跳到主要內容

臺灣博碩士論文加值系統

(3.235.185.78) 您好!臺灣時間:2021/07/27 16:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝承航
研究生(外文):Cheng-Hang Sie
論文名稱:微胞特性分析對微胞輔助薄膜系統 (MEUF) 結合電透析程序回收含鉻廢水之影響
論文名稱(外文):Impact of micellar characteristics on chromate recovery from wastewater by micellar-enhanced ultrafiltration combined with membrane electrodialysis.
指導教授:陳孝行陳孝行引用關係
指導教授(外文):Shiao-Shing Chen
口試委員:張家源章裕民
口試委員(外文):Chia-Yuan ChangYu-Min Chang
口試日期:2012-07-13
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:環境工程與管理研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:131
中文關鍵詞:六價鉻十六烷基三甲基溴化銨MEUF電透析程序微胞物理特性
外文關鍵詞:chromatecetyltrimethylammonium bromidemicellar-enhanced ultrafiltrationelectrodialysismicellar characteristics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:154
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用陽離子界面活性劑十六烷基三甲基溴化銨 (CTAB) 以微胞輔助超過濾法 (Micellar-Enhanced Ultrafiltration, MEUF) 結合電透析程序 (Membrane electrodialysis) 處理電鍍廢水並將 Cr(VI) 回收再利用,目的主要為探討界面活性劑微胞之物理特性對此技術之影響,並提升電透析程序回收 Cr(VI) 之效率。
本研究測量不同濃度 CTAB 微胞之粒徑,並推估出微胞粒徑與濃度間之方程式,且本研究經過薄膜孔徑及微胞物理特性 (微胞粒徑及微胞吸附力) 之考量,選定 [CTAB] / [Cr(VI)] = 3 為微胞最佳結合參數。
尋找適合微胞操作之操作壓力,當操作壓力從 80 psi 提升至 90 psi,Cr(VI) 與 CTAB 之截留率都有下降之趨勢,主要原因為 CTAB 微胞被破壞,變成大量單體而通過薄膜到濾液端,故將 80 psi 訂為本研究最大操作壓力;且在薄膜長時間操作下,薄膜操作壓力 80 psi、[CTAB] / [Cr(VI)] = 3、pH = 3,Cr(VI) 截留效率最高可達 97.74%;離子競爭效應部分,當溶液中同時存在兩個負電性離子時,負二價離子與 Cr(VI) 之競爭效應比負一價離子之競爭效應強。
電透析程序中,提升薄膜操作壓力、系統體積濃縮比、電流密度及添加電解鹽於電透析廢水槽中,其 Cr(VI) 回收效率皆會上升;當薄膜操作壓力 80 psi、系統體積濃縮比為 95%、電流密度 30 mA / cm2、0.1 M NaCl,於操作時間 360 min 後,Cr(VI) 回收效率可達 78.73%。經多元迴歸統計分析,結果顯示電流密度、電解鹽 NaCl 濃度及系統體積濃縮比對 Cr(VI) 回收效率有顯著之影響力。


Recovering the surfactant and the chromate from the spent plating solution was proposed using a two-stage process: (1) concentration by micellar-enhanced ultrafiltration and (2) separation by electrodialysis (ED).The purpose is to discuss the impact of micellar characteristics on the technology and try to increase the chromate recovery rate by electrodialysis.
The micelle size of different CTAB concentration was measured in this study, and estimated a formula about micelle size and surfactant concentrations. [CTAB] / [chromate] = 3 were select for best parameter of micelle by consider the membrane pore size and micellar characteristics (micelle size and micelle adsorption).
Search for the membrane pressure suited to the micelles, the results showed that when the operating pressure changes from 80 psi to 90 psi, the rejection of chromate and CTAB had a downward trend. It showed that the CTAB micelles destroyed into a large number of monomer, and passed through the membrane to the permeate side. So 80 psi as the maximum pressure was setted in this study. The chromate removal efficiency can reach 97.74% under operation pressure 80 psi, [CTAB]/[ chromate] = 3, pH = 3, after long time operation. In the ionic competition effect, when there were two anions in the solution simultaneously, the affect of the divalent anion was greater than the monovalent anion.
