跳到主要內容

臺灣博碩士論文加值系統

(3.237.38.244) 您好!臺灣時間:2021/07/26 08:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:施旻佑
研究生(外文):Min-Yu Shih
論文名稱:含汞活性碳生物溶出程序之可行性探討
論文名稱(外文):Investigation of Removing Mercury from Activated Carbon Using Bioleaching Processes
指導教授:席行正陳勝一陳勝一引用關係
口試委員:陳文興陳孝行
口試日期:2012-07-27
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:環境工程與管理研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:102
中文關鍵詞:生物再生硫氧化菌活性碳中央合成設計
外文關鍵詞:bioleachmercuryAcidithiobacillus thiooxidansactivated carboncentral composite design (CCD)
相關次數:
  • 被引用被引用:1
  • 點閱點閱:208
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
全球固定污染源排放重金屬汞一直備受重視,而傳統空氣污染設備對於汞難以有效去除,容易影響人體健康與環境危害。現階段針對汞污染防治方法,主要以吸附劑的噴入為最可行之技術,因此產生許多廢棄活性碳,一般業者在活性碳吸附飽和後,處置方式多為掩埋,以環境的觀點來看,若處理不當,便有可能造成二次污染。然而,本研究之主要目標為研發新的硫化活性碳生物之再生技術,利用硫氧化菌之氧化及產酸能力,建立活性碳中汞生物溶出程序,將還原態的硫氧化,使汞從活性碳中溶出,提昇汞之脫附效率,以達到硫化活性碳再生及回收再利用之目的。
利用土壤馴養結果顯示,隨著馴養次數增加,其硫氧化菌之活性增加且越穩定,可將馴養時間縮短至10到15天。使用活性碳馴養方面,硫氧化菌較難以利用活性碳上的硫,因此添加培養基和可溶性營養源,有助於馴養的效率。另外,活性碳再生實驗中發現,當活性碳濃度越高時,pH值下降速率較快,但硫酸鹽生成量卻減少,而汞的去除率約為20到40%之間。將數據收集完成建立反應曲面圖,可得知最佳操作條件為活性碳濃度10%,接種菌液濃度20%時,汞之去除效率可以達到40%左右。經由物化分析後,發現活性碳表面中的含硫基質,藉由硫氧化菌直接氧化,或是產生硫酸使pH值下降,氫離子與活性碳中的汞進行置換反應,因此造成氫含量上升,而硫含量下降之情形,證實生物淋洗的直接反應與間接反應有在發生。當活性碳生物淋洗後,其比表面積從588.5 m2 g-1上升至757 m2 g-1,且孔徑從1 nm變大並集中於2 nm,其硫氧化菌的氧化反應對於表面具有相當影響,有助於未來再利用之可行性。

People have been paying attention to the emission of heavy metals (mercury) from stationary sources of air pollution; the traditional air pollution control facilities, however, is so difficult to have a great effect on removing mercury that human health and environment are facing a huge jeopardy. At present, the main prevention method of mercury pollution is adsorbent injection which is the most feasible way today. By such method, an amount of discarded activated carbon would be produced and then be buried or burned. From the environmental point of view, it might cause secondary pollution when the activated carbon was dealt with improperly. Therefore, this study attempted to develop a new bioregeneration technology of presulfurized activated carbon. The bioregeneration technology relied on the oxidization and acidification of Acidithiobacillus thiooxidans to carry out a bioleaching process of activated carbon. That means in the activated carbon, sulfur was oxidized and mercury was leached then. It could advance the desorption efficiency of the mercury and regenerate/recover the presulfurized activated carbon.
