跳到主要內容

臺灣博碩士論文加值系統

(18.206.76.226) 您好!臺灣時間:2021/07/30 20:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林志誠
研究生(外文):Chih-Cheng Lin
論文名稱:銅鹽含浸沸石分子篩去除模擬燃煤煙道氣中氣相汞之探討
論文名稱(外文):Removal of Gaseous Mercury from Simulated Coal-Combustion Flue Gases Using Copper-Impregnated Zeolite Molecular Sieve
指導教授:席行正
口試委員:林錕松章裕民張木彬
口試日期:2012-07-06
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:環境工程與管理研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:103
中文關鍵詞:銅鹽含浸煙道氣MCM-48
外文關鍵詞:mercuryCu impregnationflue gasMCM-48
相關次數:
  • 被引用被引用:0
  • 點閱點閱:358
  • 評分評分:
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:0
汞一直被視為具有高毒性且能於人體以及動物體內生物累積的高毒性污物,汞物種中又以甲基汞的毒性最高。而燃煤過程所排放的汞往往是最大的人為汞產生源,是近年來備受關注的環境議題。為提升燃煤電廠吸附劑噴入法所用之吸附劑的吸附效能,故許多材料例如活性碳、沸石分子篩都被開發應用作為吸附劑。天然沸石是一種具經濟效益且有高陽離子交換能力的材料,而MCM-48是一種具有中孔立體結構的沸石,可用來作為良好的載體吸附劑。為了增加吸附劑的吸附容量,通常會對吸附劑進行改質。銅鹽於近年也被視為另一可用之含浸試劑,此類金屬鹽類含浸之吸附劑因其具有氧化元素汞能力,能同時提高微量汞吸附量及增加氧化元素汞的效能。故本研究將評估經銅鹽含浸後MCM-48的沸石材料其物理化學性質,並使用此材料來吸附元素汞,以便更了解表面性質與汞的平衡吸附和氧化效能的關係。銅鹽的含浸比例分別為2、4、8、16 wt%,含浸程序為將6 g原始材料MCM-48浸泡於30 mL之CuCl2•2H2O水溶液,然後於60–70°C下以磁石攪拌6 hr,帶水溶液完全蒸發後將樣品至於120°C之烘箱烘乾。汞吸附試驗在模擬煙氣與氮氣兩種環境條件下進行。
整體而言,樣品經含浸過後其比表面積與總孔體積皆有略微的下降,而微孔比表面積與微孔體積則有上升的趨勢。汞吸附實驗結果顯示,於氮氣環境下進行吸附實驗其含浸比例4%與8%的樣品吸附量高,分別為1329與1325 μg g-1,值得一提的是當含浸比例超過10%後吸附效果會有下降的情形;但不論在煙氣環境或氮氣環境下,經銅鹽含浸處理過後,其對於汞之吸附量皆較原樣來的高。從氧化實驗中可發現,在模擬煙道氣條件下,經銅鹽含浸4%與16%的樣品平均氧化百分比皆超過50%。而在動力模式分析方面,在氮氣條件與煙氣條件下皆以零階模擬最符合實驗的結果。


Mercury (Hg) emissions from nature and anthropogenic sources have been major focus of environmental works due to their considerable amount and severe health effects. Hg, especially organic Hg, has been recognized to be toxic and can bioaccumulate in human body and animal. Coal-burning power plants are the largest source of Hg pollution. Sorbent injection has been referred to as one of the best available control technologies for removal of low-concentration mercury (e.g., ?g m-3 levels) from coal-fired utility flue gases. Several materials have shown to be excellent sorbents for removing mercury, such as activated carbon, molecular sieve and zeolite. Natural zeolite has recently been found as a cost-effective material due to its low cost and high capability to adsorption and cation exchange those cause high adsorption capacities. MCM-48 is a type of zeolite with mesostructure that could be a good material as Hg sorbent. In order to enhance the adsorption capacity of sorbents for elemental mercury (Hg0), chemical treatments are often employed on various sorbents. A few studies have shown that copper salts can be feasible reagents to improve the control effectiveness of sorbents via both adsorption and enhancing oxidation of Hg0 into Hg2+. This research investigates the effects of CuCl2 impregnation on the physical/chemical properties and Hg0 adsorption of zeolites, with an emphasis on better understanding the resulting surface properties of zeolites samples on mercury adsorption equilibrium and oxidation efficiency.
