跳到主要內容

臺灣博碩士論文加值系統

(3.95.131.146) 您好!臺灣時間:2021/07/29 00:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:趙怡璇
研究生(外文):Yi-Hsuan Chao
論文名稱:光觸媒鎳金屬濾網對空氣中甲醛及總揮發性有機物之淨化效能評估
論文名稱(外文):Evaluation of the foamed nickle photocatalyst filters on the efficiency of HCHO and TVOC removal
指導教授:曾昭衡曾昭衡引用關係
口試委員:洪明瑞席行正
口試日期:2012-07-13
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:環境工程與管理研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:164
中文關鍵詞:甲醛總揮發性有機物光觸媒濾網紫外光燈氧化鋅二氧化鈦CADR
外文關鍵詞:formaldehydetotal volatile organic compoundsphotocatalyst filterultraviolet lightzinc oxidetitanium dioxideclean air delivery rates
相關次數:
  • 被引用被引用:5
  • 點閱點閱:386
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究第一部分利用以鎳金屬作為基材之濾網鑲嵌氧化鋅觸媒,裝設於配備紫外光 (365 nm) 燈之空氣清淨機中,分別於空氣品質測試艙和實場中進行空氣污染物去除率測試及空氣污染物濃度檢測。空氣品質測試艙利用可控制環境條件設定不同相對濕度 (高相對濕度:70 ± 5 %、低相對濕度:40 ± 5 %) 及空氣污染物之初始濃度 (HCHO:0.5 ± 0.05 ppm、1.0 ± 0.1 ppm;TVOC:1.4 ± 0.1 ppm;3.0 ± 0.3 ppm) 進行空氣污染物去除率測試,將測試結果與二氧化鈦鎳金屬濾網在皆有開啟紫外光燈且相同環境條件下之去除率進行比較,並選擇去除率較高之光觸媒鎳金屬濾網安裝於實場之空調型空氣清淨機中,檢測空氣污染物 (HCHO、TVOC) 在開啟此空調型空氣清淨機前後之污染物濃度變化,並將空氣品質測試艙之實驗參數條件代入質量平衡模式 (mass balance) 及氣流分析軟體 (CONTAM),模擬預測實場使用光觸媒鎳金屬濾網之空氣清淨機時,污染物濃度隨時間之變化。預測結果利用平均絕對百分誤差 (Mean Absolute Percentage Error, MAPE) 方法驗證其模擬方程式之可行性。
測試艙HCHO、TVOC之60分鐘測試結果,在三種環境條件下 (低濃低濕、高濃高濕、低濃高濕),氧化鋅鎳金濾網HCHO去除率結果,三種環境條件皆在未開啟紫外光燈照射濾網時去除率最高 (低濃低濕為7.88 %、高濃高濕為12.67 %、低濃高濕為11.45 %); TVOC去除率之結果,三種環境條件皆在開啟紫外光燈照射濾網時去除率最高 (低濃低濕為6.87 %、高濃高濕為15.75 %、低濃高濕為8.09 %),且不論是否有開啟紫外光燈,氧化鋅鎳金濾網在高相對濕度及高初始濃度時,對HCHO及TVOC之去除率最佳 (HCHO為12.67 %、TVOC為15.75 %),而濃度與濕度未顯著影響本實驗使用之紫外光燈對HCHO及TVOC之去除率 (HCHO為4.25~5.89 %、TVOC為3.33~5.11 %)。
空氣清淨機效能之CADR值均與去除率測試結果相符:空氣污染物去除率高則CADR值也越高。將上述測試結果與二氧化鈦鎳金屬濾網在相同環境條件下之去除率進行比較,結果為開啟紫外光燈照射濾網時,二氧化鈦鎳金屬濾網對HCHO及TVOC之去除率皆大於氧化鋅鎳金屬濾網。
第二部分將二氧化鈦鎳金屬濾網安裝於某實場之空調型空氣清淨機測試,以質量平衡模式及氣流分析軟體CONTAM模擬實場中HCHO及TVOC之 20分鐘濃度變化, HCHO之MAPE值結果為預測準確度可接受之範圍 (13.52 % ~ 38.80 %),TVOC多數皆在預測準確度優良之範圍 (8.28 %~50.81 %);以氣流分析軟體CONTAM模擬預測污染物之濃度結果顯示,HCHO (5.38 %) 及 TVOC (7.07 %) 預測準確度皆為佳。實場之污染物去除效能推估結果為HCHO去除量為0.09 ppm/day;TVOC去除量為0.44 ppm/day。


In this study, the foamed nickel photocatalyst filters coated with zinc oxide (ZnO) and ultraviolet (UV) light of 365 nm are equipped in the air cleaners. Air pollutants removal efficiency of the air cleaners are assessed in a closed chamber and the real sites. In the closed chamber, relative humidity (RH) is set at 70 ± 5 % as high RH and 40 ± 5 % as low RH; initial concentrations (IC) of formaldehyde (HCHO) are 0.5 ± 0.05 ppm as low IC and 1.0 ± 0.1 ppm as high IC; initial concentrations of total volatile organic compounds (TVOC) are 1.4 ± 0.1 ppm as low IC and 3.0 ± 0.3 ppm as high IC. Moreover, the removal efficiency in the air cleaner equipped with foamed nickel photocatalyst filters coated with titanium dioxide (TiO2) are assessed at the same conditions under UV light and are compared with that coated with ZnO. Furthermore, the nickel filters with higher removal efficiency are installed in the real sites and the indoor air quality are assessed. Finally, the environmental parameters of the chamber test are input to the mass balance model and airflow analysis software (CONTAM) to simulate the change of pollutant concentration with time at the real site. The mass balance model is validated by mean absolute percentage error (MAPE).
Results of the 60-min chamber test for the ZnO filters show the highest removal efficiency for HCHO are under no UV light irradiation (7.88 % for low IC at low RH; 12.6 % for high IC at high RH; 11.45 % for low IC at high RH), while that for TVOC are under UV light irradiation (6.87 % for low IC at low RH; 15.75 % for high IC at high RH; 8.09 % for low IC at high RH). It also shows no matter under UV light irradiation or not, the highest removal efficiency for HCHO and TVOC are under high RH and IC. The removal efficiency of HCHO and TVOC by UV light are not significantly affected by IC and RH (4.25~5.89 % for HCHO and 3.33~5.11 % for TVOC).
Clean air delivery rates (CADR) of the air cleaner are consistent with the air pollutant removal efficiency, i.e., higher CADR brings higher removal efficiency. The results show the removal efficiency of HCHO and TVOC by TiO2 photocatalyst filters are higher than which by ZnO photocatalyst filters under UV light irradiation.
On the field test, air conditioners equipped with TiO2 photocatalyst filters were installed at the site. The MAPEs of the simulations are 13.52 % ~ 38.80 % for changes of HCHO concentrations in 20 min with mass balance model and airflow analysis software CONTAM, while the MAPEs the simulations are 8.28 %~50.81 % for changes of TVOC concentrations. The MAPEs of HCHO and TVOC for CONTAM simulations are 5.38 % and 7.07 % , respectively, which shows the CONTAM has good accuracy. The removal efficiency of HCHO and TVOC were 0.09 ppm/day and 0.44 ppm/day, respectively.


