跳到主要內容

臺灣博碩士論文加值系統

(3.235.227.117) 您好!臺灣時間:2021/07/28 03:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林秉蓮
研究生(外文):Bing-Lian Lin
論文名稱:探討還原性物質於連續式光催化系統氧化非類固醇抗發炎藥劑影響之研究
論文名稱(外文):Removal of non-steroidal anti-inflammatory drugs (NSAIDs) with different electron scavengers by fluidized TiO2 catalyst bed reactor.
指導教授:陳孝行陳孝行引用關係
口試委員:陳奕宏李奇旺
口試日期:2012-06-26
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:環境工程與管理研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:117
中文關鍵詞:對乙醯氨基苯酚二氧化鈦光催化六價鉻硝酸鹽連續式MOPAC
外文關鍵詞:AcetaminophenTiO2photocatalysisCr(VI)NO3-continuous systemMOPAC
相關次數:
  • 被引用被引用:0
  • 點閱點閱:110
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用 TiO2 具備同步氧化還原的特性,針對存在自然水體中的微量非類固醇抗發炎劑 Acetaminophen(APAP)進行研究,期望能在短時間內有效率的去除存在水體中微量藥物,以利於往後實廠上的應用。本研究分成兩部份:首先先探討各項光催因子對於 APAP去除率之影響,探討的參數包含了初始 pH 、HRT、含氧量、TiO2 劑量,第二部份即為探討添加不同莫耳比之 Cr(VI) 和 NO3- 作為還原性物質,對於 APAP 去除率之影響;本研究致力於探討還原性物質對於 APAP 在光催化各項影響因子中的降解變化情形。
於各項光催因子探討中可發現,當 HRT=40 min、初始 pH=2、曝氧氣、 TiO2=0.5 g/L、light intensity=2.5 W/m2、uv=254 nm 之光催條件為最佳操作條件,此時 APAP 之去除率可達 98.87 %。
若 APAP 溶液中存在還原性物質 Cr(VI) 時能加速 APAP 之降解速度,但其去除率(91.70 %)會略低於僅有 APAP 存在的情況下;若還原性物質為 NO3- 時,雖然無法加速 APAP 降解速度,但卻可略微增加 APAP 之去除率(99.08 %)。
APAP 經光催化反應後其 TOC 值呈現跳動現象,經由 GC/MS 分析 APAP 光催化後產生之中間產物為醇類、醚類、酯類、酸類,但以醇類型式存在較多,而醇類會有逸散的現象發生,造成 TOC 跳動。


The presence of non-steroidal anti-inflammatory drugs (NSAIDs) has been reported as emerging contaminants in many countries. Acetaminophen a NSAIDs with relative high concentrations in surface water, were chosen in the study. The aim of this study was to remove the emerging contaminants of acetaminophen by TiO2 and to discuss the effect of reductive substances(Cr(VI), NO3-), which co exists in acetaminophen solution.
There are two parts in this study. The first part is to find the optimum removal efficiency of acetaminophen under different parameters(hydraulic retention time (HRT), initial pH, aeration and TiO2 dosage). The second part is to discuss the effect of Cr(VI) and NO3- in acetaminophen solution under the optimum operation conditions.
In the first part, acetaminophen had the highest removal efficiency of 98.77 % under the operating conditions of acetaminophen=10 mg/L, HRT=40 min, initial pH=2, aeration with oxygen and TiO2=0.5 g/L.
Compared with the removal efficiency that only acetaminophen existed, the removal efficiency of the solution that Cr(VI) existed was worse since, both acetaminophen and Cr(VI) were photocatalyzed. But the acetaminophen degradation rate was faster with the presence of Cr(VI). If the NO3- existed in the acetaminophen solution, after 8 hr of photocatalysis, the acetaminophen removal efficiency reached 99.08%. Compare with the removal efficiency that only acetaminophen existed, the removal efficiency of acetaminophen with the presence of NO3- was better.
In this study, TOC was analyzed to determine the mineralization of acetaminophen, but the TOC values were fluctuated. The reason was that the acetaminophen after photocatalysis produced some intermediates. Such as alcohol, ether, ester and acid, analyzed by GC/MS. Since more alcohol was observe than the rest intermediates, and alcohol in the solution might vaporize into air, causing fluctuatation of the TOC values.


