( 您好!臺灣時間:2021/07/28 12:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):Shing-Yi Li
論文名稱(外文):Effects of Thermal Desorption on Removal Effectiveness of Mercury and Dioxin Contaminants
外文關鍵詞:mercuryPCDD/Fsthermal desorptionsequential extraction procedure
  • 被引用被引用:8
  • 點閱點閱:485
  • 評分評分:
  • 下載下載:78
  • 收藏至我的研究室書目清單書目收藏:1
本研究主要藉由中石化(CPDC)之熱脫附實驗室,以模廠級旋轉窯進行土壤熱脫附實驗。首先以實驗室管柱試驗初步定義土壤受熱影響程度與可能操作之脫附條件(i.e., 較適脫附操作溫度),之後將該條件配合不同之脫附溫度與延時獲取放大數據後,應用於旋轉窯反應器,以獲得於不同脫附條件下土壤質地變化與土壤中汞與戴奧辛殘量變化情形。實驗測試包含四個土樣(以A、B、D、E代碼表示)於350、450、500、550、700及800℃脫附處理之物化特性、汞與 PCDD/Fs 殘量變化情形、汞型態分佈及戴奧辛物種分佈。結果顯示加熱後土壤pH皆由原本的中性或弱鹼轉變為強鹼性,土壤中有機質含量隨加熱溫度升高而減少。所有土樣中之汞(6.7–480 mg kg-1)經500℃持溫0.5小時模廠熱脫附條件下,濃度均可降低至管制標準以下(20 mg kg-1),PCDD/Fs 毒性當量亦可低於管制標準(1000 ng I-TEQ kg-1)。PCDD/Fs經低溫熱脫附試驗下(350℃、450℃),高氯PCDD/Fs脫氯分解形成低氯PCDD/Fs。原始土壤中 PCDD/Fs 組成顯示,OCDD及OCDF為主要化合物,熱脫附前與熱脫附後土壤中所含 PCDD/Fs 則多以 PCDD為主。汞之型態分佈顯示,熱脫附前與熱脫附後之型態分佈均以殘餘態為主,顯示該場址之汞不論處理前後其生物可利用性均偏低。建議未來可測試較低脫附溫度以節省能耗。考慮後續土壤再利用,亦可考量於明火條件下適度降低熱脫附處理溫度。本研究促進瞭解污染物經熱處理後之再分配行為,期許所得結果能做為未來實廠建構與熱脫附參數選擇之依據。

This study examines the effectiveness of thermal desorption of CPDC’s contaminated soils using a bench-scale column reactor and a pilot-scale rotary reactor. The test parameters include desorption temperature, duration, and carrier gas flow rate. bench-scale column reactor is used to preliminarily understand the thermal parameters of soils. Four soil samples (A, B, D, E) contained various amounts of Hg and PCDD/Fs were then tested for their desorption properties at 350, 450, 500, 550, 700 and 800℃. The resulting physical and chemical properties and distribution of mercury fractionations and dioxin profiles were then accessed. The experimental results showed that the soil pH changed from neutral or weak basic into a strongly basic. Soil organic matter content decreased with elevating the desorption temperature. At all of the test temperatures, Hg concentration can be reduced to < 20 mg kg-1, the soil standard by Taiwan EPA, from the concentrations between 6.7–480 mg kg-1. The TEQ of PCDD/Fs at 500℃ for 0.5 hr after treatment reduced to < 1000 ng I-TEQ kg-1. High chlorine PCDD/Fs dechlorination decomposition to low chlorine PCDD / Fs at law temperatures (350, 450). OCDD and OCDF were the major dioxin homologues in the soils, before and after thermal desorption. Mercury fractionation examinations showed that mercury was mainly in residual form before and after thermal desorption. These results suggested that the bioavailability of mercury in the contaminated site was relatively low. Considering reutilization of thermally treated soil, a lower desorption temperature can be tested on the targeting soils to save energy under the direct-heating desorption operations. This study provided a better comprehension in the repartitioning of these contaminants in soil. Results presented here may provide useful suggestions for the scale-up thermal treatment processes in the future.

