跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/07/31 17:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許哲榮
研究生(外文):Che-Jung Hsu
論文名稱:利用零價鐵流體化床處理聚乙烯醇之研究
論文名稱(外文):Treatment of polyvinyl alcohol by ZVI process in up-flow fluidized bed reactor
指導教授:陳孝行陳孝行引用關係
指導教授(外文):Shiao-Shing Chen
口試委員:章裕民張家源
口試委員(外文):Yu-Ming ChangChia-Yuan Chang
口試日期:2012-07-13
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:環境工程與管理研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:59
中文關鍵詞:聚乙烯醇零價鐵流體化床
外文關鍵詞:Polyvinyl alcoholZero Valent Iron (ZVI)fluidized bed
相關次數:
  • 被引用被引用:1
  • 點閱點閱:155
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
聚乙烯醇為一種親水性高分子聚合物,氫氧基連接每個碳鍵,結構簡單但聚合度高,因此被視為難分解的有機污染物。用途非常廣泛,可用作漿料、塗料、黏著劑、穩定劑、分散劑、乳化劑、增厚劑、感光劑和填充材料等,由於工業所需,估計全球每年聚乙烯醇產量可高達600,000噸。雖然聚乙烯醇對生物的毒性不高,但是由於分子量大且容易水解之特性,經由生態圈中的食物鏈易造成生物累積之現象。排放到河川及湖泊中則是會使水體的黏度上升並產生發泡的現象。因此如何有效處理聚乙烯醇的排放成為了工業上的一大課題。
本研究經由實廠利用之考量,設置一組實驗室規模之零價鐵流體化床程序,以符合工業上實廠連續使用之原則。在零價鐵流體化床處理聚乙烯醇的實驗中,分別測是四種由文獻得知之零價鐵流體化床操作因子,其包括濾床零價鐵添加量(ZVI dosage)、水力停留時間(HRT)、反應酸鹼值控制(pH)及反應槽溶氧量(DO)。首先由文獻參考並分別測試四種ZVI dosage (5 g/L, 20 g/L, 30g/L, and 40g/L),實驗結果指出當ZVI dosage由5 g/L增加至30 g/L時,聚乙烯醇去除效率可提升19.22%,ZVI dosage由30 g/L增加至40 g/L時已無法明顯提升聚乙烯醇去除效果。在三種不同HRT的測試中可以發現,當HRT由30分鐘延長至60分鐘時,聚乙烯醇的去除效果可提升10.09 %,再由60分鐘延長至90分鐘時只提升0.86%之聚乙烯醇去除率。由三種不同pH的測試中可以發現,當零價鐵反應控制於pH 2之酸性狀態時能達到較佳去除效果。在零價鐵消耗測試試中發現,增加ZVI dosage至30 g/L以上雖然無法明顯提升去除效果,卻可以延長零價鐵濾床的使用期限。最後由上述操作參數搭配不同曝氣包括氮氣、空氣及氧氣,其實驗結果指出,當曝氮氣且進流聚乙烯醇水溶液濃度為100 mg/L、濾床零價鐵劑量為40 g/L、pH值為2及水力停留時間為60分鐘之厭氧條件下,聚乙烯醇的去除率為15.80%;在相同的實驗參數下,當曝空氣且溶氧為5.59 mg/L時,聚乙烯醇的去除率為78.47%;將溶氧以曝純氧的方式提升至20.00 mg/L時,聚乙烯醇及總有機碳的去除率則分別可達到80.23%及12.77%。
零價鐵反應動力學方面,當進流聚乙烯醇濃度為100mg/L、反應pH 2、零價鐵30g/L、曝純氧(100mL/min)及水力停留時間30分鐘時之反應速率常數4.5798 hr-1為最高。單位容積鐵去除聚乙烯醇方面,當進流聚乙烯醇濃度為100mg/L、反應pH 2、零價鐵30g/L、曝純氧及水力停留時間30分鐘時之13.9 mg PVA / g ZVI最高。由複合迴歸結果可以得知,pH及溶氧於單位容積鐵去除聚乙烯醇及反應速率常數上具有較大的影響力,過量的零價鐵劑量及過度的水力停留時間則不具有明顯正面影響。在聚乙烯醇之反應副產物的評估中可以發現,雖然總有機碳的去除效能不盡理想,但是結果也證明了巨大分子的聚乙烯醇確實降解成小分子化合物。


Polyvinyl alcohol is a common hydrophilic polymer having an OH group at every other-carbon in the backbone chain and well-known recalcitrant environmental pollutants. It is widely used as a sizing agent and an ophthalmic lubricant in the textile and pharmaceutical industries, respectively. The global production of PVA is estimated to be more than 600,000 tons/year, and the large amount of PVA discharged from industrial effluents has posed a serious threat to local ecosystem health.