This study includes the acclimation of soil and the acclimation of activated carbon. According to the results of this study, the more times of acclimation soil had; the better activity of At. thiooxidans performed. The period of soil acclimation decreased to 10-15 days. As to the acclimation of activated carbon, At. thiooxidans was difficult to utilize sulfur-impregnated activated carbon, so medium and soluble nutrition were added in order to increase the efficiency of acclimation. Moreover, in the experiment on activated carbon regeneration it was showed that when the concentration of activated carbon was high, the value of pH decrease rapidly, and the production of sulfate is reduced (the removal efficiency of mercury was 20-40%). The response surface graph showed that the removal efficiency of mercury reached a peak of 40% around when the concentration of activated carbon was 10% and the concentration of culture was 20%. Through the physicochemical analysis, the study found that the sulfide on the surface of activated carbon was oxidized via At. thiooxidans or lowered the value of pH by the production of sulfuric acid. Finally, the washing flow’s direct response and indirect response were verified in this study. After washing flow, the specific area of the activated carbon was from 588.5 m2 g-1 to 757 m2 g-1. The finding is helpful for the recycling research and technology in the future.

摘要 I
ABSTRACT III
誌謝 V
目錄 VI
表目錄 VIII
圖目錄 IX
第一章 前言 1
第二章 文獻回顧 4
2.1 汞之污染物來源 4
2.1.1 燃料燃燒 9
2.1.2 焚化爐 11
2.1.3 石灰和水泥之製造 12
2.2 汞之物化特性與傳輸途徑 14
2.3 汞對人體健康危害 17
2.3.1 金屬汞 17
2.3.2 無機汞 17
2.3.3 有機汞 17
2.4 活性碳概述 18
2.4.1 活性碳的種類 19
2.4.2 活性碳的物化特性 21
2.5 活性碳的應用 25
2.5.1 以硫含浸活性碳為汞吸附劑之應用 26
2.6 活性碳再生技術之評估 28
2.6.1 熱再生法 28
2.6.2 微波加熱再生技法 29
2.6.3 化學處理再生法 29
2.6.4 生物處理再生法 30
2.7 廢硫化活性碳生物再生之機制 30
2.7.1 直接機制 31
2.7.2 間接機制 31
2.8 活性碳生物再生之影響參數 32
2.8.1 微生物特性 32
2.8.2 物化參數 33
2.8.3 活性碳特性 33
2.9 脫硫菌於環境工程之應用概況 34
2.9.1 脫硫菌於廢輪胎資源化之應用 34
2.9.2 硫氧化菌於重金屬生物溶出之應用 35
第三章 研究材料與實驗方法 38
3.1 實驗材料 38
3.2 實驗設備 40
3.2.1 活性碳基本物理與化學性質分析設備 40
3.2.2 硫氧化細菌馴養和活性碳再生分析儀器 41
3.3 實驗方法與步驟 44
3.3.1 硫氧化細菌之馴養 45
3.3.2 實驗設計 47
3.3.3 活性碳生物再生 47
3.3.4 活性碳物化性質分析 48
第四章 結果與討論 51
4.1 馴養實驗 51
4.1.1 利用土壤馴養實驗 51
4.1.2 利用活性碳馴養實驗 52
4.1.3 利用活性碳馴養方法探討 60
4.1.4 利用活性碳馴養之汞溶出效率 61
4.2 活性碳生物再生實驗 63
4.2.1 pH值之變化 63
4.2.2 硫酸鹽生成量之變化 67
4.2.3 重金屬汞之去除效率 72
4.2.4 中央合成設計 76
4.2.5 二階模型方程式之適合度檢定 76
4.2.6 反應曲面圖 78
4.3 活性碳物理化學特性分析 80
4.3.1 BET表面積與微孔表面積 80
4.3.2 孔體積與孔徑分佈 82
4.3.3 活性碳表面觀察 83
4.3.4 元素分析 90
第五章 結論與建議 93
5.1 結論 93
5.2 建議 94
參考文獻 95



Ahonen, L., Tuovinen, O. H. (1995). Bacteria Leaching of Complex Sulfide Ore Samples in Bench-scale Column Reactors, Hydrometallury, Vol. 37, pp. 1-21.
Aktas, O., Cecen, F. (2006). Effect of Type of Carbon Activation on Adsorption and its Reversibility, Journal of Chemical Technology and Biotechnology, Vol. 81, pp. 94-101.
