理程序重金屬分佈之影響,碩士論文,淡江大學水資源及環境工程系,台北,2003。
[15]王光中,飛灰中間處理對持久性有機物溶出特性之影響研究,碩士論文,屏東科技大學環境工程與科學系,屏東,2003。
[16]李慶瑞,都市垃圾焚化廠飛灰(含反應灰)最適化處理方法探討,碩士論文,國立台北大學資源管理研究所碩士在職專班,台北,2003。
[17]李仲虔,重金屬離子於焚化飛灰中的表面結構與擴散行為,碩士論文,國立屏東科技大學環境工程與科學系,屏東,2003。
[18]陳一銘,都市垃圾焚化飛灰水萃對其熱處理程序重金屬分佈之影響,碩士論文,淡江大學水資源及環境工程系,台北,2003。
[19]余宗賢,固化法於飛灰重金屬及戴奧辛之穩定化之研究,碩士論文,高雄第一科技大學環境與安全衛生工程系,高雄,2004。
[20]曾楹珍,以酸溶出法處理印刷電路板廠重金屬污泥之研究,碩士論文,國立雲林科技大學環境與安全工程系碩士班,雲林,2004。
[21]許緒廣,以不同消化法比較土壤、底泥、堆肥、污泥及固體廢棄物之重金屬含量,碩士論文,國立屏東科技大學環境工程與科學系,屏東,2004。
[22]邱嘉川,大型垃圾焚化爐爐溫對灰渣中重金屬分佈特性影響之研究-實廠案例,碩士論文,國立臺北科技大學環境規劃與管理研究所,台北,2004。
[23]簡光勵,都市垃圾焚化飛灰熔融過程金屬排放與腐蝕特性之研究,碩士論文,逢甲大學環境工程與科學研究所,台中,2005。
[24]謝宗甫,焚化飛灰以微波酸解處理鉛重金屬溶出削減特性之研究,碩士論文,國立臺北科技大學環境工程與管理研究所,台北,2006。
[25]邱孔濱,都市垃圾焚化飛灰無害化後資源再利用之研究,碩士論文,聯合大學環境與安全衛生工程學系碩士班,苗栗,2006。
[26]何鴻哲,垃圾焚化飛灰中揮發性重金屬移動特性,碩士論文,淡江大學水資源及環境工程系,台北,2007。
[27]李銘清,利用微波消化法處理有害性物質之研究–戴奧辛與鉛重金屬,碩士論文,國立臺北科技大學環境工程與管理研究所,台北,2008。
[28]周經棟,焚化飛灰於熱處理過程中重金屬溶出行為及污染物逸散之研究,博士論文,中興大學環境工程學系所,博士論文,台中,2008。
[29]劉崑山,廢棄物焚化飛灰固化體數學溶出模式之研究,博士論文,台灣大學環境工程學研究所,台北,2008。
[30]何鴻哲,垃圾焚化飛灰中揮發性重金屬之移動特性,博士論文,淡江大學水資源及環境工程學系博士班,台北,2008。
[31]劉東偉,焚化灰渣中鉛重金屬含量之研究,碩士論文,國立臺北科技大學環境工程與管理研究所,台北,2008。
[32]國賓大地環保股份有限公司,利用微波消化法處理灰渣有害性物質計畫(II), 2008。
[33]國賓大地環保股份有限公司,二次飛灰處理及燒結煙氣污染防治之研究, 2009。
[34]蔡育仁,利用連續式酸解法處理焚化飛灰有害物質之研究-戴奧辛與鉛重金屬,碩士論文,台北科技大學環境工程與管理研究所,台北,2009。
[35]陳盈利,垃圾焚化爐之底渣與飛灰處理廠作業環境重金屬濃度評估,碩士論文,弘光科技大學職業安全與防災研究所,台中,2009。
[36]羅振宇,二次燒結飛灰特性及其微波酸解處理之研究,碩士論文,台北科技大學環境工程與管理研究所,台北,2010。
[37]鄭光志,垃圾焚化底渣資源化前處理之研究-加酸水洗脫氯,碩士論文,國立臺北科技大學環境工程與管理研究所碩士班,台北,2010。
[38]Alba, N., Gasso, S., Lacorte, T., and Baldasano, J. M., “Characterization of Municipal Solid Waste Incineration Residues from Facilities with Different Air Pollution Control Systems,” Journal of the Air & Waste Management Association, Vol.47, pp.1170, 1997.
