跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/01 19:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉思成
研究生(外文):Szu-Chen Liu
論文名稱:農業廢棄物製備活性碳吸附劑去除揮發性有機物-以甲苯為例
論文名稱(外文):Adsorbent from agricultural wastes for removal of volatile organic compounds (toluene)
指導教授:席行正
口試委員:黃盈賓章裕民郭昭吟
口試日期:2012-07-11
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:環境工程與管理研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:82
中文關鍵詞:農業廢棄物吸附活性碳揮發性有機物
外文關鍵詞:agricultural wastesadsorptionactivated carbonVOCs
相關次數:
  • 被引用被引用:7
  • 點閱點閱:357
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
由於大氣中揮發性有機物(volatile organic compounds, VOCs)濃度及工業排放量不斷上升,影響環境及人體健康,因此VOCs之污染問題已引起世界各國的高度重視,許多國家都已嚴格規範VOCs之排放標準,積極尋找減量技術,而活性碳吸附法除了可有效去除低濃度之VOCs外,尚可針對具有回收價值之高濃度有機溶劑蒸氣以吸附方式回收,以減少有機溶劑之使用,而許多研究指出利用農業廢棄物製備活性碳吸附劑吸附VOCs為可行性技術之一。有鑑於此,本研究以不同農業廢棄物(如廢麥粕、銀合歡及竹材)所製備之高比表面積活性碳,作為本實驗之碳吸附劑,以甲苯蒸氣進行活性碳吸附實驗,並透過BET比表面積、孔洞體積、孔洞大小之量測進一步瞭解活性碳吸附特性與物化特性關係,探討其吸附行為及其吸附特性。結果顯示,溫度在25–90℃,濃度在2500–20000 ppm之間,廢麥粕活性碳甲苯吸附量範圍分別介於285–665 mg g-1;銀合歡活性碳甲苯吸附量範圍分別介於253–916 mg g-1;球狀活性碳甲苯吸附量範圍分別介於135–183 mg g-1,其中球狀活性碳吸附量為三種活性碳中最低,原因為球狀活性碳之比表面積僅446 m2 g-1,因此可吸附位址有限,導致吸附量不高。而各活性碳之甲苯吸附量都將隨甲苯濃度增加而增加,但隨溫度升高而降低,而利用吸附實驗數據可求得Langmuir、Freundlich、與Temkin方程式之參數,藉由此參數能獲得不同溫度時之等溫吸附曲線,由等溫吸附曲線可發現,分壓越大其甲苯吸附量也跟著上升,而分壓持續上升時,飽和吸附量曲線逐漸趨於水平。由模擬結果顯示利用Langmuir、Freundlich、與Temkin方程式皆可描述廢麥粕、銀合歡及球狀活性碳之甲苯等溫吸附曲線,其中以Langmuir等溫吸附曲線可獲得較佳之模擬結果(R2>0.999)。

The concentration of VOCs and the amount of industrial emissions are rising in the atmosphere, and that would be greatly impacting the environment and human health. Therefore, the pollution of VOCs has been concerned around the world. Many countries have strict regulations on VOCs emission standards and are actively seeking reduction technology. Activated carbon adsorption process no only effectively removes the low concentrations of VOCs, but also has capability to recover organic solvent vapor with a high concentration. In order to reduce the use of organic solvents, many studies have pointed out that adsorbing VOCs using activated carbon recovered from agricultural waste material would be a feasible technology. This research aims to use different agricultural wastes (such as waste barley meal, Leucaena leucocephala and bamboo scrap) derived activated carbon with high surface area as the carbon adsorbents. The physical properties included BET and micropore surface area/pore volume and pore size distribution were first investigated. The activated carbon adsorption experiments using toluene vapor as adsorbate was performed to understand the relationships between physico-chemical properties and adsorption capacity. The results revealed that when the temperatures were within a range from 25 to 90℃ and with a concentration between 2,500 and 20,000 ppm, the range of the toluene adsorption capacities for waste barley meal activated carbon, Leucaena leucocephala activated carbon, and spherical bamboo activated carbon were 285–665 mg g-1, 253–916 mg g-1, and 135–183 mg g-1, respectively. The spherical bamboo activated carbon had the smallest adsorption capacity, mainly due to its small surface area of about 446 m2 g-1, which limited its equilibrium toluene adsorption. The toluene adsorption capacity increased with an increase in toluene concentration and a decrease in temperature. The adsorption isotherm was successfully fitted with Langmuir, Freundlich, and Temkin models for all tested sampled and corresponding parameters were determined. Langmuir models showed best fit to the experimental results (R2>0.999).