A fluidized zero valent iron (ZVI) reactor is examined for polyvinyl alcohol (PVA) removal. Fluidized zero valent iron process was adopted to degrade PVA in low pH for two reasons: (1) low pH of the wastewater favoring the ZVI reaction; (2) higher ZVI utilization for fluidized process due to abrasive motion of the ZVI. The results showed that the degradation of PVA was greatly enhanced under acidic pH, longer hydraulic detention time (HRT) and presence of dissolved oxygen (DO).
In the experiment of ZVI dosage, results indicate the PVA removal was enhanced 19.22 % via increasing ZVI dosage from 5 g/L to 30 g/L as iron, but the removal efficiency had no significant promotion while ZVI dosage increased to 40 g/L. In the effect of HRT, the data shows that to extend the HRT from 60 min to 90 min was redundant on PVA removal. When pH was controlled at 2 in fluidized reactor, the efficiency of PVA removal was better than pH 3 and pH 4. Three different ZVI dosages were tested in the part of ZVI durability, and the result indicates that the life of ZVI was extended on PVA removal although ZVI dosage higher than 30 g/L had no significant improvement. Ultimately, three different type of aeration were tried with factors above-mentioned on PVA removal. Without addition of oxygen, 15.8 % of PVA was removed at pH 2, ZVI dosage of 40 g/L and HRT 60 min. With 5.59 mg/L of DO, 78.47 % of PVA was removed for the same experimental condition. With 20 mg/L of DO, PVA and TOC removal efficiencies were reached 80.23 % and 12.77 % respectively for the same experimental condition. The presence of oxygen/ZVI initiated a Fenton type reaction to reduce concentration of PVA. The fluidized ZVI process removed only 12 % as TOC in optimum condition, but the result also indicated the main pollutant as PVA was degraded to compound lower molecular weight, and CO2.
The highest reaction rate constant and ZVI capacity for PVA removal were found on parameters with influent PVA concentration of 100 mg/L, ZVI dosage of 30g/L, HRT 30 min, and DO of 20 mg/L for pH 2.