Aktas, O., Cecen, F. (2007). Adsorption, Desorption and Bioregeneration in the Treatment of 2-chlorophenol with Activated Carbon, Journal of Hazardous Materials, Vol. 141, pp. 769-777.
Ania, C. O., Parra, J. B., Menendez, J. A., Pis, J. J. (2007). Microwave-assisted Regeneration of Activated Carbons Loaded with Pharmaceuticals, Water Research, Vol. 41, pp. 3299-3306.
Bosecker, K. (1986). Bacterial Metal Recovery and Detoxification of Industrial Waste, Biotechnology and Bioengineering Symposium, Vol. 16, pp. 105-120.
Bansal, P., Wu, C. Y. (1988). Control of Toxic Metal Emissions from Combustors Using Sorbents: A Review, Air and Waste Management Association, Vol. 48(2), pp. 113-127.
Blais, J. F., Auclair, J. C., Tyagi, R. D. (1992). Cooperation between Two Thiobacillus Strains for Heavy Metal Removal from Municipal Sludge, Canadian Journal of Microbiology, Vol. 38, pp. 181-187.
Boehm, H. P. (1994). Some Aspects of the Surface Chemistry of Carbon Blacks and Other Carbons, Carbon, Vol. 32, pp. 759-769.
Chudyk, W. A., Snoeyink, V. I. (1984). Bioregeneration of Activated Carbon Saturated with Phenol. Environment Science and Technology, Vol. 18, pp. 1-5.
Corapcioglu, M. O., Huang, C. P. (1987). The Surface Acidity and Characterization of Some Commercial Activated Carbon, Carbon, Vol. 25, pp. 569-578.
Christiansson, M., Stenberg, B., Wallenberg, L. R., Holst, O. (1998). Reduction of Surface Sulfur upon Microbial Devulcanization of Rubber Materials, Biotechnology Letters, Vol. 20, pp. 637-642.
Chen, S.Y., Lin, J. G. (2001). Bioleaching of Heavy Metals from Sediment: Significance of pH, Chemosphere, Vol. 44, pp. 1093-1102.
Chen, S. Y., Lin J. G. (2004). Bioleaching of Heavy Metals from Livestock Sludge by Indigenous Sulfur-oxidizing Bacteria: Effects of Sludge Solids Concentration, Chemosphere, Vol. 54, pp. 283-289.
Coelho, C., Olivera, A. S., Pereira, M. F. R., Nunes, O. C. (2006). The Influence of Activated Carbon Surface Properties on the Adsorption of the Herbicide Molinate and the Bio-regeneration of the Adsorbent, Journal of Hazardous Materials, Vol. 138, pp. 343-349.
Chen, S. Y., Lin, J. G. (2009). Enhancement of Metal Bioleaching from Contaminated Sediment Using Silver Ion, Journal of Hazardous Materials, Vol. 161, pp. 893-899.
Chen, S. Y., Lin, P. L. (2010). Optimization of Operating Parameters for the Metal Bioleaching Process of Contaminated soil, Separation and Purification Technology, Vol. 71, pp. 178-185.
Chen, S. Y., Pan, S. H. (2010). Simultaneous Metal Leaching and Sludge Digestion by Thermophilic Microorganisms: Effect of Solids Content, Journal of Hazardous Materials, Vol. 179, PP. 340-347.
Dronen, L. C., Moore, A. E., Kozliak, E. I., Seames, W. S. (2003). An Assessment of Acid Wash and Bioleaching Pre-treating Options to Remove Mercury from Coal, Fuel, Vol. 83, pp. 181-186.
Ferro-Garcia, M. A., Rivera-Utrilla, J. (1996). Chemical and Thermal Regeneration of an Activated Carbon Saturated with Chlorophenols, Journal of Chemical Technology and Biotechnology, Vol. 67, pp. 183-189.
Feng, W., Kwon, S., Feng, X., Borguet, E., Vidic, R. D. (2006). Sulfur Impregnation on Activated Carbon Fibers through H2S Oxidation for Vapor Phase Mercury Removal, Journal of Environmental Engineering, Vol. 132, pp. 292-300.