摘要 I
致謝 V
目錄 VI
表目錄 IX
圖目錄 XI
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 3
第二章 文獻回顧 4
2.1 汞污染物介紹 4
2.1.1 汞之物理化學特性 4
2.1.2 汞之來源 6
2.1.3 汞污染物之型態與危害性 7
2.1.4 汞在土壤中的傳輸現象 9
2.2 PCDD/Fs 污染物介紹 11
2.2.1 PCDD/Fs 之物理化學特性 11
2.2.2 PCDD/Fs 之來源 14
2.2.3 污染場址附近土壤中 PCDD/Fs 之特徵剖面 16
2.2.4 PCDD/Fs 之形成機制 16
2.2.5 PCDDs 與 PCDFs 形成機制之相異處 20
2.2.6 PCDD/Fs 對人體健康及環境的可能影響 21
2.2.7 PCDD/Fs 在土壤之傳輸 25
2.3 土壤污染整治技術 26
2.3.1 汞污染之整治技術 26
2.3.2 PCDD/Fs 污染之整治技術 28
2.4 熱脫附整治技術 31
2.5 汞序列萃取與物種鑑定 37
第三章 實驗材料與方法 41
3.1 實驗材料 43
3.2 實驗方法及步驟 45
3.2.1 土壤基本理化性質分析方法 45
3.2.2 實驗步驟 49
第四章 結果與討論 60
4.1 土壤基本性質分析 60
4.1.1 熱脫附試驗前原始土壤基本性質分析 60
4.1.2 熱脫附試驗後土壤基本性質分析 65
4.2 土壤污染之總量分析 75
4.2.1 熱脫附試驗前原始土壤之汞含量分析 75
4.2.2 熱脫附試驗前原始土壤之 PCDD/Fs 分析 76
4.2.3 熱脫附管柱試驗後土壤之總汞含量分析 78
4.2.4 熱脫附管柱試驗後土壤之 PCDD/Fs 含量分析 81
4.2.5 模廠級熱脫附試驗後土壤之總汞含量分析 95
4.2.6 模廠熱脫附試驗後土壤之 PCDD/Fs 含量分析 97
4.3 熱重分析試驗 106
4.4 土壤中汞序列萃取 112
4.4.1 熱脫附前土壤汞型態分佈 112
4.4.2 熱脫附後土壤汞型態分佈 113
4.5 土壤中 PCDD/Fs 物種分佈 117
4.5.1 熱脫附前土壤中 PCDD/Fs 分佈 117
4.5.2 熱脫附後土壤中 PCDD/Fs 分佈 118
第五章 結論與建議 131
5.1 結論 131
5.2 建議 132
參考文獻 133

Alcock, R. E., Jones, K. C., “Pentachlorophenol (PCP) and chloranil as PCDD/F sources to sewage sludge and sludge amended soils in the UK,” Chemosphere, vol. 35, 1997, pp. 2317-2330.
Alloway, B. J., “The origins of heavy metals in soil,” in Heavy Metals in Soils, Blackie, USA and Canada: Halsted Press, 1990.
ATSDR, “2007 CERCLA priority list of hazardous substances, Agency for Toxic Substances and Disease Registry,” 2011. <http://www.atsdr.cdc.gov/cercla/07list.html>
Ballerstedt, H., Kraus, A., Lechner, U., “Reductive dechlorination of 1,2,3,4- tetrachlorodibenzo-p-dioxin and its products by anaerobic mixed cultures from Saale river sediment,” Environmental Science and Technology, vol. 31, 1997, pp. 1749-1753.
Ballschmiter, K., Zoller, W., Buchert, H., Class, T. F. Z. Analytical Chemistry, vol. 322, 1985, pp. 587.
Biester, H., Müller, G., and SchÖler, H. F., “Binding and mobility of mercury in soils contaminated by emissions from chlor-alkali plants,” Science of the Total Environment, vol. 284, 2002, pp. 191-203.
Bloom, N. S., Preus, E., Kation, J., and Hiltner, M., “Selective extractions to assess the biogeochemically relevant fractionation of inorganic mercury in sediments and soils,” Analytica Chimica Acta, vol. 479, 2003, pp. 233-248.
Braga, A. M. C. B., Krauss, T., Santos, C. R. R. D., Souza, P. M. D., “PCDD/F-contamination in a hexachlorocyclohexane waste site in Rio de Janeiro, Brazil,” Chemosphere, vol. 46, 2002, pp.1329-1333.
Busto, Y., Cabrera, X., Tack, F. M. G., Verloo, M. G., “Potential of thermal treatment for decontamination of mercury containing wastes from chlor-alkali industry,” Journal of Hazardous Materials, vol. 186, 2011, pp. 114-118.