摘要 i
ABSTRACT iii
誌謝 v
LIST OF CONTENTS vi
LIST OF TABLES viii
LIST OF FIGURES ix
Chapter 1 INTRODUCTION 1
1.1 Background 1
1.2 Objectives 2
1.3 Scope of the Investigation 4
Chapter 2 LITERATURE REVIEW 5
2.1 Introduce of polyvinyl alcohol 5
2.2 Treatments of Polyvinylalcohol water solution 6
2.2.1 Electrocoagulation 6
2.2.2 Photo-Fenton 7
2.2.3 Activated persulfate 8
2.2.4 Anaerobic baffled reactor 9
2.2.5 Photocatalytic TiO2 10
2.2.6 Electrochemical oxidation 10
2.3 Application of ZVI fluidized bed 12
2.3.1 Removal of EDTA by fluidized zero valent iron reactor 12
2.3.2 Reduction of chromate by fluidized zero valent iron 13
2.3.3 Fluidized zero valent iron reactor for nitrate removal 14
2.4 Chemical degradation 18
2.4.1 Zero Valent Iron 18
2.4.2 Fluidized bed 19
Chapter 3 EXPERIMENTAL METHODS 22
3.1 Framework of the experiment 22
3.2 Materials and equipments 23
3.2.1 Equipments 23
3.2.2 Chemicals and materials 24
3.3 Procedure 25
3.3.1 PVA degradation by fluidized ZVI oxidation 25
3.3.2 Analysis methods 27
Chapter 4 RESULTS AND DISCUSSIONS 29
4.1 Factors of ZVI fluidized bed oxidation 29
4.1.1 Effects of ZVI dosage 29
4.1.2 Effects of pH 31
4.1.3 Effects of HRT 33
4.1.4 Effects of dissolved oxygen 35
4.2 The irons species of E/pH diagram 36
4.3 Kinetics of ZVI for PVA degradation 41
4.3.1 reaction rate constant 41
4.3.2 Regression analyses on PVA removal efficiency and ZVI reaction rate constant 42
4.4 Durability of ZVI for PVA degradation 45
4.4.1 Breakthrough test of ZVI 45
4.4.2 Regression analyses on ZVI capacity 47
Chapter 5 CONCLUSIONS AND RECOMMENDATIONS 52
5.1 Conclusions 52
5.2 Recommendations 53
Reference 54

1.Behera, S.K., Kim, Jung-Hoon., Guo, Xuejun., Park, Hung-Suck, Adsorption equilibrium and kinetics of polyvinyl alcohol from aqueous solution on powdered activated carbon. Journal of Hazardous Materials, 2008. 153(3): p. 1207-1214.
2.Giroto, J.A., Guardani, R., Teixeira, A. C. S. C., Nascimento, C. A. O., Study on the photo-Fenton degradation of polyvinyl alcohol in aqueous solution. Chemical Engineering and Processing: Process Intensification, 2006. 45(7): p. 523-532.
3.Wang, H., Feng, Chang-Dong., Sun, Shen-Liang., Segre, Carlo U., Stetter, Joseph R., Comparison of conductometric humidity-sensing polymers. Sensors and Actuators B: Chemical, 1997. 40(2-3): p. 211-216.
4.Chou, W.-L., Wang, Chih-Ta., Hsu, Chia-Wei., Huang, Kai-Yu., Liu, Te-Chao, Removal of total organic carbon from aqueous solution containing polyvinyl alcohol by electrocoagulation technology. Desalination, 2010. 259(1-3): p. 103-110.
5.Chou, W.-L., Wang, Chih-Ta., Huang, Kai-Yu., Investigation of process parameters for the removal of polyvinyl alcohol from aqueous solution by iron electrocoagulation. Desalination, 2009. 251(1-3): p. 12-19.
6.Tokiwa, Y., G. Kawabata, and A. Jarerat, A modified method for isolating poly(vinyl alcohol)-degrading bacteria and study of their degradation patterns. Biotechnology Letters, 2001. 23(23): p. 1937-1941.
7.K.Yoo, Sequential BiologicalTreatment including Ozonation for Persistent Organic Compounds, Ph.D. thesis,KoreaAdvanced Institute of Science and Technology, Republic of Korea. 1999.
8.Lim, J.G., Park, D. H., Degradation of polyvinyl alcohol by Brevibacillus laterosporus: Metabolic pathway of polyvinyl alcohol to acetate. Journal of Microbiology and Biotechnology, 2001. 11(6): p. 928-933.
9.Solaro, R., A. Corti, and E. Chiellini, Biodegradation of poly(vinyl alcohol) with different molecular weights and degree of hydrolysis. Polymers for Advanced Technologies, 2000. 11(8-12): p. 873-878.
10.Schonberger, H., A. Baumann, and W. Keller, Study of microbial degradation of polyvinyl alcohol (PVA) in wastewater treatment plants. American Dyestuff Reporter, 1997. 86(8): p. 9-18.
11.Wang, C.-T., Chou, Wei-Lung., Huang, Kai-Yu., Treatment of Polyvinyl Alcohol from Aqueous Solution via Electrocoagulation. Separation Science and Technology, 2010. 45(2): p. 212-220.