摘 要 i
ABSTRACT ii
誌謝 iv
目錄 vi
表目錄 ix
圖目錄 x
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
1.3 研究內容 3
第二章 文獻回顧 5
2.1 TiO2 光催化反應原理及應用 5
2.1.1 TiO2 基本特性及應用 5
2.1.2 光觸媒反應理論 6
2.1.2.1 光催化反應原理 6
2.1.2.2 二氧化鈦之光催化反應原理 7
2.1.3 影響光觸媒反應因子探討 10
2.1.3.1 光觸媒影響因子 10
2.1.3.2 光催化程序之影響因子 11
2.2 對乙醯氨基苯酚特性及現行處理技術 16
2.2.1 對乙醯氨基苯酚特性及危害 16
2.2.2 對乙醯氨基苯酚現行處理技術 18
2.3 還原性物質 22
2.3.1 還原性物質污染之來源、特性及危害 22
2.3.1.1 六價鉻 22
2.3.1.2 硝酸鹽 24
2.3.2 還原性物質現行處理技術 27
2.3.2.1 六價鉻現行處理技術 27
2.3.2.2 硝酸鹽現行處理技術 31
2.4 量子化學軟體介紹 35
2.4.1 ChembioOffice 2008 操作 35
2.4.2 量子化學軟體相關應用 36
第三章 實驗方法與設備 38
3.1 實驗內容 38
3.1.1 實驗方法與原理 38
3.1.2 實驗設計 38
3.1.3 實驗流程 39
3.2 實驗材料與設備 41
3.2.1 實驗材料 41
3.2.2 實驗設備 42
3.2.2.1 實驗模廠 42
3.2.2.2 實驗分析儀器 44
3.3 實驗分析方法 44
3.3.1 對乙醯氨基苯酚(APAP)之分析方法 44
3.3.2 六價鉻離子之分析方法 45
3.3.3硝酸鹽氮之分析方法 45
3.3.4亞硝酸鹽氮之分析方法 46
3.3.5 氨氮之分析方法 46
3.3.6 總有機碳(TOC)分析方法 47
3.3.7 有機物副產物定性分析方法 47
3.4 量子化學軟體應用 48
第四章 結果與討論 49
4.1 連續式光觸媒影響因子之探討 49
4.1.1 水力停留時間對連續式光催化試驗之影響 50
4.1.2 pH 值對連續式光催化試驗之影響 52
4.1.3 曝氣含氧量對連續式光催化試驗之影響 55
4.1.4 TiO2 劑量對連續式光催化試驗之影響 57
4.1.5最適化條件之探討 59
4.2 還原性物質於連續式光催化系統中對 APAP 氧化效果之影響 60
4.2.1 六價鉻於光催化系統中對 APAP 降解效果之影響 61
4.2.2 硝酸鹽於光催化系統中對 APAP 降解效果之影響 67
4.2.3 還原性物質於光催化系統中對 APAP 降解效果之影響 73
4.3 光觸媒光催化反應機制 75
4.3.1 光催化反應動力模式探討 75
4.3.2 光催化影響因子對 kobs 影響之探討 78
4.3.2.1 水力停留時間效應對 kobs 之探討 78
4.3.2.2 pH對 kobs 之探討 79
4.3.2.3曝氣含氧量對 kobs 之探討 80
4.3.2.4 TiO2 劑量對 kobs 之探討 81
4.3.3 還原性物質對 kobs 影響之探討 83
4.3.3.1 Cr(VI) 對kobs 影響之探討 83
4.3.3.2 NO3- 對 kobs 影響之探討 84
4.4副產物探討 85
4.4.1 量子力學軟體模擬 APAP 降解途俓 86
4.4.2 APAP 之衍生副產物及降解途徑之探討 91
第五章 結論與建議 96
5.1 結論 96
5.2建議 97
參考文獻 98
附錄A:水質分析原始數據 106


1.Lin, A.Y. and Tsai,Y.T. , Occurrence of pharmaceuticals in Taiwan''s surface waters: impact of waste streams from hospitals and pharmaceutical production facilities. Sci Total Environ, 2009. 407(12): p. 379-382.
2.Lin, A.Y., Yu,T.H. ,and Lateef,S.K. , Removal of pharmaceuticals in secondary wastewater treatment processes in Taiwan. Journal of Hazardous Materials, 2009. 167(1-3): p. 116-139.
3.Zhang, X., Wu, F., Wu,F., Wu, X. , Chen, P., and Deng, N., Photodegradation of acetaminophen in TiO2 suspended solution. Journal of Hazardous Materials, 2008. 157(2-3): p. 300-307.
4.Fujishima, A., Rao,T.N. , and Tryk, D.A. , Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2000. 1(1): p. 1-21.