Goeddertz, J. G., Matsumoto, M. R., Weber, A. S. (1988). Offline Bioregeneration of Granular Activated Carbon, Journal of Environment Engineering, Vol. 114, pp. 1063-1076.
Galbreath, K. C., Zygarlicke, C. J. (2000). Mercury Transformations in Coal Combustion Flue Gas, Fuel Processing Technology, Vol. 65-6, pp. 289-310.
Gibb, W. H., Clarke, F., Mehta, A. K. (2000). The Fate of Coal Mercury during Combustion, Fuel Processing Technology, Vol. 65, pp. 365-377.
Harrison, R. M., Rapsomanikis, S. (1989). Environmental Analysis Using Chromatography Interfaced with Atomic Spectroscopy, Ellis Horwood Chichester, England.
Holst, O., Stenberg, B., Christiansson, M. (1998). Biotechnological Possibilities for Waste Tyre-rubber Treatment, Biodegradation, Vol. 9, pp. 301-310.
Ha, S. R., Vinitanatharat, S., Ozaki, H. (2000). Bioregeneration by Mixed Microorganisms of Granular Activated Carbon Loaded with A Mixture of Phenols, Biotechnology Letters, Vol. 22, pp. 1093-1096.
Hsi, H. C., Rostam-Abadi, M., Rood, M. J., Chen, S., Chang, R. (2001). Effect of Sulfur Impregnation Temperature on The Properties and Mercury Adsorption Capacities of Activated Carbon Fibers (ACFs), Environmental Science and Technology, Vol. 35, pp. 2785-2791.
Han F. X., Banin A., Su Y., Monts D. L., Plodinec M. J., Kingery W. L., Triplett G. E. (2002). Industrial Age Anthropogenic Inputs of Heavy Metals into the Pedosphere, Naturwissenschaften, Vol. 89, pp. 497-504.
Hlawiczka, S., Kubica, K., Zielonka, U. (2003). Partitioning Factor of Mercury during Coal Combustion in Low Capatcity Domestic Heating Units, Science of the Total Environment, Vol. 312, pp. 261-265.
Innanen, S. (1998). The Ratio of Anthropogenic to Natural Mercury Release in Ontario: Three Emission Scenarios, Science of the Total Environment, Vol. 213, pp. 25-32.
Ivancev-Tumbas, I., Dalmacija, B., Tamas, Z., Karlovic, E. (1998). Reuse of Biologically Regenerated Activated Carbon for Phenol Removal, Water Research, Vol. 32, pp. 1085-1094.
Jonge, R. J. de, Breure, A. M., Andel, J. G. van. (1996). Bioregeneration of Powdered Activated Carbon (PAC) Loaded with Aromatic Compounds, Water Research, Vol. 30, pp. 875-882.
Krishnan, S. V., Gullett, B. K., Jozewicz, W. (1994). Sorption of Elemental Mercury by Activated Carbon. Environment Science Technology, Vol. 28, pp. 1506-1512.
Karatza, D., Lancia, A., Musmarra, D., Zucchini, C. (2000). Study of Mercury Absorption and Desorption on Sulfur Impregnated Carbon, Experimental Thermal Science, Vol. 21, pp. 150-155.
Klimenko, N., Winther-Nielsen, M., Smolin, S., Nevynna, L., Sydorenko, J. (2002). Role of the Physico-chemical Factors in the Purification Process of Water from Surface-active Matter by Biosorption, Water Research, Vol. 36, pp. 5132-5140.
Krishnan, K. A., Anirudhan, T. S. (2002). Uptake of Heavy Metals in Batch Systems by Sulfurized Steam Activated Carbon Prepared from Sugarcane Bagasse Pith, Industrial and Engineering Chemistry Research, Vol. 41, pp. 5085-5093.
Kadirvelu, K., Kavipriya, M., Karthika, C., Vennilamani, N., Pattabhi, S. (2004). Mercury (II) Adsorption by Activated Carbon Made from Sago Waste, Carbon, Vol. 42, pp. 745-752.
