跳到主要內容

臺灣博碩士論文加值系統

(3.235.185.78) 您好!臺灣時間:2021/07/27 17:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蘇暘堤
研究生(外文):Yang-TI Su
論文名稱:固定污染源空氣污染防制成效實場查核與管制之研究
論文名稱(外文):On-Site Inspection and Management of Air Pollution Control Devices for Stationary Sources
指導教授:章裕民章裕民引用關係
指導教授(外文):Yu-Min Chang
口試委員:周芷玫胡憲倫陳志恆
口試委員(外文):Chih-Mei Chou(Allen) HuHerng-Jyh Chen
口試日期:2012-06-26
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:環境工程與管理研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:133
中文關鍵詞:固定污染源空氣污染防制設備影響處理效率因子管制方案
外文關鍵詞:Stationary sourcesAir pollutant control deviceProcess factorMangament policy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:612
  • 評分評分:
  • 下載下載:120
  • 收藏至我的研究室書目清單書目收藏:0
良好管制措施對於污染排放量同樣有好的減量成效並可提高生產效益,同時也是較易實行的污染減量方式,依據法規許可管理辦法之相關規定,須定期針對固定污染源執行檢測以符合相關法規之規範以達到管制其成效,未達到規範者給予勸告或開罰,因此防制設備對於處理污染物效率優劣甚為重要。本研究配合檢測單位且利用行政院環境檢驗所公告排放管道檢測方法(如:NIEA A413.74C、A101.73C、A723.72C)量測設備前後端污染濃度,針對五間不同製程之工廠既有防制設備配合實場量測並評估設備實際、理論處理效率且探討其影響效率之因子作為固定污染源管制上的參考。

其研究結果顯示所探討防制設備在實際、理論效率上其差異性並不大,如:WS-1、WS-3、WS-4實際效率分別為79.18%、45.8%、93.6%,而理論效率值為83.53%、48.36%、96.28%,在影響設備效率之因子方面探討,對溼式洗滌塔而言,壓力降在一定範圍內,將其提高液氣比、噴嘴壓力、改變濾料類型、填充層高度對於氣狀污染物之處理效率有明顯提升,以WS-3為例,將填充層高度為3m時其效率可大於80%,對袋式集塵器而言,其濾袋本身係數越高對於粒狀污染物之去除效率也就越佳,以BH為例,濾袋纖維係數(σ)=1000m-1、t=5min的條件下其處理效率可達92%。

對於地方單位在查核管理方面,對於固定污染源建立其管制方案,根據結果做提出以下管制措施作其參考1. 針對污染源成份及佔比例之管理查核、2. 落實設備規格資料調查之查核、3. 加強許可承諾值之準確性查核管理、4. 推動並增設防制設備操作要點之管制、5. 改變定期查核頻率之措施、6. 落實連續自動監測設施之設置。


A well-designed air pollution prevention device can successfully decrease the amount of air pollution as well as increasing the production efficiency. It is also considered as an easier approach in pollution reduction. According to operation laws, regular inspection is required to stationary pollution sources, while advices or penalty is given to those not qualified. Since the inspection is implemented on a periodical basis, the quality of prevention equipments is essential to the effectiveness of pollution process. The current research aims at delivering a parametric study on the device efficiency based on the theoretical prediction and on-site measurement to five factories of distinct processes. Pollution concentrations before and after the measurement devices are taken from the aforementioned factories according to EPA (Environmental Protection Administration) released standards, such as NIEA A413.74C,A101.73C and A723.72C. These results are served as a reference to the implemention of stationary pollution control.

Research results show that no siginificant difficicney is observed between the realistic measurement and theoretical prediction of the prevention devices. For example, WS-1、WS-3、WS-4 yields realistic efficiency as 79.18%, 45.8%, and 93.6%, while the theoretical prediction are 83.53%, 48.36%, and 96.28% respectively. However, both of these results still fall behind the regulations,Considering the factors affecting equipment efficiency, decreasing the pressure of a wet scrubber to a certain ragne increases the liquid-gas ratio and nozzle pressure. Additionally, changing the type of filter medium and spray height remarkably enlarges the removal efficiency to gasous pollutants. To bag houses, choosing filter bags with higher parameter bears better removal efficiency to particulate pollutants. For instance, the removal efficiency of BH with filter fiber parameter (σ)=1000m-1 and t=5min yields removal efficiency up to 92%.