5.Wong, M.S., Chou H. P, and Yang, T.S. , Reactively sputtered N-doped titanium oxide films as visible-light photocatalyst. Thin Solid Films, 2006. 494(1-2): p. 244-249.
6.Fujishima, A. and Honda,K., Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972. 238(5358): p. 37-38.
7.Yang, L.,Yu, L.E. , and Ray, M.B. , Photocatalytic oxidation of paracetamol: Dominant reactants, intermediates, and reaction mechanisms. Environmental Science and Technology, 2009. 43(2): p. 460-465.
8.Dionysiou, D.D., Burbano, A. A., Suidan, M. T. ,Baudin, I. , and Laîné, J. M., Effect of oxygen in a thin-film rotating disk photocatalytic reactor. Environmental Science and Technology, 2002. 36(17): p. 3834-3843.
9.Hirakawa, T. and Nosaka,Y., Selective production of superoxide ions and hydrogen peroxide over nitrogen and sulfur doped TiO2 photocatalysts with visible light in aqueous suspension systems. Journal of Physical Chemistry C, 2008. 112(40): p. 15818-15823.
10.Carraway, E.R., Huffman,A.J. , and Hoffmann, M.R. , Photocatalytic oxidation of organic acids on quantum-sized semiconductor colloids. Environmental Science and Technology, 1994. 28(5): p. 786-793.
11.Zhang, F., Zhao, J., Shen, T., Hidaka, H., Pelizzetti, E., and Serpone, N., TiO2-assisted photodegradation of dye pollutants II. Adsorption and degradation kinetics of eosin in TiO2 dispersions under visible light irradiation. Applied Catalysis B: Environmental, 1998. 15(1-2): p. 147-156.
12.Anpo, M., Photocatalytic hydrogenation of CH3CCH with H2O on small-particle TiO2: Size quantization effects and reaction intermediates. Journal of Physical Chemistry, 1987. 91(16): p. 4305-4310.
13.Stafford, U., Gray, K.A,. and Kamat,P.V. , Photocatalytic degradation of organic contaminants: Halophenols and related model compounds. Heterogeneous Chemistry Reviews, 1996. 3(2): p. 77-104.
14.Howe Ed, R.H.L., Hazardous chemicals handling and disposal. Proceedings of the first symposium, Apr 22 1970, Indiana, sponsored by the Institute of Advanced Sanitation Research, International, in cooperation with the Indiana Public Health Association. 1972.
15.Young Ku,and Wang,W.-Y. , Photocatalytic reduction of carbonate in aqueous solution by UV/TiO2 process. 2004.
16.Bhoopendra,K.S. , Jatinder, K. ,and Suresh, C.A. , Energy Res1997.
17.Bems, B., Jentoft, F.C. , and Schlögl,R. ,Photoinduced decomposition of nitrate in drinking water in the presence of titania and humic acids. Applied Catalysis B: Environmental, 1999. 20(2): p. 155-163.
18.Wang, L., et al., Photocatalytic reduction of Cr(VI) over different TiO2 photocatalysts and the effects of dissolved organic species. Journal of Hazardous Materials, 2008. 152(1): p. 93-9.
19.Ollis D F, P.E., Serpone N.Environ., Sci. Technol.1991.
20.Yamazaki-Nishida, S., Photocatalytic degradation of trichloroethylene in the gas phase using titanium dioxide pellets. Journal of Photochemistry and Photobiology, A: Chemistry, 1993. 70(1): p. 95-99.
21.Blake, D.M., Webb, J., Turchi, C. and Magrini, K., Kinetic and mechanistic overview of TiO2-photocatalyzed oxidation reactions in aqueous solution. Solar Energy Materials, 1991(1-4): p. 584-593.
22.Méndez-Arriaga, F., Esplugas,S. , and Giménez,J. , Photocatalytic degradation of non-steroidal anti-inflammatory drugs with TiO2 and simulated solar irradiation. Water Research, 2008. 42(3): p. 585-594.
23.Achilleos, A., Factors affecting diclofenac decompostion in water by UV-A/TiO2 photocatalysis. Chemical Engineering Journal, 2010. 161(1-2): p. 53-59.
24.Madhavan, J., Grieser,F. , and Ashokkumar,M. , Combined advanced oxidation processes for the synergistic degradation of ibuprofen in aqueous environments. Journal of Hazardous Materials, 2010. 178(1-3): p. 20-28.