12.Chen, Y., Sun, Z., Yang, Y., Ke, Q., Heterogeneous photocatalytic oxidation of polyvinyl alcohol in water. Journal of Photochemistry and Photobiology A: Chemistry, 2001. 142(1): p. 85-89.
13.Zhang, S.-J., Yu, Han-Qing., Radiation-induced degradation of polyvinyl alcohol in aqueous solutions. Water Research, 2004. 38(2): p. 309-316.
14.Gronroos, A., Pirkonen, P., Heikkinen, J., Ihalainen, J., Mursunen, H., Sekki, H., Ultrasonic depolymerization of aqueous polyvinyl alcohol. Ultrasonics Sonochemistry, 2001. 8(3): p. 259-264.
15.Silvia, G.D.B. and A.F. Eladio, Adsorption of Poly(Vinyl Alcohol) on Montmorillonite. Clays and Clay Minerals, 2004. 52(3): p. 334-340.
16.Chamarro, E., A. Marco, and S. Esplugas, Use of fenton reagent to improve organic chemical biodegradability. Water Research, 2001. 35(4): p. 1047-1051.
17.Oh, S.-Y., Kim, Hyeong-Woo., Park, Jun-Mo., Park, Hung-Suck., Yoon, Chohee, Oxidation of polyvinyl alcohol by persulfate activated with heat, Fe2+, and zero-valent iron. Journal of Hazardous Materials, 2009. 168(1): p. 346-351.
18.Oliveros, E., Legrini, O., Hohl, M., Miiller, T., Braun, A. M., Large scale development of a light-enhanced fenton reaction by optimal experimental design. Water Science and Technology, 1997. 35(4): p. 223-230.
19.Zhou, T., Li, Yaozhong., Ji, Jing., Wong, Fook-Sin., Lu, Xiaohua., Oxidation of 4-chlorophenol in a heterogeneous zero valent iron/H2O2 Fenton-like system: Kinetic, pathway and effect factors. Separation and Purification Technology, 2008. 62(3): p. 551-558.
20.Mohajeri, S., Aziz, Hamidi Abdul., Isa, Mohamed Hasnain., Bashir, Mohammed J. K.., Mohajeri, Leila., Adlan, Mohd Nordin., Influence of Fenton reagent oxidation on mineralization and decolorization of municipal landfill leachate. Journal of Environmental Science and Health, Part A, 2010. 45(6): p. 692-698.
21.Liao, C.-H., Kang, Shyh-Fang., Hsu, Yu-Wei., Zero-valent iron reduction of nitrate in the presence of ultraviolet light, organic matter and hydrogen peroxide. Water Research, 2003. 37(17): p. 4109-4118.
22.Lei, L., Hu, Xijun., Yue, Po Lock., Bossmann, Stefan H., Göb, Sabine., Braun, André M., Oxidative degradation of poly vinyl alcohol by the photochemically enhanced Fenton reaction. Journal of Photochemistry and Photobiology A: Chemistry, 1998. 116(2): p. 159-166.
23.Saxena, S.K., POLYVINYL ALCOHOL (PVA), in 61st JECFA, C.a.T. Assessment, Editor 2004: Rome. p. 3.
24.Liang, C., Wang, Zih-Sin., Bruell, Clifford J., Influence of pH on persulfate oxidation of TCE at ambient temperatures. Chemosphere, 2007. 66(1): p. 106-113.
25.Liu, C.-S., Shih, K., Sun, C.-X., Wang, F., Oxidative degradation of propachlor by ferrous and copper ion activated persulfate. Science of The Total Environment. 416(0): p. 507-512.
26.Barber, W.P. and D.C. Stuckey, The use of the anaerobic baffled reactor (ABR) for wastewater treatment: A review. Water Research, 1999. 33(7): p. 1559-1578.