In the electrodialysis procedures, the chromate recovery efficiency were enhanced by increase the membrane operation pressure, system volume ratio, current density, and add electrolytes salt in electrodialysis wastewater tank. The experiment condition was under operation pressure 80 psi, [CTAB]/[ chromate] = 3, current density 30 mA/cm2, 0.1 M NaCl, then the chromate recovery efficiency will reached 78.73%, after 360 minutes. After Statistical multivariate regression analysis, the current density and the concentration of salt and system volume ratio have statistical significant effect to chromate recovery efficiency, but the other parameters were weaker for influence.


摘 要 i
ABSTRACT ii
誌 謝 iv
目 錄 vi
表目錄 x
圖目錄 xi
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 3
1.3 研究內容 4
第二章 文獻回顧 6
2.1 重金屬含鉻廢水特性及現行處理技術 7
2.1.1 含鉻重金屬廢水來源及特性 7
2.1.2 含鉻重金屬廢水對人體及環境之危害 11
2.1.3 含鉻重金屬廢水現行處理技術 13
2.2 界面活性劑與微胞特性 17
2.2.1 界面活性劑種類 17
2.2.2 微胞之形成 19
2.2.3 影響臨界微胞濃度之因素 20
2.2.3.1 溫度變化 21
2.2.3.2 鹽類添加物 22
2.2.3.3 界面活性劑碳氫鏈之影響 22
2.2.4 微胞之結構 23
2.3 薄膜處理程序 24
2.3.1 薄膜過濾基本原理 24
2.3.2 薄膜材質、種類及組件 26
2.3.3 薄膜操作參數 31
2.3.4 薄膜分離機制 33
2.3.6 薄膜清洗與保存 38
2.3.7 薄膜預期遭遇之問題 39
2.4 MEUF 系統基本特性及原理 41
2.4.1 MEUF 系統原理及過濾機制 41
2.4.2 影響 MEUF 系統之因子 43
2.5 電透析程序 45
2.5.1 電透析程序之基本原理及特性 45
2.5.2 離子交換膜之特性 46
2.5.3 影響電透析程序之因子 48
2.5.4電透析程序應用於回收含鉻重金屬之研究 53
第三章 實驗方法與設備 55
3.1 實驗內容 55
3.1.1 實驗方法與原理 55
3.1.2 實驗設計 57
3.1.3 實驗步驟 59
3.2 實驗材料與設備 62
3.2.1 實驗材料 62
3.2.2 實驗設備 63
3.2.2.1 薄膜過濾實驗模組 63
3.2.2.2 電透析實驗模廠 64
3.2.2.3 其他偵測儀器設備 65
3.3 實驗分析方法 66
3.3.1 六價鉻離子分析方法 66
3.3.2 離子分析方法 66
3.3.3 總有機碳 TOC 分析法 67
第四章 結果與討論 68
4.1 微胞物理特性分析 68
4.1.1 影響臨界微胞濃度之因素 69
4.1.1.1 溫度變化 69
4.1.1.2 鹽類添加物 70
4.1.1.3 界面活性劑碳氫鏈之影響 71
4.1.2 不同界面活性劑濃度微胞物理特性之空白試驗 72
4.1.3 不同 [CTAB] / [Cr(VI)] 之物理特性探討 76
4.1.4 不同 pH 值之微胞物理特性 79
4.2 MEUF 系統截留 Cr(VI) 廢水之影響因子探討 84
4.2.1 不同離子間之競爭吸附效應 84
4.2.1.1 Br- 之競爭吸附效應 84
4.2.1.2 SO42- 之競爭吸附效應 86
4.2.1.3 離子競爭吸附效應綜合討論 88
4.2.2 微胞操作壓力之探討 89
4.2.3 薄膜操作壓力之探討 92
4.2.4 MEUF 系統因子之迴歸分析 95
4.3 電透析程序回收 Cr(VI) 影響因子探討 97
4.3.1 薄膜操作壓力之影響 97
4.3.2 系統體積濃縮比之影響 99
4.3.3 鹽類添加物之影響 101
4.3.4 電極間距之影響 108
4.3.5 電流密度之影響 110
4.3.6 電透析程序各項因子之迴歸分析 113
第五章 結論與建議 116
5.1 結論 116
5.2 建議 118
參考文獻 119
附錄A:水質分析原始數據 127


1.Juang, R.S., Y.Y. Xu, and C.L. Chen, Separation and removal of metal ions from dilute solutions using micellar-enhanced ultrafiltration. Journal of Membrane Science, 2003. 218(1-2): p. 257-267.