25.Kolpin DW, F.E., Meyer MT, Thurman EM, Zaugg SD, and Barber L.B, Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams. 2000.
26.Wiegel, S., Aulinger, A., Brockmeyer, R., Harms, H., Löffler, J., Reincke, H., Schmidt, R., Stachel, B. , Von Tümpling, W. ,Wanke, A., Pharmaceuticals in the river Elbe and its tributaries. Chemosphere, 2004. 57(2): p. 107-126.
27.Hernando, M.D., Mezcua, M. , Fernández-Alba, A. R. , and Barceló, D., Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta, 2006. 69(2 SPEC. ISS.): p. 334-342.
28.Göbel, A., McArdell, C. S. , Joss, A. , Siegrist, H. , and Giger, W., Fate of sulfonamides, macrolides, and trimethoprim in different wastewater treatment technologies. Science of the Total Environment, 2007. 372(2-3): p. 361-371.
29.Tsai, Y.-T., Hsien ,Y.- T., Wang, X.-H., and Lin, C.-F., Occurrence and fate of pharmaceuticals and personal care products in Taiwan’s aquatic environment. Desalination and Water Treatment, 2011: p. 57-64.
30.Lin, A.Y., Lin, C. A. , Tung, H. H. , and Chary, N. S., Potential for biodegradation and sorption of acetaminophen, caffeine, propranolol and acebutolol in lab-scale aqueous environments. Journal of Hazardous Materials, 2010. 183(1-3): p. 42-50.
31.Lee, W.M., Acetaminophen-related acute liver failure in the United States. Hepatol Res, 2008. 38(s1The 6 Japan Society of Hepatology Single Topic Conference: Liver Failure: Recent Progress and Pathogenesis to Management. 28-29 September 2007, Iwate, Japan): p. S3-S8.
32.Tambosi, J.L., Favier, Maxime, and Gebhardt, Wilhelm, Removal of pharmaceutical compounds in membrane bioreactors (MBR) applying submerged membranes. Desalination, 2010. 261(1-2): p. 148-156.
33.Zazouli, M.A., Susanto, H. , Nasseri, S. , and Ulbricht, M., Influences of solution chemistry and polymeric natural organic matter on the removal of aquatic pharmaceutical residuals by nanofiltration. Water Research, 2009. 43(13): p. 270-280.
34.Cabrita, I., Ruiz, B. , Mestre, A. S. ,Fonseca, I. M. , Carvalho, A. P. , and Ania, C. O., Removal of an analgesic using activated carbons prepared from urban and industrial residues. Chemical Engineering Journal, 2010. 163(3): p. 249-255.
35.Andreozzi, R., Caprio, V. , Marotta, R. , and Vogna, D., Paracetamol oxidation from aqueous solutions by means of ozonation and H2O2/UV system. Water Research, 2003. 37(5): p. 993-1004.
36.Zhang, H., Cao, Beipei, Liu, Wanpeng, Lin, Kunde, and Feng, Jun, Oxidative removal of acetaminophen using zero valent aluminum-acid system: Efficacy, influencing factors, and reaction mechanism. Journal of Environmental Sciences, 2012. 24(2): p. 314-319.
37.Meichtry, J.M., Brusa, M. , Mailhot, G. , Grela, M. A. , and Litter, M. I., Heterogeneous photocatalysis of Cr(VI) in the presence of citric acid over TiO2 particles: Relevance of Cr(V)-citrate complexes. Applied Catalysis B: Environmental, 2007. 71(1-2): p. 101-107.
38.Paschoal, F.M.M., M.A. Anderson, and M.V.B. Zanoni, Simultaneous removal of chromium and leather dye from simulated tannery effluent by photoelectrochemistry. Journal of Hazardous Materials, 2009. 166(1): p. 531-537.
39.Fendorf, S.E., Surface reactions of chromium in soils and waters. Geoderma, 1995. 67(1-2): p. 55-71.
40.洪儷瑋, 以廢鑄鐵還原電鍍廢液中高濃度六價鉻之研究., 2006: 國立臺北科技大學環境工程與管理研究所: 台北.
41.陳玉珊, 以改質光觸媒結合電透析薄膜程序併同處理六價鉻與奈磺酸鹽之研究. , 2010: 國立臺北科技大學環境工程與管理研究所: 台北.
42.唐以芳, 利用電洞捕捉劑(EDTA/檸檬酸/水楊酸)於連續式光觸媒結合電透析程序光催化還原 Cr(VI) 之研究. 2011: 國立臺北科技大學.