目 錄

摘 要.....i
ABSTRACT.....iii
誌謝.....v
目 錄.....vi
表目錄.....viii
圖目錄.....x
第一章 緒論.....1
1.1研究背景.....1
1.2研究目的.....2
1.3研究流程.....4
第二章 文獻回顧.....5
2.1室內空氣品質.....5
2.1.1室內空氣品質相關法規與建議值.....5
2.1.2室內空氣品質引發之症狀.....8
2.1.3室內空氣污染物之種類.....10
2.1.4室內空氣污染物之來源.....18
2.2空氣清淨機.....19
2.2.1空氣清淨機污染控制與移除技術.....19
2.2.2空氣清淨機之檢測標準.....20
2.2.3 CNS 7619.....25
2.2.4 AHAM AC-1.....28
2.2.5 AHAM AC-1改良方法.....32
2.3光觸媒.....34
2.3.1光催化之反應原理.....39
2.3.2光催化反應之影響因子.....42
2.3.3光催化反應之表面吸附現象.....45
2.3.4氧化鋅光觸媒之反應機制.....48
2.3.5二氧化鈦光觸媒之反應機制.....50
2.3.6氧化鋅及二氧化鈦之基本性質之比較.....51
2.4室內空氣品質模擬程式.....53
2.4.1氣流模擬分析模式CONTAM.....55
第三章 研究方法.....62
3.1研究流程與規劃.....62
3.2室內空氣品質測試艙.....63
3.2.1測試艙.....63
3.2.2氣狀污染物之製備.....64
3.2.3測試艙環境條件控制.....66
3.2.4空氣清淨機與光觸媒鎳金屬濾網.....68
3.2.5測試艙中濾網增加之水分重量計算.....71
3.3實場驗證規劃.....71
3.3.1實場基本資料.....71
3.3.2實場檢測方法與採樣點設置規劃.....73
3.4空氣品質測試艙與實場檢測之儀器設備.....75
3.5實驗結果分析方法.....77
3.5.1空氣品質測試艙氣狀污染物去除率.....77
3.5.2有效處理風量CADR.....79
3.6實驗重複性分析方法.....81
3.7模式建立與應用.....82
3.7.1多變量線性回歸.....82
3.7.2社會科學統計套裝軟體SPSS之應用.....85
3.7.3質量平衡模式之建立.....88
3.7.4 CONTAM之操作步驟及實驗參數之設定.....91
3.7.5模式驗證方法.....96
第四章 結果與討論.....97
4.1測試艙氣狀污染物之實驗結果.....97
4.1.1氣狀污染物於測試艙之自然衰退結果.....98
4.1.2氧化鋅濾網之氣狀污染物去除率與CADR值分析.....104
4.1.3氧化鋅濾網之氣狀污染物去除率與CADR評估.....116
4.1.4含水氧化鋅濾網對氣狀污染物去除率與CADR值分析.....119
4.1.5氧化鋅濾網之水凝結秤重實驗結果.....129
4.1.6氧化鋅濾網與二氧化鈦濾網對氣狀污染物之去除率比較.....131
4.2預測模式結果分析.....132
4.2.1測試艙環境因子對氣狀污染物去除率及CADR值預測經驗式.....132
4.2.2實場質量平衡預測模式結果分析.....137
4.2.3實場CONTAM預測結果分析.....146
4.2.4二氧化鈦濾網應用於實場氣狀污染物之去除量推估.....147
第五章 結論與建議.....149
5.1結論.....149
5.2建議.....150
參考文獻.....151
附錄A TVOC儀器ppbRAE 3000其10.6 eV燈泡可測得之物質.....158

[1]行政院環境保護署,室內空氣品質建議值,2005。
[2]郭廷威,黃正中,健康綠建築的空氣污染商機室內空氣品質法規及改善技術驗證標準,中華水電冷凍空調月刊,2008。
[3]室內空氣品質改善技術指引,pp.6-12-6.14,2008。
[4]Marutzky, “Wood Adhesives Chemistry and Technology,” CRC Press Hardcover, vol.2, 1989, pp. 307-387.
[5]行政院勞工委員會勞工安全衛生研究院,甲醛物質安全資料表,2007。
[6]T. G. Matthews, T. J. Reed, B. J. Tromberg, K. W. Fung, C. V. Thompson, J. O. Simpson and A. R. Hawthrone, “Modeling and Testing of Formaldehyde Emission Characteristics of Pressed-Wood Products: Report XVIII to the U.S. Consumer Product Safety Commission,” Oak Ridge National Laboratory, Report No. TM-9867, 1985.
[7]M. Maroni, B. Seifert and T. Lindvall, “Indoor Air Quality – a Comprehensive Reference Book,” Elsevier, 1995.
[8] B. O. Brooks, G. M. Utter, J. A. Debory and R. D. Schimke, “Indoor air pollution:
an edifice complex,” Clinical Toxicology, 1991.
[9]A. P. Jones, “Indoor Air Quality and Health,” Atmos Environ, vol.33, 1999.