27.Liu, R., Lu, Xujie., Tian, Qing., Yang, Bo., Chen, Jihua., The performance evaluation of hybrid anaerobic baffled reactor for treatment of PVA-containing desizing wastewater. Desalination. 271(1??): p. 287-294.
28.Hsu, L.-J., Lee, Li-Ting., Lin, Chia-Chang., Adsorption and photocatalytic degradation of polyvinyl alcohol in aqueous solutions using P-25 TiO2. Chemical Engineering Journal, 2011. 173(3): p. 698-705.
29.Kim, S., Kim, Tak-Hyun., Park, Chulhwan., Shin, Eung-Bai., Electrochemical oxidation of polyvinyl alcohol using a RuO2/Ti anode. Desalination, 2003. 155(1): p. 49-57.
30.Chen S.-S., H.H.-D., Lin Y.-J., Chin P.-Y., Removal of EDTA from low pH printed-circuit board wastewater in a fluidized zero valent iron reactor. IWA Publishing-Water Science & Technology, 2008: p. 7.
31.Chen, S.-S., Hsu, H.-D., Lin, Y.-J., Chin, P.-Y., Removal of EDTA from low pH printed-circuit board wastewater in a fluidized zero valent iron reactor. IWA Publishing-Water Science & Technology, 2008: p. 7.
32.Chen, S.-S., Cheng, Chih-Yu., Li, Chi-Wang., Chai, Pao-Hsuan., Chang, Yu-Min., Reduction of chromate from electroplating wastewater from pH 1 to 2 using fluidized zero valent iron process. Journal of Hazardous Materials, 2007. 142(1–2): p. 362-367.
33.Chen, Y.-M., Li, Chi-Wang., Chen, Shiao-Shing., Fluidized zero valent iron bed reactor for nitrate removal. Chemosphere, 2005. 59(6): p. 753-759.
34.(LANL), L.A.N.L. Iron: Biological role. 2005 [cited 2005 June]; Available from: http://periodic.lanl.gov/elements/26.html.
35.Monteil-Rivera, F., Paquet, L., Halasz, A., Montgomery, M. T., Hawari, J., Reduction of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine by zerovalent iron: Product distribution. Environmental Science and Technology, 2005. 39(24): p. 9725-9731.
36.Scherer, M.M., Richter, S., Valentine, R. L., Alvarez, P. J. J., Chemistry and microbiology of permeable reactive barriers for in situ groundwater clean up. Critical Reviews in Microbiology, 2000. 26(4): p. 221-264.
37.Singh, J., S.D. Comfort, and P.J. Shea, Remediating RDX-contaminated water and soil using zero-valent iron. Journal of Environmental Quality, 1998. 27(5): p. 1240-1245.
38.Noradoun, C.E., Cheng, I. Francis., EDTA Degradation Induced by Oxygen Activation in a Zerovalent Iron/Air/Water System. Environmental Science & Technology, 2005. 39(18): p. 7158-7163.
39.Sanchez, I., Stüber, Frank., Font, Josep., Fortuny, Agustí., Fabregat, Azael., Bengoa, Christophe., Elimination of phenol and aromatic compounds by zero valent iron and EDTA at low temperature and atmospheric pressure. Chemosphere, 2007. 68(2): p. 338-344.
40.Sung, H.J., I. Francis Cheng, Nanotechnology for Environmental Remediation, ed. J. John P. Fackler2006, New York: Springer Science+ Business Media. 11.
41.Matheson, L.J., Tratnyek, P.G., Reductive dehalogenation of chlorinated methanes by iron metal. Environmental Science and Technology, 1994. 28(12): p. 9.
42.Powell, R.M., Puls, R.W., Proton generation by dissolution of intrinsic or augmented aluminosilicate minerals for in situ contaminant remediation by zero-valence-state iron. Environmental Science and Technology, 1997. 31: p. 7.
43.Chew, C.F., Zhang, T.C., Abiotic degradation of nitrites using zero-valent iron and electrokinetic processes. Environmental Engineering Science, 1990. 16(5): p. 3.