43.Krejpcio, Z., Essentiality of Chromium for Human Nutrition and Health. Polish Journal of Environmental Studies, 2001. 10(6): p. 399-404.
44.H., S.K., Decomposition of halogenated pesticides. 1973.
45.Nriagu, J.O.a.N.E., Biologic chemistry of chromium. 1988.
46.郭魁士, 土壤學, 中國書局
47.吳心怡, 以奈米零價單金屬及複合金屬處理六價鉻之研究., 2009: 嘉南藥理科技大學.
48.Reregistration Eligibility Decision : Inorganic Nitrate/Nitrite (Sodium and Potassium Nitrates), 1991: Agency., U.S. Environmental Protection.
49.Facts : Inorganic Nitrates / Nitrite, 1991: Substances., U.S. Environmental Protection Agency Pesticides and Toxic.
50.Case Studies in Environmental Medicine : Nitrate / Nitrite Toxicity, 2001: Agency., U.S. Environmental Protection.
51.International Program on Chemical Safety, Environmental Health Criteria 5: Nitrates, Nitrites, and N-Nitroso Compounds., 2006: World Health Organization.
52.Consumer Factsheet on : Nitrates/Nitrites, 2006: Water, U.S. Environmental Protection Agency Ground Water and Drinking water.
53.羅曉琪, 以連續式光催化反應系統還原水中硝酸鹽之研究, 2011: 國立臺北科技大學.
54.J., Hill M., Nitrates and Nitrites in food and water.1991.
55.Meichtry, J.M., Brusa, M., Mailhot, G., Grela, M. A. and Litter, M. I., Heterogeneous photocatalysis of Cr(VI) in the presence of citric acid over TiO2 particles: Relevance of Cr(V)-citrate complexes. 2007.
56.Cassano, A., R. Molinari, and E. Drioli, Saving of water and chemicals in tanning industry by membrane processes, 1999. p. 443-450.
57.陳啟明, NF薄膜程序應用於自來水淨水工程之探討, 2004: 屏東科技大學: 屏東.
58.吳心怡, 以奈米零價單金屬及複合金屬處理六價鉻之研究, 2009: 嘉南藥理科技大學.
59.張貴錢, 利用奈米零價鐵粉處理受鉻污染水體之研究, 2003: 元智大學: 桃園.
60.Li, C.L., Zhao, H. X. , Tsuru, T. , Zhou, D. , and Matsumura, M., Recovery of spent electroless nickel plating bath by electrodialysis. Journal of Membrane Science, 1999. 157(2): p. 241-249.
61.Spoor, P.B., Grabovska, L. , Koene, L. , and Ter Veen, W. R., Pilot scale deionisation of a galvanic nickel solution using a hybrid ion-exchange/electrodialysis system. Chemical Engineering Journal, 2002. 89(1-3): p. 193-202.
62.陳玉珊, 以改質光觸媒結合電透析薄膜程序併同處理六價鉻與奈磺酸鹽之研究. . 2010.
63.傅崇德, 工業水污染防治, 2001, 高立圖書有限公司.
64.許雅雯, 以鐵富載銅及貴金屬微粒還原水中鉻酸鹽之研究, 2006: 國立台灣大學環境工程研究所.
65.顏豪成, 以鐵負載銅及貴金屬微粒還原水中鉻酸鹽之研究, 2006: 嘉南藥理科技大學: 嘉義.
66.Wang, N., Xu, Y., Zhu, L., Shen, X. and Tang, H, Reconsideration to the deactivation of TiO2 catalyst during simultaneous photocatalytic reduction of Cr(VI) and oxidation of salicylic acid. Journal of Environmental Sciences, 2009. 201(2-3): p. 121-127.
67.Lee, S.M., Removal of Cr(VI) and humc acid by using TiO2 photocatalysis. Chemosphere, 2006. 63(10): p. 1677-1684.
68.Rautenbach, R., Kopp, W. , van Opbergen, G. , and Hellekes, R., Nitrate reduction of well water by reverse osmosis and electrodialysis - studies on plant performance and costs. Desalination, 1987. 65(C): p. 241-258.
69.Cheng, I.F., Muftikian, R. , Fernando, Q. , and Korte, N., Reduction of nitrate to ammonia by zero-valent iron. Chemosphere, 1997. 35(11): p. 2689-2695.
70.Horold, S., T. Tacke, and K.D. Vorlop, Catalytical removal of nitrate and nitrite from drinking water: 1. Screening for hydrogenation catalysts and influence of reaction conditions on activity and selectivity. Environmental Technology, 1993. 14(10): p. 931-939.