摘要 i
ABSTRACT iii
誌謝 v
目錄 vi
表目錄 viii
圖目錄 ix
第一章 前言 1
1.1 研究背景 1
1.2 研究目的 3
第二章 文獻回顧 4
2.1 揮發性有機物之定義 4
2.2 揮發性有機物之來源 4
2.3 揮發性有機物之危害 8
2.3.1 甲苯特性 11
2.3.2 甲苯的危害 12
2.4 揮發性有機物控制技術 13
2.4.1 熱焚化技術 15
2.4.2 生物處理技術 15
2.4.3 吸收法 15
2.4.4 冷凝法 16
2.4.5 吸附法 16
2.5 活性碳之簡介 18
2.5.1 活性碳種類及特性 19
2.5.2 活性碳物化特性 20
2.6 活性碳之吸附理論 23
2.6.1 吸附機制 23
2.6.2 吸附擴散機制 25
2.6.3 等溫吸附曲線 25
2.6.4 吸附遲滯 27
2.7 等溫吸附模式 29
2.7.1 BET isotherm 29
2.7.2 Langmuir isotherm 30
2.7.3 Freundlich isotherm 32
2.7.4 Temkin isotherm 33
2.8 吸附熱 34
第三章 實驗材料與方法 35
3.1 實驗材料 36
3.2 實驗設備 37
3.2.1 實驗氣體、藥品 37
3.2.2 VOCs吸附裝置 37
3.2.3 吸附劑基本物理與化學性質分析設備 40
3.3 實驗方法及步驟 42
3.3.1 吸附實驗步驟 42
3.3.2 吸附劑物化分析 45
第四章 結果與討論 47
4.1 活性碳物理特性分析 47
4.1.1 等溫吸附曲線 47
4.1.2 BET比表面積與孔體積 48
4.1.3 孔徑分佈 49
4.2 活性碳化學特性分析 51
4.2.1 元素分析 51
4.3 甲苯吸附實驗結果 52
4.3.1 活性碳之甲苯吸附量 52
4.3.2 活性碳再生效率 56
4.3.3 等溫吸附曲線模擬 58
4.3.3.1 Langmuir等溫吸附模式 58
4.3.3.2 Freundlich等溫吸附模式 63
4.3.3.3 Temkin等溫吸附模式 69
4.4 等容量吸附熱 74
第五章 結論與建議 76
5.1 結論 76
5.2 建議 77
參考文獻 78


Bansal, P., Wu, C. Y., “Control of toxic metal emissions from combustors using sorbents:A review,” Air and Waste Management Association, vol. 48, 1988, pp. 113-127.
Boeglin, M. L., Wessels, D., Henshel, D., “An investigation of the relationship between air emissions of volatile organic compounds and the incidence of cancer in Indiana counties,” Environmental Research, vol. 100, 2006, pp. 242-254.
Boehm, H. P., “Some aspects of the surface chemistry of carbon blacks and other carbons,” Carbon, vol. 32, 1994, pp. 759-769.
Brunauer, S., Deming, L. S., Deming, W. S., Teller, E., Chem, J. A., “On a theory of the van der waals adsorption of gases,” Journal of the American Chemical Society, vol. 62, 1940, pp. 1723-1732.
Chiang, H. L., Huang, C. P., Chiang, P. C., You, J. H., “Effect of metal additives on the physic-chemical characteristics of activated carbon exemplified by benzene and acetic acid adsorption,” Carbon, vol. 37, 1999, pp. 1919-1928.
de Bore, J. H., “The structure and properties of porous materials,” Butterworth, London, 1958.
Diaz, E., Ordonez, S., Vega, A., Coca, J., “Adsorption characterization of different volatile organic compounds over alumina, zeolites and activated carbon using inverse gas chromatography,” Journal of Chromatography A, vol. 1049, 2004, pp. 139-146.