CuCl2-impregnated zeolites with a targeting Cu content of 2, 4, 8, and 16 wt%, respectively, were prepared by immersing 6 g raw zeolites in a 30 ml CuCl2•2H2O solution. The solution was magnetically stirred at 60–70 °C for about 6 hr, allowing the water completely vaporized. The sample was subsequently air-dried in a 120 °C oven to complete the impregnation process.
Overall, the CuCl2 impregnation caused a decrease in total surface area and pore volume, but led to an increase in micropore surface area and micropore volume compared to those of the raw sample. The Hg adsorption capacity of MCM-4% and MCM-8% are 1329 and 1325 μg g-1, respectively. When the CuCl2 impregnation content was > 10 wt%, the performance of removing Hg0 for CuCl2-impregnated zeolites decreased slightly. The Hg0 adsorption capacity of CuCl2-impregnated zeolites was greater than those of the untreated sample under both N2 and flue gas conditions. The oxidation experimental results showed that the average oxidation percentage of MCM-4% and MCM-16% are > 50% in the flue gas condition. Kinetic analyses showed that the zero-order model can best fit the adsorption results under N2 and flue gas condition.


摘要 I
ABSTRACT III
致謝 V
目錄 VI
表目錄 IX
圖目錄 X
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 3
第二章 文獻回顧 4
2.1汞之基本物化特性及其污染物流布 4
2.1.1汞之基本物化特性 4
2.1.2 含汞污染物之流布 5
2.2汞對人體健康之危害 10
2.2.1金屬汞 10
2.2.2無機汞 10
2.2.3有機汞 11
2.3燃煤煙道氣中汞之轉換機制 11
2.4燃煤電廠之汞污染防治方法 17
2.4.1 活性碳過濾床 18
2.4.2 溼式煙道脫硫設備 18
2.4.3電催化氧化 19
2.4.4 吸附劑噴入法 20
2.5沸石材料簡介 21
2.5.1沸石種類與型式 23
2.5.2 中孔洞沸石MCM-48簡介 26
2.5.3 MCM–48的應用 29
2.6吸附劑吸附原理 30
2.6.1 吸附劑吸附機制 30
2.6.2 等溫吸附曲線 33
2.6.3 吸附遲滯 36
2.7吸附動力模式 38
2.7.1擬一階吸附動力模式 38
2.7.2 擬二階吸附動力模式 39
2.7.3 零階吸附動力模式 40
2.8 銅鹽含浸沸石分子篩之吸附效果評估 40
第三章 研究方法與實驗材料 43
3.1 實驗材料 44
3.2 實驗設備 46
3.2.1 製備氯化銅含浸沸石製程與設備 46
3.2.2 吸附劑基本物理與化學性質分析設備 46
3.2.3 汞吸附實驗裝置 47
3.3 實驗方法 56
3.3.1 汞吸附實驗 56
3.3.2 吸附劑物化特性分析 58
第四章 結果與討論 61
4.1銅鹽含浸MCM-48物理特性分析 61
4.1.1 MCM-48表面結構觀察 61
4.1.2 等溫吸附曲線 61
4.1.3 BET比表面積與孔體積分析 64
4.1.4 孔徑分布 68
4.2 銅鹽含浸MCM-48化學特性分析 70
4.2.1 XPS化學表面官能基分析 70
4.3 汞吸附實驗結果探討 74
4.3.1 氮氣條件下經銅鹽含浸改質之MCM-48吸附實驗結果 74
4.3.2 模擬煙道氣條件下之銅含浸改質MCM-48吸附實驗結果 78
4.4 氧化效果評估 81
4.5 吸附動力模擬分析 84
第五章 結論 94
5.1 結論 94
5.2 建議 95
參考文獻 96


Behrens, P., Stucky, G. D., “Ordered molecular arrays as templates: A new approach to the synthesis of mesoporous materials,” Angewandte Chemi, vol. 32, 2003, pp. 696-699.
Bhatia, S., “Zeolite catalysis principles and application,” CRC press, Florida, 1990.
Brunner, G. O., “Criteria for the evaluation of hypothetical zeolite frameworks,” Zeolite, vol. 10, 1990, pp. 612-614.
Chen, S., Rostam-Abadi, M., Hsi, H. C., Rood, M. J., Chang, R., “Preparation and evaluation of novel activated carbons from Illinois coal for mercury removal; final report,” Illinois Clean Coal Institute: Carterville, Illinois, 1996.
Chu, P., Goodman, G., Roberson, R., “Total and speciated mercury emission from U.S coal fired power plants,” Proceedings of the Air Quality Ⅱ: Mercury, Trace Elements, and Particulate Matter Conference, 2000.