The following control strategies to stationary pollution sources are then drawn from the results of current study. 1. Careful control and inspection per pollution components and percentage. 2. Careful examination and verification to equipment specification. 3. Enforcement to the management and inspection of permitted values. 4. Enforcement and implementation to the operation manual of prevention equipments. 5. Proper adjustment to the period of inspection. 6. Implementation to the automatic inspection equipments.


摘要 i
ABSTRACT iii
誌謝 v
目錄 vi
表目錄 viii
圖目錄 xii
第一章 緒論 1
1.1 引言 1
1.2 研究動機 7
1.3 研究目的 8
第二章 文獻回顧 9
2.1 污染物特性與防制 9
2.1.1 粒狀污染物(Particle Matter) 9
2.1.2 硫氧化物(Sulfur Oxides) 12
2.1.3 揮發性有機物(Volatile Organic Compounds) 16
2.2 填充式洗滌塔 20
2.2.1 填充式洗滌塔設備基本構造 21
2.2.2 洗滌塔設計理論與效率評估 23
2.3 袋式集塵器 28
2.3.1 集塵器設備基本構造 29
2.3.2 集塵器設計理論與效率推估 32
2.4 影響防制設備效率之操作條件 36
2.4.1 填充式洗滌塔 36
2.4.2 袋式集塵器 37
2.5 國內外相關文獻 38
第三章 研究方法與內容 43
3.1 研究流程 43
3.2 研究項目 45
3.3 研究方法 45
3.3.1 各工廠與製造程序基本資料與特性 45
3.3.2 防制設備規格資料之調查 53
3.3.3 現地實場量測空氣污染物之採樣方法 62
3.3.4 防制設備理論效率之推估模式 77
第四章 結果與討論 81
4.1 量測結果 81
4.1.1 防制設備前端污染物濃度量測 81
4.1.2 防制設備尾端污染物濃度量測 84
4.2 實場查核與設備效率評估 87
4.2.1 填充式洗滌塔(WS-1) 87
4.2.2 填充式洗滌塔(WS-2) 91
4.2.3 填充式洗滌器(WS-3) 94
4.2.4 噴淋式洗滌塔(WS-4) 97
4.2.5 袋式集塵器 (BH) 101
4.3 影響處理效率之因子 104
4.3.1 填充式洗滌塔(WS-1) 104
4.3.2 填充式洗滌塔(WS-2) 108
4.3.3 填充式洗滌塔(WS-3) 110
4.3.4 噴淋式洗滌塔(WS-4) 113
4.3.5 袋式集塵器(BH) 116
4.4 查核管理與管制方案 120
第五章 結論與建議 125
5.1 結論 125
5.2 建議 127
參考文獻 128