[10]麥成瑋,中醫醫療院所室內空氣品質改善研究,碩士論文,國立臺北科技大學環境工程與管理研究所,台北,2008。
[11]國家標準,九十八年第八期,2009。
[12]經濟部標準檢驗局,總號CNS7619「空氣清淨機」,電機工程類(類號C4),民國70年7月20日公布,1981。
[13]陳育琳,使用二氧化鈦鎳金屬濾網之空氣淨化設備效能評估,碩士論文,國立臺北科技大學環境工程與管理研究所,台北,2011。
[14]J. L. Niu, T. C. W. Tung and V. W. Y. Chui, “Using Large Environmental Chamber Technique for Gaseous Contaminant Removal Equipment Test,” ASHRAE Transactions, vol.104, No.2, 1998, pp. 1289-1296.
[15]謝其德,室內空氣清淨機去除甲醛之效能評估,碩士論文,國立臺北科技大學環境工程與管理研究所,台北,2004。
[16]郭百蟬,可見光奈米光觸媒應用於甲醛消退之研究,國立台灣科技大學營建工程系,台北,2005。
[17] M. R. Pralrie, L. R. Evans, B. M. Stange and S. L. Matinze, “Aninvestigation of
TiO2 Photocatalysis for the Treatment of Watercontaminated with Metals and
Organic Chemicals,” Environ. Sci. Technol., vol.27, 1993, pp. 1776-1782.
[18]莊英良,以紫外光/二氧化鈦程序分別處理含六價鉻及亞素零水溶液反應行為之研究,國立台灣工業技術學院化學工程研究所,碩士論文,1996。
[19]吳榮宗,工業觸媒概論,黎明書局,1985。
[20]W. Stumn, “Chemistry of the Solid-Water Interface,” John Wiley & Sons, 1992.
[21] 張秋萍,以二氧化鈦催化光氧化氣相含氧有機物,博士論文,國立交通大學環
橫工程研究所,新竹,2004。
[22]潘姿宇,水中壬基苯酚直接光解之研究,碩士論文,輔英科技大學環境工程與科學系,高雄,2008。
[23]劉碧松,高級氧化處理程序對除草劑丁基拉草及樂滅草之降解,碩士論文,國立屏東科技大學環境工程與科學系,屏東,2003。
[24]江立偉,以紫外光/光觸媒處理空氣中苯、甲苯及二甲苯氣體之反應行為,碩士論文,國立台灣科技大學化學工程研究所,1999。
[25]X. Fu, L. A. Clark, W. A. Zenlter and M. A. Anderson, “Effects of Reaction Temperature and Water Vapor Content on the Heterogeneous Photocatalytic Oxidation of Ethylene,” Journal of Photochemistry and Photobiology, vol.97, 1996, pp.181-186.
[26]A. V. Vorontsov, D. M. Blake and E. N. Savinov,“Study of TiO2 Deactivation during Gaseous Acetone Photocatalytic Oxidation,” Journal of Catalysis. vol.186, 1999, pp.318-324.
[27]T. N. Obee, R. T. Brown, “TiO2 Photocatalysis for Indoor Air Applications:Effects of Water Vapor and Trace Contaminant Levels on Oxidation Rates of Formaldehyde, Toluene and 1, 3-Butadiene,” Environmental Science & Technology. vol. 29, 1995, pp.1223-1231.
[28]T. N. Obee and S. O. Hay, “Effects of Moisture and Temperature on the Photooxidation of Ethylene on Titania,” Environmental Science and Technology, vol. 31, 1997, pp.2034–2038.
[29]G. B. Raupp and C. T. Junio, “Photocatalytic Oxidation of Oxygenated Air Toxics,” Appl. Sur. Sci, vol. 72, 1993, pp.321.
[30]L. A. Dibble and G. B. Raupp,“Fluidized-Bed Photocatalytic Oxidation of Trichloroethylene in Contaminated Air Streams,” Environmental Science and Technology, vol. 26, 1992, pp. 492-495.