[39]Barton, R. G., Clark, W. D., and Seeker, W. R., “Fate of Metals in Waste Combustion Systems,” Combustion Science and Technology, Vol.74, pp.327-342, 1990.
[40]Brunner, P. H., and Monch, H., “The Flux of Metals Through Municipal Solid Waste Incinerators,” Waste Management and Research, Vol. 4, pp.105-119, 1986.
[41]Chang, Y.M., Lu, C. C., Fan, W. P., Dai, W. C., and Chou, C. M., “Feasibility Study on Destruction and Removal of Dioxin in MSW Fly Ash by Microwave Digestion Treatment” 2010 International Symposium on Waste Management in Pacfic Asia, Hong Kong, May, 26-29, 2010.
[42]Davison, R. L., Natusch, D. F. S., Wallace, J. R. and Evans, C. A., “Trace element in fly ash dependence of concentration on particle size, Environmental Science and Technology, Vol. 8, no. 13, pp.1,107-1, 113, 1974.
[43]Dempsey, C. R., and Oppelt, E. T., “Incineration of hazardous waste: A Critical Review Update,” Air and Waste, Vol. 43, no. 1, pp. 25-73, 1993.
[44]Djedidi, Z., Bouda, M., Souissi, M. A., Cheikh, R. B., Mercier, G., Tyagi, R. D., and Blais, J. F., “Metals removal from soil, fly ash and sewage sludge leachates by precipitation and dewatering properties of the generated sludge,” Journal of Hazardous Materials, Vol.172, pp.1372–1382, 2009.
[45]Durlak, S. K., Biswas, P., and Shi, J., “Equilibrium Analysis of the Effect of Temperature, Moisture and Sodium Content on Heavy Metal Emissions from Municipal Solid WasteIncinerators,” Journal of Hazardous Meterials, Vol.56, pp.1-20, 1997.
[46]Eddings, G. E., and Lighty, S. J., “Fundamental Studies of Metal Behavior During Solids Incineration,” Combustion Science and Technology 85 (1-6) , pp. 375-390, 1992.
[47]Galiano, Y. L., Pereira, C. F., and Vale, J., “Stabilization/solidification of a municipal solid waste incineration residue using fly ash-based geopolymers,” Journal of Hazardous Materials, Vol.185, pp.373–381, 2011.
[48]Geórgia, C. L., Araújo, H. G., Mário, G. F., Antônio, A. N., Ana, R., and Nóbrega, A. J., “Effect of Acid Concentration on Closed-vessel Microwave-assisted Digestion of Plant Materials,” Spectrochimica Acta Part B: Atomic Spectroscopy, Vol.57, pp.2121-2132, 2002.
[49]Gerstle, R. W., and Albrinck, D. N., “Atmospheric emissions of metals from sewage sludge incineration,” Journal of the Air Pollution Control Association, Vol. 32, no.11, pp. 1, 119-1, 123, 1982.
[50]Gonzalez, A., Morenoc, N., Navia, R., and Querol, X., “Development of a non-conventional sorbent from fly ash and its potential use in acid wastewater neutralization and heavy metal removal,” Chemical Engineering Journal, Vol.166, pp.896–905, 2011.
[51]Guo, R. T., Pan, W. G., Zhang, X. B., Xu, H. J., and Ren, J. X., “ Dissolution rate of magnesium hydrate for wet flue gas desulfurization,” Fuel, Vol.90, pp.7-11, 2011.
[52]Hseu, Z. Y., “Evaluating heavy metal contents in nine composts using four digestion methods,” Bioresource Technology, Vol.95, pp.53-59, 2004.
[53]Hasselriis, F., and Licata, A., ”Analysis of heavy metal emission data from municipal waste combustion,” Journal of Hazardous Materials, Vol. 47, pp.77-102, 1996.
[54]Jakob, A., Stucki, S., Struis, R. P. W. J., “Complete Heavy Removal from Fly Ash by Heat Treatment:Influence of Chlorides on Evaporation Rates,” Environ.Sci.Technol, Vol.30, pp.3275-3283, 1996.
[55]Jiang, J. G., Xu, X., Wang, J., Yang, S. J., and Zhang, Y., “Investigation of basic properties of fly ash from urban waste incinerators in China,” Journal of Environmental Sciences, Vol.19, pp.458–463, 2007.