2.Alvarado, L., A. Ramirez, and I. Rodriguez-Torres, Cr(VI) removal by continuous electrodeionization: Study of its basic technologies. Desalination, 2009. 249(1): p. 423-428.
3.Gzara, L. and M. Dhahbi, Removal of chromate anions by micellar-enhanced ultrafiltration using cationic surfactants. Desalination, 2001. 137(1-3): p. 241-250.
4.Purkait, M.K., S. DasGupta, and S. De, Simultaneous separation of two oxyanions from their mixture using micellar enhanced ultrafiltration. Separation Science and Technology, 2005. 40(7): p. 1439-1460.
5.王家輝, 以微胞輔助超過濾系統結合電透析程序純化/濃縮/回收含鉻電鍍廢水之研究, 2011: 國立臺北科技大學.
6.Matsumoto, S.T. and M.A. Marin-Morales, Toxic and genotoxic effects of trivalent and hexavalent chromium - A review. Revista Brasileira de Toxicologia, 2005. 18(1): p. 77-85.
7.Xu, X.R., H.B. Li, and J.D. Gu, Simultaneous decontamination of hexavalent chromium and methyl tert-butyl ether by UV/TiO2 process. Chemosphere, 2006. 63(2): p. 254-260.
8.Paschoal, F.M.M., M.A. Anderson, and M.V.B. Zanoni, Simultaneous removal of chromium and leather dye from simulated tannery effluent by photoelectrochemistry. Journal of Hazardous Materials, 2009. 166(1): p. 531-537.
9.Pradhan, J., S.N. Das, and R.S. Thakur, Adsorption of hexavalent chromium from aqueous solution by using activated red mud. Journal of Colloid and Interface Science, 1999. 217(1): p. 137-141.
10.Visvanathan, C., R. Ben Aim, and S. Vigneswaran, Application of cross-flow electro-microfiltration in chromium wastewater treatment. Desalination, 1989. 71(3): p. 265-276.
11.王姮娟、蔡士昌, 重金屬廢水處理技術(上)2004: 財團法人生物技術開發中心.
12.莊珮綺, 兩段式奈米薄膜系統純化/濃縮電鍍製程含鉻廢水及質量傳輸之研究, 2006: 國立臺北科技大學.
13.Nriagu, J.O.a.N.E., Biologic chemistry of chromium1988.
14.Baes Jr, C.F. and R.F. Mesmer, The thermodynamics of cation hydrolysis. American Journal of Science, 1981. 281(7): p. 935-962.
15.洪儷瑋, 以廢鑄鐵還原電鍍廢液中高濃度六價鉻之研究, 2006: 國立臺北科技大學.
16.Krejpcio, Z., Essentiality of Chromium for Human Nutrition and Health. Polish Journal of Environmental Studies, 2001. 10(6): p. 399-404.
17.Fraga, C.G., Relevance, essentiality and toxicity of trace elements in human health. Molecular Aspects of Medicine, 2005. 26(4-5 SPEC. ISS.): p. 235-244.
18.Lee, K.P., et al., Inhalation toxicity of chromium dioxide dust to rats after two years exposure. Science of the Total Environment, 1989. 86(1-2): p. 83-108.
19.傅崇德, et al., 工業水污染防治2001: 高立圖書有限公司.
20.Shaalan, H.F., M.H. Sorour, and S.R. Tewfik, Simulation and optimization of a membrane system for chromium recovery from tanning wastes. Desalination, 2001. 141(3): p. 315-324.
21.Eckenfelder, J.W.W., Industrial Water Pollution Control1967: McGraw-Hill.
22.Li, C.L., et al., Recovery of spent electroless nickel plating bath by electrodialysis. Journal of Membrane Science, 1999. 157(2): p. 241-249.
23.Spoor, P.B., et al., Pilot scale deionisation of a galvanic nickel solution using a hybrid ion-exchange/electrodialysis system. Chemical Engineering Journal, 2002. 89(1-3): p. 193-202.
24.Van Der Bruggen, B., A. Koninckx, and C. Vandecasteele, Separation of monovalent and divalent ions from aqueous solution by electrodialysis and nanofiltration. Water Research, 2004. 38(5): p. 1347-1353.
25.陳孝行、張添晉, 鍍鎳製程整合奈米薄膜/電透析程序回收有價金屬之研發計畫, 2005.
26.陳啟明, NF 薄膜程序應用於自來水淨水工程之探討, 2004: 國立屏東科技大學.