Buttner, W. J., Findlay, M., Vichers, W., Davis, W. M., Cespendes, E. R., Cooper, S., Adams, J. W., “In situ detection of trinitrotoluene and other nitrated explosives in Soils,” Analytica Chimica Acta, vol. 341, 1997, pp. 63-71.
Cains, P. W., Mccausland, L. J., Fernandes, A. R., Dyke, P., “Polychlorinated dibenzo-p-dioxins and dibenzofurans Formation in incineration: effects of fly ash and carbon source,” Environmental Science and Technology, vol. 31, 1997, pp. 776-785.
Chang, T. C., Yen, J. H., “On-site mercury-contaminated soils remediation by using thermal desorption technology,” Journal of Hazardous Materials, vol. 128, 2006, pp. 208-217.
Chellamani, A., Alhajia, N. I., Rajagopalb, S., Sevvelc, R., Srinivasanc, C., “Mechanism of oxidation of organic sulphides by oxo (salen) manganese (v) complexes,” Tetrahedron, vol. 51, 1995, pp. 12677-12698.
Chen, A. S. C., Gavaskar, A. R., Alleman, B. C., Massa, A., Timberlake, D., Drescher, E. H., “Treating contaminated sediment with a two-stage base-catalyzed decomposition (BCD) process: bench-scale evaluation,” Journal of Hazardous Materials, vol. 56, 1997, pp. 287-306.
Cleverly, D., Schaum, J., Winters, D., Schweer, G., “Inventory of sources and releases of dioxin-like compounds in the United States,” Organohalogen Compounds, vol. 41, 1999, pp. 467-470.
Cudahy, J. J., Zink, R. P., Yezzi, J. J. Jr., Rosenthal, S. I., “Treatment of nonhazardous petroleum-contaminated soils by thermal desorption technologies,” Journal of the Air and Waste Management Association, vol. 43, 1993, pp. 1512-1525.
Dermatas, D., Shen, G., Chrysochoou, M., Grubb, D. G., Menounou, N., Dutko, P., “Pb speciation versus TCLP release in army firing range soils,” Journal of Hazardous Materials, vol. 136, 2006, pp. 34-46.
Depercin, P. R., “Application of thermal desorption technologies to hazardous waste sites,” Journal of Hazardous Materials, vol. 40, 1995, pp. 203-209.
Dickson, L. C., Lenoir, D., Hutzinger, O., “Quantitative comparison of de novo and formation of polychlorinated dibenzo-p-dioxins under simulated municipal solid waste incinerator postcombustion conditions,” Environmental Science and Technology, vol. 26, 1992, pp. 1822-1828.
Dickson, L. C., Lenoir, D., Hutzinger, O., “Surface-catalyzed formation of chlorinated dibenzodioxins and dibenzofurans during incineration,” Chemosphere, vol. 9, 1989, pp. 277-282.
Dwernychuk, L. W., Cau, H. D., Hatfield, C. T., Boivin, T. G., Hung, T. M., Dung, P. T., Thai, N. D., “Dioxin reservoirs in southern Viet Nam–A legacy of Agent Orange,” Chemosphere, vol. 47, 2002, pp. 117-137.
Dyke, P. H., Foan, C., Wenborn, M., Coleman., P. J., “A review of dioxin releases to land and water in the UK,” Science of The Total Environment, vol. 207, 1997, pp. 119-131.
Everaert, K., Baeyens, J., “The formation and emission of dioxins in large scale thermal processes,” Chemosphere, vol. 46, 2002, pp. 439-448.
Farooq, S., Kurucz, C. N., Waite. T. D., Cooper, W. J., “Disinfection of wastewaters: high - energy electron vs gamma irradiation,” Water Research, vol. 27, 1993, pp. 1177-1184.
Hagenmaier, H., Kraft, M., Brunner, H., Haag, R., “Catalytic effects of fly ash from waste incineration facilities on the decomposition of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans,” Environmental Science and Technology, vol. 21, 1987, pp. 1080-1084.
Harjanto, S., Kasai, E., Terui, T., Takashi, T., “Behavior of dioxin during thermal remediation in the zone combustion process,” Chemosphere, vol. 47, 2002, pp. 687-693.