Klimenko, N., Smolin, S., Grechanyk, S., Kofanov, V., Nevynna, L., Samoylenko, L. (2004). Bioregeneration of Activated Carbons by Bacterial Degraders after Adsorption of Surfactants from Aqueous Solutions, Colloids and Surfaces A: Physicochemical Engineering Aspects, Vol. 230, pp. 141-158.
Khalkhali, R., Omidvari, R. (2005). Adsorption of Mercuric Ion from Aqueous Solutions Using Activated Carbon, Polish Journal Environmental Studies, Vol. 14, pp. 185-188.
Klasson, K. T., Borole, A. P., Mckeown, C. K., Hamilton, C. Y. (2006). Biomodification of Coal to Remove Mercury, Applied Biochemistry and Biotechnology, Vol. 06, pp. 129-132.
Kalavathy, H., Karthik, B., Miranda, L. R. (2010). Removal and Recovery of Ni and Zn from Aqueous Solution Using Activated Carbon from Hevea Brasiliensis: Batch and Column Studies, Colloids and Surfaces B, Vol. 78, pp. 291-302.
Laine, J., Calafat, A. (1991). Factors Affection the Preparation of Activated Carbon from Coconut Shell Catalyzed by Potassium, Carbon, Vol. 29, pp. 949.
Livengood, C. D., Huang, H. S., Wu, J. M. (1994). Experimental Evaluation of Sorbents for The Capture of Mercury in Flue Gaes, AWMA 87th annual meeting, Cincinnati, OH.
Lahaye, J. (1998). The Chemistry of Carbon Surfaces, Fuel, Vol. 77, pp. 543-547.
Liu, W., Vidic, R. D., Brown, T. D. (2000). Optimization of High Temperature Sulfur Impregnation on Activated Carbon for Permanent Sequestration of Elemental Mercury Vapors, Environmental Science and Technology, Vol. 34, pp. 483-488.
Lee, K. M., Lim, P. E. (2005). Bioregeneration of Powdered Activated Carbon in the Treatment of Alky-substituted Phenolic Compounds in Simultaneous Adsorption and Biodegradation Processes, Chemosphere, Vol. 58, pp. 407-416.
Li, W., Xiong, X., Li, Y. (2007). Bio-regeneration of Desulfurization Dsorbents by Selected P. delafieldii R-8 Strains, Separation Science Technology, Vol. 42, pp. 3351-3362.
Liu, X., Yu, G., Han, W. (2007). Granular Activated Carbon Adsorption and Microwave Regeneration for the Treatment of 2,4,5-trichlorobiphenyl in Simulated Soil-washing Solution, Journal of Hazardous Materials, Vol. 147, pp. 746-751.
Martin, R. J., Ng, W. J. (1985). Chemical Regeneration of Exhausted Activated Carbon-II, Water Research, Vol. 19, pp. 1527-1535.
Mercier, G., Chartier, M., Couillard, D. (1996). Strategies to Maximize the Microbial Leaching Lead from Metal-contaminated Aquatic Sediments, Water Research, Vol. 30, pp. 2452-2464.
Mochidaa, I., Koraia, Y., Shirahamaa, M., Kawanoa, S., Hada, T., Seo, Y., Yoshikawa, M., Yasutake, A. (2000). Removal of SO and NO Over Activated Carbon Fibers, Carbon, Vol. 38, pp. 227–239.
Mukherjee, A. B., Zevenhoven, R., Brodersen, J., Hylander, L. D., Bhattacharya, P. (2004). Mercury in Waste in the European Union: Sources, Disposal Methods and Risks. Conservation and Recycling, Vol. 42, pp. 155–182.
Namasivayam, C., Kadirvelu, K. (1999). Uptake of Mercury(II) from Wastewater by Activated Carbon from an Unwanted Agricultural Solid by-product: Coirpith, Carbon, Vol. 37, pp. 79-84.
Nabais, J. V., Carrott, P. J. M., Carrott, M. M. L. R., Belchior, D., Diall, T., Gulyurtlu, I. (2006). Mercury Removal from Aqueous Solution and Flue Gas by Adsorption on Activated Carbon Fibres, Applied Surface Science, Vol. 252, pp. 6046-6052.