Carey, T. R., Richardson, C. F., Machac, J., Meserole, F. B., “Laboratory investigation and model development of flue gas mercury adsorption using solid sorbents,” Palo Alto, California, 1998.
Carey, T. R., Skarupa, R. C., Harrove, O. W., “Enhanced control of mercury and other HAPs by innovative modifications to wet FGD processing,” Phase Ι Report for the U.S. Department of Energy, August, 1997.
Dastgheib, S. A., Rockstraw, D. A., “A model for the adsorption of single metal ion solutes in aqueous onto activated carbon produced from pecan shells,” Carbon, vol. 40, 2002, pp. 1843-1851.
de Bore, J. H., “The structure and properties of porous materials,” Butterworth, London, 1958.
Dunham, G. E., Oslon, E. S., Miller, S. J., “Impact of flue gas constituent on carbon sorbents,” Proceeding of the Air Quality Ⅱ: Mercury, Trace Element, and Particulate Matter Conference, McLean, VA, Sept. 19-21, 2000.
Eswaran, S., Stenger, H. G., “Gas-Phase Mercury Adsorption Rate Studies,” Energy and Fuels , vol. 21, 2007, pp. 852-857.
Felsvang, K., Gleiser, R., Juip, G., Nielsen, K. K., “Activated carbon injection in spray dryer/ESP/FF for mercury and toxics control,” Fuel Processing Technology, vol. 39, 1994, pp. 417-430.
Frandesn, F., Dam-Johansen, K., Rasmussen, P., “Trace elements form combustion and gasification of coal-an equilibrium approach,” Progress in Energy and Combustion Science, vol. 20, 1994, pp. 115.
Galbreath, K. C., Zygarlicke, C. J., “Mercury transformations in coal combustion flue gas,” Fuel Processing Technology, vol. 65, no. 6, 2000, pp. 289-310.
Gibb, W. H., Clarke, F., Mehta, A. K., “The fate of coal mercury during combustion,” Fuel Processing Technology, vol. 65, 2000, pp. 365-377.
Gregg, S. J., Sing, K. S. W., “Adsorption, surface area and porosity,” Academic Press, London, 1982.
Hall, B., Shager, J., Weesmaa, J., “The homogeneous gas phase reaction of mercury with oxygen, and the corresponding heterogeneous reactions in the presencl of activated carbon and fly ash,” Chemosphere, vol. 30, 1995, pp. 611-627.
Hlawiczka, S., Kubica, K., Zielonka, U., “Partitioning factor of mercury during coal combustion in low capatcity domestic heating units,” Science of the Total Environment, vol. 312, 2003, pp. 261-265.
Hsi, H. C., Chen, S., Rostam-Abadi, M., Rood, M. J., Richardson, C. F., Carey, T. R., Chang, R., “Preparation and evaluation of coal-derived activated carbons for removal of mercury vapor from simulated coal combustion flue fases,” Energy and Fuels, vol. 12, no. 6, 1998, pp. 1061-1070.
Hsi, H. C., Rood, M. J., Rostam-Abadi, M., Chen, S., Chang, R., “Mercury adsorption properties of sulfur-impregnated adsorbents,” Journal of Environmental Engineering, vol. 128, 2002, pp. 1080-1089.
Hsi, H. C., Rostam-Abadi, M., Rood, M. J., Chen, S., Chang, R., “Effect of sulfur impregnation temperature on the properties and mercury adsorption capacities of activated carbon fibers (ACFs),” Environmental Science and Technology, vol. 35, 2001, pp. 2785-2791.
Hou, Q., Margolese, D. I., Stucky, G. D., “High surface area materials,” Chemistry of Materials, vol. 8, 1996, p.1147.
Kaneda, M., Tsubakiyama, T., Carlsson, A., Sakamoto, Y., Ohsuna, T., Terasaki, O., “Structural Study of Mesoporous MCM-48 and Carbon Networks Synthesized in the Spaces of MCM-48 by Electron Crystallography,” Journal of Physical and Chemistry. vol. 106, 2002, pp. 1256-1266.
Kresge, C. T., Leonwicz, M. E., Roth, W. J., Beck, J. S., “Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism,” Nature, vol. 710, 1992, p. 359.
Krishnan, S. V., Gullett, B. K., Jozewicz, W., “Sorption of elemental mercury by actived carbon,” Environmental Science and Technology, vol. 28, 1994, pp. 1506-1512.
Kim, D. J., Yie, J. E., “Role of copper chloride on the surface of activated carbon in adsorption of methyl mercaptan,” Colloid and Interface Science, vol. 283, 2005, pp. 311-315.