Hell, K., L. Stieglitz, E. R. Altwicker, R. Addink, Will, R., “Reactions of 2,4,6-trichlorophenol on model fly ash: oxidation to CO and CO2, condensation to PCDD/F and conversion into related compounds,” Chemosphere, vol. 42, 2001, pp. 697-702.
Huang, Y. T., Hseu, Z. Y., Hsi, H. C., “Influences of thermal decontamination on mercury removal, soil properties, and repartitioning of coexisting heavy metals,” Chemosphere, vol. 84, 2011, pp. 1244-1249.
Issaro, N., Abi-Ghanem, C., Bermond, A., “Fractionation studies of mercury in soils and sediments: A review of the chemical reagents used for mercury extraction,” Analytica Chimica Acta, vol. 631, 2009, pp. 1-12.
Iino, F., Imagawa, T., Takeuchi, M., Sadakata, M., Weber, R., “Formation rate of polychlorinated dibenzofurans and dibenzo-p-dioxins from polycyclic aromatic hydrocarbons activated carbon and phenol,” Chemosphere, vol. 39, 1999, pp. 2749-2756.
Kao, C. M., Chen, S. C., Liu, J. K., Wu, M. J., “Evaluation of TCDD biodegradability under different redox conditions,” Chemosphere, vol. 44, 2001, pp.1447-1454.
Kinoshita, K., Kim. K., “Carbon: Electrochemical and physicochemical properties,” John Wiley and Sons, 1987.
Kucharski, R., Zielonka, U., Sas-Nowosielska, A., Kuperberg, J. M., Worsztynowicz, A., Szdzuj, J., “A method of mercury removal from topsoil using low-thermal application,” Environmental Monitoring and Assessment, vol. 104, 2005, pp. 341-351.
Kunkel, A. M., Seibert, J. J., Elliot, L. J., Ricci, K., Lynn, E. K., Pope, G. A., “Remediation of elemental mercury using in situ thermal desorption (ISTD),” Environmental Science and Technology, vol. 40, 2006, pp. 2384-2389.
Lange, N. A., “Handbook of Chemistry, McGraw–Hill,” New York, 1976, pp. 288-290.
Lee, W. J., Shih, S. I., Chang, C. Y., Lai, Y. C., Wang, L. C., Chang-Chien, G. P., “Thermal treatment of polychlorinated dibenzo-p-dioxins and dibenzofurans from contaminated soils,” Journal of Hazardous Materials, vol. 106, 2008, pp. 220-227.
Leeuwen, F. X. R., Feeley, M., Schrenk, D., Larsen, J. C., Farland, W., Younes, M., “Dioxins: WHO’s tolerable daily intake (TDI) revisited,” Chemosphere, vol. 40, 2000, pp. 1095-1101.
Liu, G., Cabrera, J. Allen, M., Cai, Y., “Mercury characterization in a soil sample collected nearby the DOE Oak Ridge reservation utilizing sequential extraction and thermal desorption method,” Science of The Total Environment, vol. 369, 2006, pp. 384-392.
Luijk, R., Akkerman, D. M., Slot, P., Olie, K., Kapteijn, F., “Mechanism of formation of polychlorinated dibenzo-p-dioxins and dibenzofurans in the catalyzed combustion of carbon,” Environmental Science and Technology, vol. 28, 1994, pp. 312-321.
Lundin, L., Marklund, S., “Thermal degradation of PCDD/F, PCB and HCB in municipal solid waste ash,” Chemosphere, vol. 67, 2007, pp. 474-481.
Mandal P. K., “Dioxin: a review of its environmental effects and its aryl hydrocarbonreceptor biology,” Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, vol. 175, 2005, pp. 221-230.
Maserti, B. E., Ferrare R., “Mercury in plants, soil and atmosphere near a chlor–alkali complex,” Water, Soil and Air Pollution, vol. 56, 1991, pp. 15-20.
Masunaga, S., Takasuga, T., Nakanishi, J., “Dioxin and dioxin-like PCB impurities in some Japanese agrochemical formulations,” Chemosphere, vol. 44, 2001, pp. 873-885.
May, G., “Chloracne from the accidental production of tetrachloro-benzodioxin,” The American Journal of Medicine, vol. 39, 1982, pp. 128-135.
McKay, G., “Dioxin characterisation, formation and minimisation during municipal solid waste (MSW) incineration: review,” Journal of Chemical Engineering, vol. 86, 2002, pp. 343-368.