[31]陳佑誠,以紫外光二氧化鈦程序處理氣相苯及丙酮之研究,碩士論文,國立台灣大學環境工程研究所,台北,2008。
[32]顧洋、馬志明,以紫外線/二氧化鈦程序處理氣相三氯乙烯污染物反應行為,第十五屆空氣污染技術研討會論文集,p. 271,1998。
[33]張秋萍,以二氧化鈦催化光氧化氣相含氧有機物,博士論文,國立交通大學環境工程研究所,新竹,2004。
[34]P. M. Vincent, O. Marquaire and Zahra, “Photocatalytic Degradation of Gaseous 1-Propanol Using an Annular Reactor: Kinetic Modeling and Pathways,” Journal of Hazardous Materials, vol. 161, 2009, pp. 1173–1181.
[35]林蔡毓,以CVD 法製備二氧化鈦光觸媒去除甲苯之研究,碩士論文,國立中興大學環境工程研究所,台中,2001。
[36]吳永俊,近紫外光/二氧化鈦光催化分解三氯乙烯之研究,國立中山大學環境工程研究所,碩士論文,高雄,1996。
[37]劉安治,近紫外光/二氧化鈦光催化分解氣相中低濃度四氯乙烯之操作參數探討,國立中山大學環境工程研究所,碩士論文,高雄,1997。
[38]W. F. Jardim, R. M. Aiberic, M. K. Takiyama and C. P. Huang, “Gas-phase Photocatalytic Destruction of Trichloroethylene Using UV/TiO2,” The 26th Mid-Atlantic Industrial and Hazardous Waste Conference, Delaware, USA, 1994.
[39]陳狀崎,奈米光觸媒分解氨氣之研究與評估,國立臺北科技大學冷凍空調工程研究所,碩士論文,台北,1996。
[40]A. Fujishima, T. Kato, E. Maekawa and K. Honda, “Mechanism of the Current Doubling Effect:The ZnO Photoanode in Aqueous Solution of Sodium Formate,” Bull. Chem. Soc. Jpn., vol.54, 1981, pp. 1671-1674 .
[41] K. Okamoto, Y. Yasunori, T. Hirok, T. Masashi and T. Akira, “Heterogeneous
Photocatalytic Decomposition of Phenol over TiO2 Powder,” Bull. Chem. Soc.,
Jpn, vol. 58, 1985, pp. 2015-2022.
[42] C. Amornpon and T. K. O. Nguyen, “Catalytic Oxidation of VOC over n-ZnO
Coated on 13X Zeo;ite Adsorbent in the Presence of Ozone and UV,” Asian
Institute of Technology, 2011.
[43] N. Daneshvar, D. Salari and A. R. Khataee, “Photocatalytic Degradation of
Azo Dye Acid Red 14 in Water on ZnO as an Alternative Catalyst to TiO2,” J.
Photochem. Photobio. A: Chem., vol. 162, 2004, pp. 317-322.
[44] S. Sakthivel, B. Neppolian, M. V. Shankar, B. Arabindoo, M. Palanichamy
and V. Murugesan, “Solar Photocatalytic Degradation of Azo Dye:Comparison of
Photocatalytic Efficiency of ZnO and TiO2,” Sol. Energ. Mat. Sol. C., Vol. 77,
2003, pp. 65-82 .
[45]D. Won, “IA-QUES:Indoor Air Quality Emission Simulation Tool,” NRC-CNRC, 2008.
[46]E. F. Helmut and V. S. Brian, “COMIS 3.0 - User’s Guide,” 1997.
[47] F. Haghighat and A. C. Megri, “A Comprehensive Validation of Two Airflow
Models - COMIS and CONTAM,”1996.
[48]“CONTAM 2.4, User Guide and Program Documentation,” NISTIR 7251, 2008, pp. 8-235.
[49]G.Y. Achakji and G.T. Tamura, “Pressure Drop Characteristics of Typical Stair, shafts in High-rise Buildings,” ASHRAE Transactions, vol. 94, Pt 1, 1988, pp. 1223-1236.
[50]賴慶雄,以不同氣壓防止各空間交叉污染之設計參數與性能模擬研究,碩士論文,國立臺北科技大學冷凍與低溫科技研究所,台北,2004。
[51]A. M. Persily, Andrew and Dennis Leber, “A Collection of Homes to Represent the U.S. Housing Stock,” NISTIR 7330, 2006.