Lagergren, S., “About the theory of so-called adsorption of soluble substances,” Kungliga Svenska Vetenskapsakademien, vol. 24, 1898, pp. 1-39.
Lee, S. -S., Lee, J. -Y., Keener, T. C., “Bench-scale studies of in-duct mercury capture using cupric chloride-impregnated carbons,” Environmental Science and Technology, vol. 43, no. 8, 2009, pp. 2957-2962.
Lee, S. -S., Lee, J. -Y., Keener, T. C., “Mercury oxidation and adsorption characteristics of chemically promoted activated carbon sorbents,” Fuel Processing Technology, vol. 90, no. 10, 2009, pp. 1314-1318.
Lee, S. -S., Lee, J. -Y., Keener, T. C., “The effect of methods of preparation on the performance of cupric chloride-impregnated sorbents for the removal of mercury from flue gases,” Fuel, vol. 88, no. 10, 2009, pp. 2053-2056.
Lee, S. -S., Lee, J. -Y., Khang, S. -J., Keener, T. C., “Modeling of mercury oxidation and adsorption by cupric chloride-impregnated carbon sorbents,” Industrial and Engineering Chemistry Research, vol. 48, no. 19, 2009, pp. 9049-9053.
Licate, A., Balles, E., Schuttetnhelm, W., “Mercury control alternative for coal-fired power plants,” 10th Annual NAWTEC Conference, Orlando, USA, 2000.
Livengood, C. D., Mendelsohn, M. H., EPRI-DOE-EPA combined utility air pollutant control symposium.: Washington, DC, 1997.
Miller, S. J., Olson, E. S., Dunham, G. E., Sharma, R. K., “Preparation methods and test protocol for mercury sorbents,” Air and Waste Management Association, 91st Annual Meeting and Exhibition, San Diego, CA, 1998.
Miller, S. J., Dunham, G. E., Olson, E. S., “Controlling mechanisms that determine mercury sorbent effectiveness,” The Air and Waste Management Association’s 92nd Annual Meeting and Exhibition, St. Louis, Missouri, 1999, pp. 99-898.
Meserole, F. B., Chang, R., Carey, T. R., Machac, J., Richardson, C. F., “Modeling Hg removal by sorbent injection,” Journal of the Air and Waste Management Association, vol. 49, 1999, pp. 694-704.
Morey, M. S., Stucky, G. D., “Hydrothermal and Postsynthesis Surface Modification of Cubic, MCM-48, and Ultralarge Pore SBA-15 Mesoporous Silica with Titanium,” Chemistry of Materials. vol.12, 2000. pp. 898-911.
Pacyna, E., Pacyna, J. M., Pirrone, N., “Atmospheric mercury emissions in Europe from
anthropogenic sources,” Atmospheric Environment, vol. 35, 2000, pp. 2987-2996.
Pavlish, J. H., Sondreal, E. A., Mann, M. D., Olson, E. S., Galbreath, K. C., Laudal, D. L., Benson, S. A., “Status review of mercury control options for coal-fired power plants,” Fuel Processing Technology, vol. 82, 2003, pp. 89-165.
Ravikovitch, P. I., Meimark A. V., “Density functional theory model of adsorption on amorphous and microporous silica materials,” Langmuir, vol. 22, 2006, pp. 11171-11179.
Rostam-Abadi, M., Chen, S., Hsi, H. C., Rood, M. J., Carey, T. R., Richardson, C. F., “Development and evaluation of low-cost sorbents for removal of mercury emissions from coal combustion flue gas; final report,” EPRI TR-110532, 1998.
Rouquerol, F., Rouquerol, J., Sing, K., Adsorption by Powers and Porous Solids, Academic: San Diego, 1999.
Ryoo, R., Joo, S. H., Jun, S. J., “Synthesis of Highly Ordered Carbon Molecular Sieves via Template-Mediated Structural Transformation,” Journal of Physical and Chemistry, vol. 103, 1999. pp. 7743-7746.
Schumacher, K., Ravikovitch, P. I., Chesne, A. D., Neimark, A. V., Unger, K. K., “Characterization of MCM-48 Materials,” Langmuir, vol. 16, 2000, pp. 4648-4654.
Schroeder, W. H., Yarwood, G., Niki, H., “Transformation processes involving mercury species in the atmosphere-results from a literature survey,” Water Air Soil Pollut, vol. 56, 1991, pp. 653.