McLachlan, M.S., “A simple model to predict the accumulation of PCDD/Fs in an agricultural food chain,” Chemosphere, vol. 34, 1997, pp. 1263-1276.
Milligan, M. S., Altwicker, E., “The relationship between de novo synthesis of polychlorinated dibenzo-p-dioxins and dibenzofurans and low-temperature carbon gasification in fly ash,” Environmental Science and Technology, vol. 27, 1993, pp. 1595-1601.
Mori, T., Kondo, R., “Oxidation of chlorinated dibenzo-p-dioxin and dibenzofuran by white-rot fungus, Phlebia lindtneri,” FEMS Microbiology Letters, vol. 216, 2002, pp. 223-227.
Mucka, V., Silber, R., Pospisil, M., Camra, M., Bartonicek, B., “Radiolytic dechlorination of PCBs in presence of active carbon, solid oxides, bentonite and zeolite,” Radiation Physics and Chemistry , vol. 59, 2000, pp. 399-404.
Navarro, A., Cañadas, I., Martinez, D., Rodriguez, J., Mendoza, J. L., “Application of solar thermal desorption to remediation of mercury-contaminated soils,” Solar Energy, vol. 83, 2009, pp. 1405-1414.
Neculita, C. M., Zagury, G. J., and Deschenes, L., “Mercury speciation in highly contaminated soils form chlor-alkali plants using chemical extractions,” Journal of Environmental Quality, vol. 34, 2005, pp. 255-262.
Nickelsen, M. G., Cooper, W. J., Kurucz, C. N., Waite, T. D.,“Removal of benzene and selected alkyl substituted benzenes from aqueous solution utilizing continuous high-energy electron irradiation,” Environmental Science and Technology, vol. 26, 1992, pp. 144-152.
Ogura, I., Masunaga, S., Nakanishi, J., “Congener-specific characterization of PCDDs/PCDFs in atmospheric deposition: Compairson of profiles among deposition, source, and environmental sink,” Chemosphere, vol. 45, 2001, pp. 173-183.
Okamoto, Y., Tomonari, M., “Formation pathways from 2,4,5-trichlorophenol (TCP) to polychlorinated dibenzo-p-dioxins (PCDDs): An ab initio study,” Journal of Physical Chemistry, vol. 103, 1999, pp. 7686-7691.
Olie, K., Vermeulen, P. L., Hutzinger, O., “Chlorodibenzo-p-dioxins and chlorodibenzofurans are trace components of fly ash and flue gas of some municipal incinerators in the Netherland,” Chemosphere, vol. 6, 1997, pp. 455-459.
Prashant, S., Kulkarni, João, G. C., Afonso, C. A. M.,“Dioxins sources and current remediation technologies – A review,” Environment International, vol. 34, 2008, pp. 1287-1292.
Rodríguez, O., Padilla, I., Tayibi, H., López-Delgado, A., “Concerns on liquid mercury and mercury-containing wastes: A review of the treatment technologies for the safe storage,” Journal of Environmental Management, vol. 30, 2012, pp. 197-205.
Rule, J. H., Iwashchenko, M. S., “Mercury concentrations in soil adjacent to a former chlor–alkali plant,” Journal of Environmental Quality, vol. 27, 1998, pp. 31-37.
Safe, S., “Polychlorinated biphenyls (PCBs) and polybrominated biphenyls (PBBs):biochemistry, toxicology and mechanism of action,” Critical Reviews in Toxicology, vol. 13, 1984, pp. 319-393.
Saldana, M. D. A., Nagpal, V., Guigard, S. E., “Remediation of contaminated soils using supercritical fluid extraction: a review (1994–2004) ,” Environmental Technology, vol. 26, 2005, pp. 1013-1032.
Schwarz, G., Steiglitz, L., Roth, W., “Formation conditions of several polychlorinated compound classes on fly ash of a municipal waste incinerator,” Organohalogen Compounds, vol. 3, 1990, pp. 169-172.
Seija, S., Jaakko, P., “Degradation half-life times of PCDDs, PCDFs and PCBs for environmental fate modeling,” Chemosphere, vol. 40, 2000, pp. 943-949.
Shatalov, V., Malanichev, A., Vulykh, N., Berg, T. and Manø, S., “Assessment of POP transport and accumulation in the environment,” EMEP Report , 2002.