Dimotakis, E. D., Cal, M. P., Economy, J., Rood, M. J., Larson, S. M., “Chemically treated activated carbon cloths for removal of volatile organic carbons from gas streams:Evidence for enhanced physical adsorption,” Environmental Science and Technology, vol. 29, 1995, pp. 1876-1880.
Foster, K. L., Fuerman, R. G., Economy, J., Larson, S. M., Rood, M. J., “Adsorption characteristics of trace volatile organic compounds in gas streams onto activated carbon fibers,” Chemistry of Materials, vol. 4, 1992, pp. 1068-1073.
Giraudet, S., Pre, P., Cloirec, P. L., “Modeling the heat and mass transfers in temperature-swing adsorption of volatile organic compounds onto activated carbons,” Environmental Science and Technology, vol. 43, 2008, pp. 1173-1179.
Gregg, S. J., Sing, K. S. W., “Adsorption, surface area and porosity,” Academic Press, London, 1982.
Hameed, B. H., Rahman, A. A., “Removal of phenol from aqueous solutions by adsorption onto activated carbon prepared from biomass material,” Journal of Hazardous Materials, vol. 160, 2008, pp. 576-581.
Hung, I. F., Chung, H., Hung, C. K., Huang, K. C., Tsai, C. J., “Organic aerosols in a semiconductor manufacturing facility,” Journal of Aerosol Science, vol. 27, 1996, p. 657.
IPCC Third Assessment Report - Climate Change, 2001
Khan, F. I., Ghoshal, A. K., “Removal of volatile organic compounds from polluted air,” Journal of Loss Prevention in the Process Industries, vol. 13, 2000, pp. 527-545.
Lin, T. Y., Sree, U., Tseng, S. H., Chiu, K. H., Wu, C. H., Lo, J. G., “Volatile organic compound concentrations in ambient air of Kaohsiung petroleum refinery in Taiwan,” Atmospheric Environment, vol. 38, 2004, pp. 4111-4122.

Long, C., Li, Y., Yu, W., Li, A., “Removal of benzene and methyl ethyl ketone vapor:Comparison of hypercrosslinked polymeric adsorbent with activated carbon,” Journal of Hazardous Materials, vol. 203-204, 2012, pp. 251-256.
Lordgooei, M., Carmichael, K. R., Kelly, T. W., Rood, M. J., Larson, S. M., “Activated carbon cloth adsorption-cryogenic system to recover toxic volatile organic compounds,” Gas Separation and Purification, vol. 10, 1996, pp. 123-130.
Lu, C. Y., Wey, M. Y., “Simultaneous removal of VOC and NO by activated carbon impregnated with transition metal catalysts in combustion flue gas,” Fuel Processing Technology, vol. 88, 2007, pp. 557-567.
Luo, L., Ramirez, D., Rood, M. J., Grevillot, G., Hay, K. J., Thurston, D. L., “Adsorption and electrothermal desorption of organic vapors using activated carbon adsorbents with novel morphologies,” Carbon, vol. 44, 2006, pp. 2715-2723.
Nourmoradi, H., Nikaeen, M., Khiadani, M., “Removal of benzene, toluene, ethylbenzene and xylene (BTEX) from aqueous solutions by montmorillonite modified with nonionic surfactant:Equilibrium, kinetic and thermodynamic study,” Journal of Chemical Engineering, vol. 191, 2012, pp. 341-348.
Otero, M., Rozada, F., Calvo, L. f., Garca, A. I., Moran, A., “Kinetic and equilibrium modeling of the methylene blue removal from solution by adsorbent materials produced from sewage sludge,” Journal of Biochemical Engineering, vol. 15, 2003, pp. 59-68.
Pierce, C. H., Dills, R. L., Morgan, M. S., Vicini, P., Kaiman, D. A., “Biological monitoring of controlled toluene exposure,” International Archives of Occupational and Environmental Health, vol. 71, 1998, pp. 433-444.