[56]Kim, Y. J., Lee, D. H. and Osako, M., “Effect of dissolved humic matters on the leachability of PCDD/F from fly ash- Laboratory experiment using Aldrich humic acid”, Chemosphere, Vol.47, pp.599-605, 2002.
[57]Klein, D. H., Andren, A. W., Carter, J. A., Emery, J. F., Feldman, C., Fulkerson, W., Lyon, W. S., Ogle, J. C., Talmi, Y., Vanhook, R. I., and Bolton, N., “Pathways of Thirty-seven Trace Elements Through Coal-Fired Power Plant,” Environ. Sci Technol. Vol.9, pp. 973-979, 1975.
[58]Lee, H. Y., “Characteristics and heavy metal leaching of ash generatedfrom incineration of automobile shredder residue,” Journal of Hazardous Materials, Vol.147, pp.570-575, 2007.
[59]Mulholland, J. A., and Sarofim, A. F., “The formation of inorganic particles during suspension heating simulated wastes,” Environmental Process, Vol. 10, no. 2, pp. 83-88, 1991.
[60]Ontiveros, J. L., Clapp, T. L., and Kosson, D. S., “Physical Properties and Chemical Species Distributions Within Municipal Waste Combuster Ashes,” Environmental Progress, Vol. 8, No. 3, pp.200-206, 1989.
[61]Sarofim, A. F., Pershing, D. W., Delling, B., Heap, M. P., and Owens, W. D., “Emission of metal and organic compounds from cement kilns using waste derived fuels”, Hazardous Waste and Hazadous Materials, Vol. 11, no. 11,pp. 169-192, 1994.
[62]Shi, H. S. and Kan, L. L., “Leaching behavior of heavy metals from municipal solid wastes incineration (MSWI) fly ash used in concrete,” Journal of Hazardous Materials, Vol.164, pp.750–754, 2009.
[63]Sørum, L., Frandsen, F. J., and Hustad, J. E., “On the fate of heavy metals in municipal solid waste combustion. Part II. From furnace to filter,” Fuel, Vol. 83, no. 11-12, pp. 1, 703-1, 710, 2004.
[64]Steinberg, T. A., Wilson, D. B., and Benz, F., “The combustion phase of Burning metal,” Combustion and Flame, Vol. 91, pp.200-208, 1994
[65]Trouve, G., Kauffmann, A., Delfosse, L., “Comparative thermodynamic and experimental study of some heavy metal behaviours during automotive shredder residues incineration,” Waste Management, Vol. 18, Vol.5, pp. 301-307, 1998.
[66]Vassileva S. V., Danheux, C. B., Laurent, T., Thiemannc, A., “Behaviour capture and inertization of some trace elements during combustion of refuse-derived char from municipal solid waste,” Fuel, Vol.78, pp. 1131–1145, 1999
[67]Wang, W., and Chen, G., “Heat and Mass Transfer Model of Dielectric-material-assisted Microwavefreeze-drying of Skim Milk with Hygroscopic Effect,” Chemical Engineering Science, Vol.60, pp.6542-6550, 2005.
[68]Wang, M. S., Wang, L. C., Guo, P. and Chang, C., “Distribution of polychlorinated dibenzo-p-dioxins and dibenzofurans in the landfill site for solidified monoliths of fly ash,” Journal of Hazardous Materials, Vol.133, pp.177-182, 2006.
[69]Wu, C. Y., and Biswas, P., “An Equilibrium Analysis to Determine the Speciation of Metals in an Incinerator,” Combustion and Flame, Vol.93, pp.31-40, 1993.
[70]Wiles, C. C., “Municipal solid waste combustion ash: State-of-the-knowledge,” Journal of Hazardous Materials, Vol. 47, pp. 325-344, 1996.
[71]Yasuhara, A., and Katami, T., “Leaching behavior of polychlorinated dibenzo-p-dioxins and furans from the fly ash and bottom ash of a municipal solid waste incinerator,” Waste Management, Vol.27, pp.439-447, 2007.
[72]Yoshio, M., and Johji, I., “A thermal process for the detoxigication of filter ash from waste incinerators.,” Journal of Soild and Liquid wasters, Vol. 20, no. 5, pp. 96-104, 1990.


電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top