Nareshkumar, R., Nagendran, R., Parvathi, K. (2008). Bioleaching of Heavy Metals from Contaminated Soil Using Acidithiobacillus Thiooxidans: Effect of Sulfur/Soil Ratio. World Journal of Microbiology and Biotechnology, Vol. 24, pp. 1539-1546.
Ng, S. L., Seng, C. E., Lim, P. E. (2010). Bioregeneration of Activated Carbon and Activated Rice Husk Loaded with Phenolic Compounds: Kinetic Modeling, Chemosphere, Vol. 78, pp. 510-516.
Pacyna, E., Pacyna, J. M., Pirrone, N. (2000). Atmospheric Mercury Emissions in Europe from Anthropogenic Sources, Atmospheric Environment, Vol. 35, pp. 2987-2996.
Putz, A. R. H., Losh, D. E., Speitel, G. E. (2005). Removal of Nonbiodegradable Chemicals from Mixtures during Granular Activated Carbon Bioregeneration, Journal of Environment Engineering, Vol. 131, pp. 196-205.
Steijns, M., Peppelenbos, A. Mars, P. J. (1976). Mercury Chemisorption by Sulfur Adsorbed in Porous Materials, Colloid and Interface Science, Vol. 57, pp. 181-186.
Speitel, G. E., Digiano, F. A. (1987). The Bioregeneration of GAC Used to Treat Micropollutants, Journal of Amerivan Water Works Association, Vol. 79, pp. 64-73.
Schroeder, W. H., Yarwood, G., Niki, H. (1991). Transformation Processes Involving Mercury Species in the Atmosphere-results from a Literature Survey, Water Air Soil Pollution, Vol. 56, pp. 653-666.
Schuster, E. (1991). The Behavior of Mercury in the Soil with Special Emphasis on Complexation and Adsorption Processes-A Review of the Literature, Water Air Soil Pollution, Vol. 56, pp. 667-680.
Seignerur, C., Wrobel, J. and Constantinou, E. (1994). A chemical Kinetic Mechanism for Atmospheric Inorganic Mercury, Environmental Science and Technology, Vol. 28, pp. 1589-1597.
Sreekrishnan, T. R., Tyagi, R. D., Blais, J. F., Meunier, N., Campbell, P. G. C. (1996). Effect of Sulfur Concentration on Sludge Acidification during The SSDML Process, Water Research, Vol. 30, pp. 2728-2738.
Swain, E. B. (1997). Mercury: Source and Environment Fate. Presentation at the Mercury Contamination Reduction Initiative Workshop, St. Paul, Minnesota.
Shen, S. B., Vidyarthi, A. S., Tyagi, R. D., Blais, J. F., Surampalli, R. Y. (2002). Effect of Sulfur Concentration on Bioleaching of Cr(III) and Other Metals from Tannery Sludge by Indigenous Sulfur-oxidizing Bacteria, Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, Vol. 6, pp. 244-249.
Shen, S. B., Tyagi, R. D., Blais, J. F., Surampalli, R. Y. (2003). Bacterial Leaching of Metals from Tannery Sludge by Indigenous Sulphur-oxidizing Bacteria-effect of Sludge Solids Concentration, Journal of Environmental Engineering, Vol. 129, pp. 513-519.
Tamon, H., Saito, T., Kishimura, M., Okazaki, M., Toei, R. (1990). Solvent Regeneration of Spent Activated Carbon in Wastewater Treatment, Journal of Chemical Engineering of Japan, Vol. 23, pp. 426-432.
Tonini, D. R., Gauvin, D. A., Soffel, R. W., Freeman, W. P. (2003). Achieving Low Mercury Concentrations in Chlor-alkali Wastewaters, Environmental Progress, Vol. 22, pp. 167-173.
UNEP Chemicals. (2002). Global Mercury Assessment, Geneva, Switzerland.