Qu, F., Zhu, L., Yang, K., “Adsorption behaviors of volatile organic compounds on porous clay heterostructures,” Journal of Hazardous Materials, vol. 170, 2009, pp. 7-12.
Ramirez, D., Emamipour, H., Vidal, E. X., Rood, M, J., Hay, K. J., “Capture and recovery of methyl ethyl ketone with electrothermal-swing adsorption systems,” Journal of Environmental Engineering, vol. 137, 2011, pp. 826-832.
Ramirez, D., Qi, S., Rood, M. J., Hay, K. J., “Equilibrium and heat of adsorption for organic vapors and activated carbons,” Environmental Science and Technology, vol. 39, 2005, pp. 5684-5871.
Rodríguez-Reinoso, F., “The role of carbon materials in heterogeneous catalysis,” Carbon, vol. 36, 1998, pp. 159-175.
Ruthven, D. M., “Principles of adsorption and adsorption process,” John Wiley and Sons, New York, 1984.
Ryerson, T. B., Trainer, M., Holloway, J. S., Parrish, D. D., Huey, L. G., Sueper, D. T., Frost, G. J., Donnelly, S. G., Schauffler, S., Atlas, E. L., Kuster, W. C., Goldan, P. D., Hübler, G., Meagher, J. F., Fehsenfeld, F. C., “Observations of ozone formation in power plant plumes and implications for ozone control strategies,” Science, vol. 292, 2001, pp. 719-723.
Shah, J. J., Singh, H. B., “Distribution of volatile organic chemicals in outdoor and indoor air,” Environmental Science and Technology, vol. 22, 1988, pp. 1381-1388.
Suzuki, M., “Adsorption Engineering,” Elsevier, Amsterdam, 1990, p. 35.
Tancrede, M., Wilson, R., Zeise, L., Crouch, E. A. C., “The carcinogenic risk of some organic vapors indoors:A theoretical survey,” Atmospheric Environment, vol. 21, 1987, pp. 2187-2205.

Tham, Y. J., Latif, P. A., Abdullah, A. M., shamala-Devi, A., Taufiq-Yap, Y. H., “Performances of toluene removal by activated carbon derived from durian shell,” Bioresource Technology, vol. 102, 2011, pp. 724-728.
Warren, B., Austin, R. L., Cocker, D. R., “Temperature dependence of secondary organic aerosol,” Atmospheric Environment, vol. 43, 2009, pp. 3548-3555.
Yassaa, N., Brancaleoni, E., Frattoni, M., Ciccioli, P., “Isomeric analysis of BTEXs in the atmosphere using beta-cyclodextrin capillary chromatography coupled with thermal desorption and mass spectrometry,” Chemosphere, vol. 63, 2006, pp. 502-508.
Yun, J. H., Choi, D. K., “Adsorption isotherms of benzene and methylbenzene vapors on activated carbon,” Journal of Chemical and Engineering Data, vol. 42, 1997, pp. 894-896.
吳立言,高雄地區固定源揮發性有機物指紋及光化反應潛勢之探討,碩士論文,國立中山大學環境工程研究所,高雄市,2002。
張志成,固體吸附技術於工業空調除濕淨化之應用,中國冷凍空調雜誌,第26卷,1996,pp. 67-75。
行政院環保署,http://www.epa.gov.tw/ch/aioshow.aspx?busin=324&path=1905&guid=774d5889-59f9-4c43-9622-1d8bf2889cf3&lang=zh-tw,2012。
高雄市環保局,http://61.218.233.198/disppagebox/AQMPCP.aspx?ddsPageID=AQMPC4&,2012。


電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top