44.Choe, S., Chang, Yoon-Young., Hwang, Kyung-Yub., Khim, Jeehyeong., Kinetics of reductive denitrification by nanoscale zero-valent iron. Chemosphere, 2000. 41(8): p. 1307-1311.
45.Charlet, L., D. Bosbach, and T. Peretyashko, Natural attenuation of TCE, As, Hg linked to the heterogeneous oxidation of Fe(II): an AFM study. Chemical Geology, 2002. 190(1–4): p. 303-319.
46.Lackovic, J.A., Nikolaidis, N.P., Dobbs, G.M., Inorganic arsenic removal by zerovalent iron. Environmental Engineering Science, 2000. 17: p. 10.
47.Morrison, S.J., D.R. Metzler, and B.P. Dwyer, Removal of As, Mn, Mo, Se, U, V and Zn from groundwater by zero-valent iron in a passive treatment cell: reaction progress modeling. Journal of Contaminant Hydrology, 2002. 56(1–2): p. 99-116.
48.Powell, R.M., Puls, R.W., Hightower, S.K., Sabatini, D.A., Coupled iron corrosion and chromate reduction: mechanisms for subsurface remediation. Environmental Science and Technology, 1995. 29: p. 10.
49.Pratt, A.R., Blowes, D.W., Ptacek, C.J., Products of chromate reduction on proposed subsurface remediation material. Environmental Science and Technology, 1997. 31: p. 7.
50.Puls, R.W., D.W. Blowes, and R.W. Gillham, Long-term performance monitoring for a permeable reactive barrier at the U.S. Coast Guard Support Center, Elizabeth City, North Carolina. Journal of Hazardous Materials, 1999. 68(1–2): p. 109-124.
51.Cao, J., Wei, L., Huang, Q.; Wang, L., Han, S., Reducing degradation of azo dyes by zero-valent iron in aqueous solution. Chemosphere, 1999. 38: p. 7.
52.Nam, S. and P.G. Tratnyek, Reduction of azo dyes with zero-valent iron. Water Research, 2000. 34(6): p. 1837-1845.
53.Kim, Y.H., Carraway, E.R., Dechlorination of pentachlorophenol by zero-valent iron and modified zero-valent irons. Environmental Science and Technology, 2000. 345: p. 4.
54.Hozalski, R.M., Zhang, L., Arnold, W.A., Reduction of haloacetic acids by Fe0: Implications for treatment and fate. Environmental Science and Technology, 2001. 35: p. 6.
55.Teunou, E. and D. Poncelet, Batch and continuous fluid bed coating - Review and state of the art. Journal of Food Engineering, 2002. 53(4): p. 325-340.
56.Finley, J.H., Spectrophotometric Determination of Polyvinyl Alcohol in Paper Coatings. Analytical Chemistry, 1961. 33: p. 3.
57.Huang, C.-P., Wang, Hung-Wen., Chiu, Pei-Chun., Nitrate reduction by metallic iron. Water Research, 1998. 32(8): p. 2257-2264.
58.Chang, L.-Y., Chromate reduction in wastewater at different pH levels using thin iron wires—A laboratory study. Environmental Progress, 2005. 24(3): p. 12.
59.Westerhoff, P., Reduction of Nitrate, Bromate, and Chlorate by Zero Valent Iron (Fe0). Environmental Engineering, 2003. 129(1): p. 7.
60.Westerhoff, P. and J. James, Nitrate removal in zero-valent iron packed columns. Water Research, 2003. 37(8): p. 1818-1830.
61.Barnes, R.J., van der Gast, Christopher J., Riba, Olga., Lehtovirta, Laura E., Prosser, James I., Dobson, Peter J., Thompson, Ian P., The impact of zero-valent iron nanoparticles on a river water bacterial community. Journal of Hazardous Materials, 2010. 184(1–3): p. 73-80.
62.Choe, S., H.M. Liljestrand, and J. Khim, Nitrate reduction by zero-valent iron under different pH regimes. Applied Geochemistry, 2004. 19(3): p. 335-342.


電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