Vidic, R. D., McLaughlin, J. B. (1996). Uptake of Elemental Mercury Vapors by Activated Carbons. Journal of the Air and Waste Management Association, Vol. 46, pp. 241-250.
Vinitanatharat, S., Baral, A., Ha, S. R. (2000). Quantitative Bioregeneration of Granular Activated Carbon Loaded with Phenol and 2,4-dichlorophenol, Environment Technology, Vol. 22, pp. 339-344.
Vitolo, S., Seggiani, M. (2002). Mercury Removal from Geothermal Exhaust Gas by Sulfur-impregnated and Virgin Activated Carbons, Geothermic, Vol. 31, pp. 431-442.
Walker, G. M., Weatherley, L. R. (1998). Bacterial Regeneration in Biological Activated Carbon Systems, Process Safety and Environment Protection, Vol. 76, pp. 177-182.
Wong, J. W. C., Xiang, L., Chan, L. C. (2002). pH Requirement for the Bioleaching of Heavy Metals from Anaerobically Digested Wastewater Sludge, Water Air and Soil Pollution, Vol. 138, pp. 25-35.
Wang, J., Deng, B., Wang, X., Zheng, J. (2009). Adsorption of Aqueous Hg(II) by Sulfur-impregnated Activated Carbon. Environmental Engineering Science, Vol. 26, pp. 1693-1699.
Yuan, C. S., Lin, H. Y., Wu, C. H., Lin, M. H. (2004). Preparation of Sulfurized Powdered Activated Carbon from Waste Tires Using an Innovative Compositive Impregnation Process, Journal of the Air and Waste Management Association, Vol. 54, pp. 862-870.
Zhao, Y., Yue, Q., Li, Q., Gao, B., Han, S., Yu, H. (2010). The Generation Characteristics of Various Red Mud Granular Adsorbents (RMGA) for Phosphate Removal Using Different Desorption Reagents, Journal of Hazardous Materials, Vol. 182, pp. 309-316.
林勳佑,1996,資源再利用粉狀活性碳吸附氣相氯化汞之研究,博士論文,國立中山大學環境工程研究所,高雄。
袁中新、洪崇軒、廖志國,1999,活性碳再生技術開發:微波加熱技術,第六屆海峽兩岸環境保護研討會,pp. 587-592。
吳俊欣,2000,都市垃圾焚化爐排氣中含汞污染物之採樣與分析暨廢輪胎熱裂解製備粉狀活性碳對氯化汞蒸氣之吸附效能測試,博士論文,國立中山大學環境工程所,高雄。
侯瑞毅,2004,以微波加熱活性碳固定床脫附二氯甲烷及三氯甲烷之研究,碩士論文,私立大仁科技大學環境管理所,屏東。
曹志豪,2005,廢輪胎資源化-脫硫菌篩選之初探,碩士論文,私立逢甲大學環境工程與科學學系,台中。
胡苔莉、黃琬芳,2006,利用生物技術處理廢輪胎-橡膠脫硫去硬化菌之純化與其去硫能力之探討,第二十一屆廢棄物處理技術研討會論文集。
林文清,2007,微晶纖維素廢料之活性碳熱裂解資源化研究,碩士論文,國立中央大學環境工程研究所,桃園。
林培良,2008,土壤重金屬生物溶出程序之可行性研究,碩士論文,國立高雄第一科技大學環境與安全衛生工程系,高雄。
薛聖翰,2008,利用熱重分析法探討含硫活性碳之氯化汞吸附及脫附研究,碩士論文,國立中山大學環境工程研究所,高雄。
林桂如,2009,硫含浸改質碳基與非碳基吸附劑去除燃煤煙道氣中汞蒸氣,碩士論文,國立高雄第一科技大學環境與安全衛生工程系,高雄。
葉怡成,高等實驗計畫法,台北:五南書局,2009。
經建會,2010,能源國家型科技計畫。
王聲穎,2011,以Aspergillus niger進行污泥中重金屬生物溶出程序之研究,碩士論文,國立高雄第一科技大學環境與安全衛生工程系,高雄。


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