中文文獻
[1]吳欣益,半乾式除酸系統中操作條件對焚化廢氣污染物去除之影響,碩士論文,國立中興大學環境工程研究所,台中,1993。
[2]蔡俊鴻,氣狀污染物控制設備之評估與選用,工業污染防制技術手冊,經濟部工業局,1993。
[3]蔡俊鴻,粒狀污染物控制設備之評估與選用,工業污染防治技術手冊,經濟部工業局,1994。
[4]余騰耀、吳俊耀、莊錦烽,袋濾集塵機設計選擇與操作:經濟部工業局手冊,1994。
[5]李佳駿,脈衝袋濾系統之設計參數研究,博士論文,國立中興大學環境工程研究所,台中,1994。
[6]鄭福田,廢氣濕式處理,工業污染防制技術叢書:經濟部工業局,1994。
[7]鄭福田,空氣過濾除塵技術,工業污染防制技術叢書:經濟部工業局,1994。
[8]林元章、黃志峰、謝長良,「移動式袋式集塵系統統計、建造與實廠煙氣過濾性能測試」,工業污染防制季刊,第16卷,第四期,1997,第25-44頁。
[9]王佑靖、邱宗文、繆佐君、余秉量,「化工廠VOCs廢氣收集處理系統設計即實例介紹」,工業污染防制季刊,第17卷,第三期,1998,第84-100頁。
[10]望熙榮譯,空氣污染防制,台北:中央圖書出版社,1998,第197-385頁。
[11]林忠正,垃圾焚化爐空氣污染控制設備影響戴奧辛排放特性之初步探討,碩士論文,國立中央大學環境工程研究所,桃園,2000。
[12]劉曉蘭,固定污染源空氣污染防制效率與成本結構之探討,碩士論文,國立台北大學資源管理研究所,台北,2000。
[13]李慈蘋,袋濾集塵機濾布材質特性之研究,碩士論文,雲林科技大學環境與安全工程研究所,雲林,2001。
[14]黃俊超,高科技產業無機酸鹼廢氣組成與填充式濕式洗滌塔控制效率之研究,碩士論文,國立交通大學環境工程所,新竹,2002。
[15]劉禎淑,焚化廢氣中污染控制之研究,碩士論文,國立中興大學環境工程研究所,台中,2002。
[16]簡弘民,「半導體業洗滌塔問題探討與改善時實務」,工業污染防制技術季刊,經濟部工業局,第八十九期,2004,第192-211頁。
[17]陳茂銓,以濕式洗滌塔去除酸鹼氣體之理論研究,碩士論文,國立交通大學環境工程研究所,新竹,2005。
[18]陳開亨,利用微水霧改善傳統填充塔對HCl氣體去除效率之研究,碩士論文,國立交通大學環境工程所,新竹,2005。
[19]鄭宗岳、林鴻祥,空氣污染防制理論與設計,台北:新文京開發出版社,2005。
[20]郭文一,貼合溫度對聚四氟乙烯薄膜/聚酯不織布物性之影響,碩士論文,逢甲大學紡織工程研究所,台中,2006。
[21]行政院環境保護署,固定污染源設置與操作許可證管理辦法,環保法規,2007。
[22]黃俊超、吳信賢、簡弘民,「濕式洗滌塔之硫酸液滴處理效率提升研究」,工業污染防制季刊,第101期,2007,第49-64頁。
[23]朱靜如,揮發性有機物設備元件逸散排防特性及其管制措施之研究,碩士論文,國立臺北科技大學環境工程與管理研究所,台北,2009。
[24]鐘嘉祺,燃煤固定污染源排放空氣污染物及其防制設備操作技術之比較-以桃園縣為例,碩士論文,國立中央大學環境工程研究所,桃園,2010。
[25]王瑞佑,水洗塔處理半導體製程廢氣排放特徵之研究,碩士論文,國立高雄第一科技大學環境與安全工程衛生系,高雄,2010。
[26]鄭麗玲、林俊宏,「氣狀污染物防制」,空氣污染防制專責人員訓練教材,2010。
[27]行政院環境保護人員訓練所,「粒狀污染物防制」,空氣污染防制專責人員訓練教材,2010。
[28]新竹縣環境保護局,向陽科技股份有限公司廢棄物清理許可展延申請,2011。
[29]行政院環境保護署,固定污染源空氣污染排放標準,環保法規,2011。
英文文獻
[30]Amitava, B. and M. N. Biwas, “Modeling of SO2 scrubbing in spary towers,” Scinence of the Total Environment, vol. 383, 2007, pp. 25-40.
[31]Amitava, B. and M. N. Biswas, “Critical flow atomizer in SO2 spray scrubbing,” Chemical Engineering Journal, vol. 139, 2008, pp. 29-41.
[32]Amitava, B. and M. N. Biswas, “Fly-ash scrubber in a tapered bubble column scrubber,” Process Safety and Environmental Protection, vol. 84, 2006, pp. 54-62.
[33]Estate, J. W., P. Grennfelt and M. Sutton, “The European perspective on nitrogen emission and deposition,”Environment International, vol. 29, 2003, pp. 311-325.
[34]Fang, S. H. and H. W. Chen, “Air quality and pollution control in Taiwan,” Atmospheric Environment, vol. 30, 1996, pp. 735-741.
[35]Gabites, J. R., J. Abrahhamson and J. A. Winchester,“Design of baghouse for fines collection in milk powder plants,” Powder Technology, vol. 187, 2008,pp. 46-52.
[36]Ganisans, X., M. Sarra and F. J. Lafuente, “Gas pollutants removal in a singleand
two-stage ejector-venturi scrubber,” Journal of Hazardous Materials, vol. 90, 2002,pp. 251-266.
[37]Gao, H. L., C. T. Li, G. M. Zeng, W. Zhang, L. Shi, S. H. Li, Y. Zeng, X. P. Fan, Q. B. Wen and X. Shu, “Flue gas desulphurization based on limestone-gypsum with a novel wet-type PCF device,” Separation and Purification Technology, vol.76, 2011, pp. 253-260.
[38]Jonge, D. L., “Policies and instrument for reducing from stationary sources in the Netherlands,” Environmental Pollution, vol. 102, 1998, pp. 671-675.
[39]Kati, V., L. Ari and K. S. Jorma, “Charging of droplets in a Wet Scrubber,” Journal of the Air & Waste Management Association, vol.52, 2002, pp.175-180.
[40]Kopacek, J. and J. Vesely, “Sulfur and nitrogen emissions in the Czech Republic and Slovakia from 1850 till 2000,” Atmospheric Environment, vol. 39, 2005,pp. 2179-2188.