Shen, Z., Zhang, J., Qu, L., Dong, Z., Zheng, S., Wang, W., “A modified EK method with an I-/I2 lixiviant assisted and approaching cathodes to remedy mercury contaminated field soils,” Environmental Geology, vol. 57, 2009, pp. 1399-1407.
Silbergeld, E. K., Mattison, D. R., “Experimental and clinical studies on the reproductive toxicology of 2,3,7,8-tetrachlorodibenzo-p-dioxin,” The American Journal of Medicine, vol. 11, 1987, pp. 131-144.
Smith, M, T., Berruti, F., Mehrotra, A. K., “Thermal desorption treatment of contaminated soils in a novel batch thermal reactor,” Industrial Engineering and Chemistry Research, vol. 40, 2001, pp. 5421-5430.
Soon, Y. K., Bates, T. E., “Chemical pools of cadmium, nickel and zinc in polluted soil and some preliminary indications of their availability to plants,” Soil Science, vol. 33 , 1982, pp. 477-488.
Sertsu, S. M., Sánchez, P. A., “Effects of heating on some changes in soil properties in relation to an Ethiopian land management practice,” Soil Science, vol. 42, 1978, pp. 940-944.
Tan, P., Hurtado, I., Neusch?utz, D., Eriksson, G., “Thermodynamic modeling of PCDD/Fs formation in thermal processes,” Environmental Science and Technology, vol. 35 , 2001, pp. 1867-1874.
Tessier, A., Campbell, P. G. C., Bisson, M., “Sequential extraction procedure for the speciation of particulate trace metals,” Analytical Chemistry, vol. 51, 1979, pp. 844-851.
Ulery, A. L., Graham, R. C., “Forest fire effects on soil color and texture,” Soil Science, vol. 57, 1993, pp. 135-140.
UNEP Chemicals, “Global mercury assessment,” Geneva, Switzerland, 2002.
U.S. EPA, “Estimating exposure to dioxin–like compounds, volume II-properties, sources, occurrence and background exposures,” EPA/006/6-88/005Ca Office of Research and Development, 1994a.
U.S. EPA, “Estimating exposure to dioxin-like compounds, volume III-site specific assessment procedures. external review draft,” EPA/600/6-88/005Cc, Office of Research and Development, 1994b.
Vogg, H., Stieglitz, L., “Thermal behavior of PCDD/PCDF in fly ash from municipal incinerators,” Chemosphere, vol. 15,1986, pp. 1373-1378.
Wagrowski, D. M., Hites, R. A., “Polycyclic aromatic hydrocarbon accumulation in urban, suburban, and rural vegetation,” Environmental Science and Technology, vol. 31, 1997, pp. 279-282.
Washburn, C., Hill, E.,“Mercury retorts for the processing of precious metals and hazardous wastes,” Journal of the Minerals, vol. 55, 2003, pp. 45-50.
Weber, R., Yoshida, S., Miwa, K., “PCB destruction in subcritical and supercritical water – evaluation of PCDF formation and initial steps of degradation mechanisms,” Environmental Science and Technology , vol. 36, 2002, pp. 1839-1844.
WHO Regional Office for Europe, Copenhagen, “PCBs, PCDDs and PCDFs: prevention and control of accidental and environmental exposures,” Environmental Health Series, vol. 32, 1987.
Wikström, M., Marklund, S., “The influence of level and chlorine source on the formation of mono- to octa-chlorinated dibenzo-p-dioxins, dibenzofurans and coplanar polychlorinated biphenyls during combustion of an artificial municipal waste,” Chemosphere, vol. 43, 2001, pp. 227-234.
Zhao, C. L., Hirota, K., Taguchi, M., Takigami, M., Kojima, T., “Radiolytic degradation of octachlorodibenzo-p-dioxin and octachlorodibenzofuran in organic solvents and treatment of dioxin-containing liquid wastes,” Radiation Physics and Chemistry , vol. 76, 2007, pp. 37-45.
李俊賢、詹長權、王榮德,從戴奧辛毒性談台灣醫療事業廢棄物焚化處理,中華衛誌,vol.18,1999,pp. 237-240。
高秋實,環境化學,科技圖書出版社,1989,pp. 203-244 。
鐘仁棋,台灣地區農業土壤戴奧辛之調查研究,行政院環保署環境檢驗所環境調查研究年報9,2002,pp. 41-88

註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top