71.Sá, J., Agüera, C. A. , Gross, S. , and Anderson, J. A., Photocatalytic nitrate reduction over metal modified TiO2. Applied Catalysis B: Environmental, 2009. 85(3-4): p. 192-200.
72.Zhang, F., Jin, R. , Chen, J. , Shao, C. , Gao, W. , Li, L. , and Guan, N., High photocatalytic activity and selectivity for nitrogen in nitrate reduction on Ag/TiO2 catalyst with fine silver clusters. Journal of Catalysis, 2005. 232(2): p. 424-431.
73.Nomiyama, K., Tanizaki, T. , Ishibashi, H. , Arizono, K. , and Shinohara, R., Production mechanism of hydroxylated PCBs by oxidative degradation of selected PCBs using TiO2 in water and estrogenic activity of their intermediates. Environmental Science and Technology, 2005. 39(22): p. 8762-8769.
74.Coll, M., Frau, J. , Donoso, J. , and Muñoz, F., PM3 study of reactivity of non-classical β-lactam structures. Journal of Molecular Structure: THEOCHEM, 1999. 493: p. 287-299.
75.Tauro, S. and E. Coutinho, Azo, hydrazone and other tautomers of the azo dye 7-amino-4-hydroxy-3-[(4-methoxy-2-sulfophenyl)azo]-2-naphthalenesulfonic acid: A PM3 study. Journal of Molecular Structure: THEOCHEM, 2000. 532: p. 23-29.
76.Castillo, R., Moliner, V. , Safont, V. S. , Oliva, M. , and Andrés, J., A PM3 semiempirical study of the molecular mechanism for the Favorskii rearrangement of the α-chlorocyclobutanone. Journal of Molecular Structure: THEOCHEM, 1998. 426(1-3): p. 299-306.
77.Kumar, A., S.K. Jain, and R.C. Rastogi, A PM3 study of tautomerism in some 3,3′-methylenebis[4- hydroxycoumarin] systems. Journal of Molecular Structure: THEOCHEM, 2004. 678(1-3): p. 55-61.
78.Lee, B.D., M. Iso, and M. Hosomi, Prediction of Fenton oxidation positions in polycyclic aromatic hydrocarbons by Frontier electron density. Chemosphere, 2001. 42(4): p. 431-435.
79.Chu, W.H., Gao, N. Y. , Deng, Y. , and Dong, B. Z., Formation of chloroform during chlorination of alanine in drinking water. Chemosphere, 2009. 77(10): p. 1346-1351.
80.Hihara, T., Y. Okada, and Z. Morita, Photo-oxidation of pyrazolinylazo dyes and analysis of reactivity as azo and hydrazone tautomers using semiempirical molecular orbital PM5 method. Dyes and Pigments, 2006. 69(3): p. 151-176.
81.Liu, J., AM1 study of catalytic hydrogenation of 3-anilinomethylidene-6-ary-5,6-2H-dihydropyran-2,4-diones. Journal of Molecular Structure: THEOCHEM, 1998. 426(1-3): p. 299-306.
82.Waki, K., Zhao, J. , Horikoshi, S. , Watanabe, N. , and Hidaka, H., Photooxidation mechanism of nitrogen-containing compounds at TiO2/H2O interfaces: An experimental and theoretical examination of hydrazine derivatives. Chemosphere, 2000. 41(3): p. 337-343.
83.Horikoshi, S., Serpone, N. , Zhao, J. , and Hidaka, H., Towards a better understanding of the initial steps in the photocatalyzed mineralization of amino acids at the titania/water interface. An experimental and theoretical examination of L-alanine, L-serine and L-phenylalanine. Journal of Photochemistry and Photobiology A: Chemistry, 1998. 118(2): p. 123-129.
84.鄭奕彣, 液相非熱電漿備製含氮二氧化鈦降解偶氮染料並結合陶瓷膜回收光觸媒之研究, 2009: 國立臺北科技大學.
85.Kim, J., Park, J. , Kim, P. G. , Lee, C. , and Choi, K., Implication of global environmental changes on chemical toxicity-effect of water temperature, pH, and ultraviolet B irradiation on acute toxicity of several pharmaceuticals in Daphnia magna. Ecotoxicology, 2010. 19(4): p. 62-69.
86.Chen, Y.M., C.W. Li, and S.S. Chen, Fluidized zero valent iron bed reactor for nitrate removal. Chemosphere, 2005. 59(6): p. 753-759.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