[41]Lin, D. F., J. D. Lin and S.H. Chen, “The application of baghouse fines in Taiwan,” Resources Conservation and Recycling, vol. 46, 2006, pp. 281-301.
[42]Lim, K.S., S.H. Lee and H.S. Park,“Prediction for particle removal efficiency of a reverse jet scrubber,”Aerosol Science, vol.37, 2007, pp. 1826-1839.
[43]Meikap, B. C. and M. N. Biswas, “Fly-ash removal efficiency in a modified multi-stage bubble column scrubber,” Separation and Purification Technology, vol. 36, 2004, pp. 177-190.
[44]Mohan, B. R., S. Biswas and B. C. Meikap,“Performance characteristics of the particulates scrubbing in a counter-current spray-column,”Separation and Purification Technology, vol. 61, 2008, pp. 96-102.
[45]Mohan, B. R., R. K. Jain and B. C. Meikap, “Comprehensive analysis for prediction of dust removal efficiency using twin-fluid atomization in a spray scrubber,”Separation and Purification Technology, vol.64, 2008, pp. 269-277.
[46]Pourmonhammadbagher, A., E. Jamshidi, H. A. Ebrahim, B. Dabir and M. M. Zeinabad, ”Simultaneous removal of gaseous pollutants with a novel swirl wet scrubber,” Chemical Engineering Processing, vol. 50, 2011, pp. 773-779.
[47]Saleem, M., and K. Gernot, “Effect of filtration velocity and dust concentration on cake formation and filter operation in a pilot scale jet pulsed bag filter,”Journal of Hazardous Materials, vol. 144, 2007, pp. 677-681.
[48]Seung, H. J., G. T. Jeong, G. Y. Lee, J. M. Cha and D. H. Park, “Simultaneous removal of SO2, NO and particulate by pilot-scale scrubber system, Korean,” Journal of Chemical Engineering, vol.24, 2007, pp. 1064–1069.
[49]Shaaban, S., ”Numerical optimization and experimental investigation of the aerodynamic performance of a three-stage gas-soild separator,” Chemical Engineering Research and Design, vol. 98, 2011, pp.29-38.
[50]Saleem, M., G. Krammer, R. U. Khan and M. S. Tahir, “Influence of operating parameters on cake formation in pilot scale pulse-jet bag filter,”Powder Technology, vol. 224, 2012, pp. 28-35.
[51]Taheri, M. and A. Mohebbi, “Design of artificial neural networks using a genetic algorithm to predict collection efficiency in venturi scrubber,” Journal of Hazardous Materials, vol. 157, 2007, pp. 122-129.
[52]Tom, T. “Ethical influences on the evolution of the US tradable permit approach to air pollution control,”Ecological Economics, vol. 24, 1998, pp. 241-257.
[53]Wei,W., S. X. Wang, J. Hao and S. Y. Cheng,“Projection of anthropogenic volatile organic compounds (VOCs) emissions in China for the period 2010-2020,”Atmospheric Environment, vol. 45, 2011, pp. 6863-6871.
[54]Yang, S. K. and H. Yoshida, “Effect of mist injection position on particle separation performance of cyclone scrubber,” Separation and Purification Technology, vol. 37, 2004, pp. 211-230.
[55]Yi, H. H., J. Hao, L. Duan, X. Tang, P. Ning and X. Li, “Fine particle and trace element emissions from an anthracite coal-fired power plant equipped with a bag-house in China,”Fuel Process Technology, vol. 87, 2008,pp. 2050-2057.
[56]Yoshida, H., S. Yoshikawa, K. Fukui and T. Yamamoto, “Effect of multi-inlet flow on particle classification performance of hydro-cyclones,”Powder Technology,vol. 184, 2008, pp. 352-360.
[57]Zarei, S., E. Jamshidi and A. A. Ebrahimi, “PVC dust removal from the air by a new dynamical scrubber,” Chemical Engineering and Processing, vol. 49, 2011, pp. 1193-1198.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top