27.Cassano, A., R. Molinari, and E. Drioli, Saving of water and chemicals in tanning industry by membrane processes, in Advanced Wastewater Treatment1999. p. 443-450.
28.Stankovic̈, V., Metal removal from effluents by electrowinning and a new design concept in wastewater purification technology. Chemical and Biochemical Engineering Quarterly, 2007. 21(1): p. 33-45.
29.張貴錢, 利用奈米零價鐵粉處理受鉻污染水體之研究, 2003: 元智大學.
30.何頂立, 利用光催化觸媒結合薄膜程序探討併同處理六價鉻及有機污染物之研究, 2008: 國立臺北科技大學.
31.Shaw, D.J., 膠體及界面化學入門, ed. 張有義、郭蘭生1992: 高立圖書有限公司.
32.王美惠, 微胞薄膜超過濾系統中陽離子界面活性劑再生之研究, 1999: 國立屏東科技大學.
33.Vautier-Giongo, C. and B.L. Bales, Estimate of the ionization degree of ionic micelles based on Krafft temperature measurements. Journal of Physical Chemistry B, 2003. 107(23): p. 5398-5403.
34.李琳、單德芳, 膜技術基本原理1999: 中國清華大學出版社.
35.Mallevialle, J., P.E. Odendaal, and M.R. Wiesner, Water Treatment Membrane Process1996: McGraw-Hill.
36.林子堯, 水中腐質特性對薄膜過濾淨水之影響, 1998: 國立台灣大學.
37.Cheryan, M., Ultrafiltration and microfiltration handbook1998: Technomic Publishing.
38.Cheryan, M. and N. Rajagopalan, Membrane processing of oily streams. Wastewater treatment and waste reduction. Journal of Membrane Science, 1998. 151(1): p. 13-28.
39.Mulder, M., Basic principles of membrane technology1996: Kluwer Academic Publishers.
40.鄭領英、王學松, 膜的高科技應用2003, 五南圖書出版股份有限公司.
41.Bandini, S., J. Drei, and D. Vezzani, The role of pH and concentration on the ion rejection in polyamide nanofiltration membranes. Journal of Membrane Science, 2005. 264(1-2): p. 65-74.
42.Donnan, F.G., The theory of membrane equilibria. Chemical Reviews, 1924. 1(1): p. 73-90.
43.邵剛, 反滲透2000: 冶金工業出版社.
44.高山鎮, 薄膜阻塞控制之研究, 2000: 國立成功大學.
45.張錦松、張錦輝、李孫榮、陳健民、曾如娟, 薄膜分離法1996: 高立圖書有限公司.
46.Govindan, T.S. and S. Sourirajan, Reverse osmosis separation of some inorganic salts in aqueous solution using porous cellulose acetate membranes. IandEC Process Design and Development, 1966. 5(4): p. 422-429.
47.Fane, A.G., P. Beatson, and H. Li, Membrane fouling and its control in environmental applications, in Membrane Technology in Environmental Management2000. p. 303-308.
48.Sablani, S., et al., Concentration polarization in ultrafiltration and reverse osmosis: A critical review. Desalination, 2001. 141(3): p. 269-289.
49.El-Abbassi, A., M. Khayet, and A. Hafidi, Micellar enhanced ultrafiltration process for the treatment of olive mill wastewater. Water Research, 2011. 45(15): p. 4522-4530.
50.Landaburu-Aguirre, J., E. Pongracz, and R.L. Keiski, Separation of cadmium and copper from phosphorous rich synthetic waters by micellar-enhanced ultrafiltration. Separation and Purification Technology, 2011. 81(1): p. 41-48.
51.Staszak, K., B. Konopczyńska, and K. Prochaska, Micellar Enhanced Ultrafiltration as a Method of Removal of Chromium(III) Ions from Aqueous Solutions. Separation Science and Technology, 2012. 47(6): p. 802-810.
52.Samper, E., et al., Removal of metal ions at low concentration by micellar-enhanced ultrafiltration (MEUF) using sodium dodecyl sulfate (SDS) and linear alkylbenzene sulfonate (LAS). Separation and Purification Technology, 2009. 65(3): p. 337-342.
53.Chen, S.-S., et al., Concentration and purification of chromate from electroplating wastewater by two-stage electrodialysis processes. Journal of Hazardous Materials, 2009. 161(2-3): p. 1075-1080.