[52]H. R. Cynthia, J. N. Steven and J. E. Steven, “Characterizing Gaseous Air Cleaner Performance in the Field,” Building and Environment, vol .43, 2008, pp. 368-377.
[53]饒詩瑋、呂牧蓁、蘇光偉、賈台寶,自然通風居住環境二手菸害暴露評估,第二十一屆空氣污染控制技術研討會,雲林,2009。
[54]L. Xiang and Z. J. Z., “Prompt Tracking of Indoor Airborne Contaminant Source Location with Probability-Based Inverse Multi-Zone Modeling,” Building and Environment, vol. 44, 2009, pp. 1135-1143.
[55]多變量分析入門書,http://www.gotop.com.tw/epaper/e0719/AEM000900n.pdf
[56]SPSS介紹講義,moodle.ncnu.edu.tw/mod/resource/view.php?id=162645,國立暨南大學。
[57]N. F. Edward, D. S. Paul and J. C. Giddings, “A New Method for Prediction of Binary Gas-Phase Diffusion Coefficients,” Industrial and Engineering Chemistry, vol. 58, 1966, pp. 20-21.
[58]戴川發,利用紫外光清淨技術去除室內空氣污染物之效能評估,碩士論文,國立臺北科技大學,台北,2010。
[59]張家豪,建築物正負壓區劃性能式煙控設計之實測與模擬研究,碩士論文,國立臺北科技大學能源與冷凍空調工程系,台北,2010。
[60] 謝永旭,光催化處理程序,工業污染防治,第56期,p173-191,1995。
[61]A. M. Christine and F. W. Stephen, “Forecasting Tourism Demand:A Comparison of the Accuracy of Several Quantitative Methods,” International Journal of Forecasting, vol. 5, Issue.1, 1989, pp. 7-19.
[62]陳震宇,室內木質建材甲醛逸散之研究,碩士論文,國立台灣科技大學環境工程研究所,台北,2001。
[63]吳昌晏,以紫外線/氧化鋅程序分別處理含甲酚及EDTA水溶液反應行為之研究,碩士論文,國立台灣科技大學化學工程系,台北,2005。
[64]曾展晧,以貴金屬奈米粒子-氧化鋅奈米柱複合光觸媒分解甲基橙之研究,碩士論文,國立成功大學化學工程研究所,台南,2005。
[65]吳政峰,溫度與濕度效應對光催化分解氣相揮發性有機物之影響,碩士論文,國立中山大學環境工程研究所,高雄,2005。
[66]何信志,奈米光觸媒應用於空調系統分解甲醛之研究,碩士論文,國立臺北科技大學能源與冷凍空調工程系,台北,2007。
[67] E. P. Melian, O. G. Dıaz, J. M. Dona Rodrıguez, G. Colon, J. Arana, J. Herrera
Melian, J.A. Navıo and J. Perez Pena, “ZnO Activation by Using Activated
Carbon as A Support: Characterisation and Photoreactivity,” Applied Catalysis
A: General 364, 2009, pp.174–181.
[68]H. J. Kim, B. Han, Y. J. Kim, Y. H. Yoon and T. Oda., “Efficient Test Method for Evaluating Gas Removal Performance of Room Air Cleaners Using FTIR Measurement and CADR Calculation,” Building and Environment, vol. 47, 2012, pp. 385-393.
[69]Yoshika Sekine, “Oxidative Decomposition of Formaldehyde by Metal Oxides
at Room Temperature,” Atmospheric Environment, vol.36, 2002, pp.5543–5547.
[70]X. Jiaqiang, J. Xiaohua, L. Xiangdong, X. Guoxi, H. Jianjun and G. Qiaohuan “Selective Detection of HCHO Gas Using Mixed Oxides of ZnO/ZnSnO3,” Sensors and Actuators B 120, 2007, pp.694-699.
[71]X. Yuanguo, X. Hui, L. Huaming, X. Jiexiang, L. Chengtang and L. Ling, “Enhanced Photocatalytic Activity of New Photocatalyst Ag/AgCl/ZnO,” Journal of Alloys and Compounds, vol. 509, 2011, pp. 3286-3292.


電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top