Senior, C. L., Bool III, L. E., Huffman, G. P., Huggins, F. E., Shah, N., Sarofim, A., Olmez, I., Zeng, T., “A fundamental study of mercury partitioning in coal fired power plant flue gas,” AWMA 90th annual meeting, Toronto, Canada, 1997.
Shah, P., Strezov, V., Prince, K., Nelson, P. F., “Speciation of As, Cr, Se and Hg under coal fired power station conditions,” Fuel, vol. 87, 2008, pp. 1859-1869.
Shaub, W. M., “Mercury emission from MSW incinerator: an assessment of the current situation in the United States and forecast of future emissions,” Resources, Conservation and Recycling, vol. 9, no. 1-2, 1993, pp. 31-59.
Sliger, R. N., Kramlich, J. C., Marinov, N. M., “Towards the development of a chemical kinetic model for the homogeneous oxidation of mercury by chlorine species,” Fuel Processing Technology, vol. 65-66, 2000, pp. 423-438.
Smith, J. M., Van-Ness, H. C., Abbott, M. M., Introduction to chemical engineering thermodynamics: McGrawHill, New York, 1996.
Teller, A. J., Quimby, J. M., Proceeding of the 84th annual meeting of the air and waste management association, reprint, 1991, 13p.
Tseng, H. -H., Wey, M. -Y., “Effects of acid treatments of activated carbon on its physiochemical structure as a support for copper oxide in DeSO2 reaction catalysts,” Chemosphere, vol. 62, 2006, pp. 756-766.
Tseng, H. -H., Wey, M. -Y., “Study of SO2 adsorption and thermal regeneration over activated carbon-supported copper oxide catalysts,” Carbon, vol. 42, 2004, pp. 2269-2278.
U.S. Environmental Protection Agency, “Locating and estimating air emissions from sources of mercury and mercury compounds,” 1997.
U.S. Environmental Protection Agency, “Mercury study report to congress, volume 1: executive summary,” Office of air quality planning and standards, Washington, District of Columbia, 1997.
Vidic, R. D., Siler, D. P., “Vapor-phase elemental mercury adsorption by activated carbon impregnated with chloride and chelating agents,” Carbon, vol. 39, 2001, pp. 3-14.
Vidic, R. D., McLaughlin, J. B., “Uptake of elemental mercury vapors by activated carbons,” Journal of the Air and Waste Management Association, vol. 46, 1996, pp. 241-250.
Waugh, E. G., Jensen, B. K., Lapatnick, L. N., Gibbons, F. X., Sjostrom, S., Ruhl, J., Slye, R., Chang, R., Presented at the EPRI-DOE-EPA combined utility air pollutant control symposium.: Washington, DC, 1997.
White, D. M., Kelly, W. E., Stucky, M. J., Swift, J. L., Palazzolo, M. A., U.S. Environmental Protection Agency, EPA/600/SR/93/181, 1994.
Ying, J. Y., Mehnert, C. P., Wong, M. S., “Synthese und anwendungen von mit supramolekularen templaten hergestellten mesoporösen materialien,” Angewandte Chemie, 1999, vol. 38, pp. 58.
Zhao, L. L., Rochelle, G. T., “Mercury adsorption in aqueous oxidants catalyzed by mercury (Ⅱ),” Industrial Engineering Chemical, vol. 37, 1998, pp. 380-387.
江右君,活性碳物化特性對揮發性有機物吸附之影響,博士論文,國立台灣大學環境工程學研究所,台北,1999。
李淑莉,台灣地區燃煤發電廠含汞物質流布與管理之研究,碩士論文,國立臺北科技大學環境工程與管理研究所,台北,2008。
林桂如,硫含浸改質碳基與非碳基吸附劑去除燃煤煙道氣中汞蒸氣,碩士論文,國立高雄第一科技大學環境與安全衛生工程研究所,高雄,2009。
吳麗詩,疏水性沸石對單成分與雙成分揮發性有機物吸附機制之研究,碩士論文,國立雲林科技大學環境與安全與衛生工程所,雲林,2005。
吳嘉浤,汞削減政策與管理趨勢之研究,碩士論文,國立臺北科技大學環境工程與管理研究所,台北,2009。
陳威錦,熱重分析法探討球狀活性碳吸附氣相氯化汞之吸附動力研究,碩士論文,國立中山大學環境工程研究所,高雄,2004。
蘇明德,有機化學的反應機構論,五南書局,2008。
蔣政昇,低價含硫活性碳吸附劑去除低濃度氣相汞之可行性研究,碩士論文,國立高雄第一科技大學環境與安全衛生工程研究所,高雄,2006。





連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