54.Aponte, V.M. and G. Colon, Sodium chloride removal from urine via a six-compartment ED cell for use in advanced life support systems (Part 2: Limiting current density behavior). Desalination, 2001. 140(2): p. 133-144.
55.Chao, Y.-M. and T.M. Liang, A feasibility study of industrial wastewater recovery using electrodialysis reversal. Desalination, 2008. 221(1-3): p. 433-439.
56.Juang, R.S. and L.C. Lin, Treatment of complexed copper(II) solutions with electrochemical membrane processes. Water Research, 2000. 34(1): p. 43-50.
57.Bejankiwar, R.S., Electrochemical treatment of cigarette industry wastewater: Feasibility study. Water Research, 2002. 36(17): p. 4386-4390.
58.周志豪, 利用超音波與電化學法處理螯合性含銅廢水, 2005: 朝陽科技大學.
59.Mohammadi, T., et al., Separation of copper ions by electrodialysis using Taguchi experimental design. Desalination, 2004. 169(1): p. 21-31.
60.Korngold, E., Korosy, F D., Rahav, R. and Taboch, M. F, Fouling of Anion-Selective Membrane in Electrodialysis. Desalination, 1970. 8: p. 195-220.
61.Lambert, J., et al., Separation of sodium ions from trivalent chromium by electrodialysis using monovalent cation selective membranes. Journal of Membrane Science, 2006. 280(1-2): p. 219-225.
62.Tor, A., et al., Simultaneous recovery of Cr(III) and Cr(VI) from the aqueous phase with ion-exchange membranes. Desalination, 2005. 171(3): p. 233-241.
63.Kuperkar, K., et al., Formation and Growth of Micelles in Dilute Aqueous CTAB Solutions in the Presence of NaNO3 and NaClO3. Journal of Surfactants and Detergents, 2010. 13(3): p. 293-303.
64.Iqbal, J., et al., Removal of arsenic from groundwater by micellar-enhanced ultrafiltration (MEUF). Chemosphere, 2007. 66(5): p. 970-976.
65.Lopez-Diaz, D., et al., A rheological study in the dilute regime of the worm-micelle fluid made of zwitterionic surfactant (TDPS), anionic surfactant (SDS), and brine. J Colloid Interface Sci, 2010. 348(1): p. 152-158.
66.Juang, R.-S., S.-H. Lin, and L.-C. Peng, Flux decline analysis in micellar-enhanced ultrafiltration of synthetic waste solutions for metal removal. Chemical Engineering Journal, 2010. 161(1-2): p. 19-26.
67.Ghosh, G. and P.K. Bhattacharya, Hexavalent chromium ion removal through micellar enhanced ultrafiltration. Chemical Engineering Journal, 2006. 119(1): p. 45-53.
68.Kamble, S.B. and K.V. Marathe, Micellar-enhanced ultrafiltration of chromate [Cr(VI)] ion from aqueous streams by using cationic surfactant. Indian Journal of Chemical Technology, 2005. 12(4): p. 393-400.
69.Basar, C.A., et al., Removal of CrO4 anions from waters using surfactant enhanced hybrid PAC/MF process. Separation and Purification Technology, 2006. 48(3): p. 270-280.
70.Sethi, S. and M. Wiesner, Computer simulation model for performance and cost modeling of ultrafiltration and microfiltration., 1991: Rice University.
71.Bade, R., et al., Micellar enhanced ultrafiltration (MEUF) and activated carbon fibre (ACF) hybrid processes for chromate removal from wastewater. Desalination, 2008. 229(1-3): p. 264-278.
72.Zhang, X., et al., Photodegradation of acetaminophen in TiO2 suspended solution. J Hazard Mater, 2008. 157(2-3): p. 300-307.
73.Wang, Z. and R.G. Larson, Molecular Dynamics Simulations of Threadlike Cetyltrimethylammonium Chloride Micelles: Effects of Sodium Chloride and Sodium Salicylate Salts. Journal of Physical Chemistry B, 2009. 113(42): p. 13697-13710.
74.Daniş, U. and B. Keskinler, Chromate removal from wastewater using micellar enhanced crossflow filtration: Effect of transmembrane pressure and crossflow velocity. Desalination, 2009. 249(3): p. 1356-1364.
75.Kabay, N., et al., Effect of feed characteristics on the separation performances of monovalent and divalent salts by electrodialysis. Desalination, 2003. 158(1-3): p. 95-100.
76.熊楚強、王月, 電化學2008: 新文京開發出版股份有限公司.



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top