跳到主要內容

臺灣博碩士論文加值系統

(3.237.38.244) 您好!臺灣時間:2021/07/26 10:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇信豪
研究生(外文):Shin-Hau Su
論文名稱:揮發性有機物燃燒破壞效率與能源效率關連性之研究-以甲苯為例
論文名稱(外文):A Study on Destruction and Energy Efficiencies of Direct Combustion Treatment for Volatile Organic Compound -A Case Study of Toluene
指導教授:章裕民章裕民引用關係
口試委員:張慶源張添晉陳孝行
口試日期:2012-06-14
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:環境工程與管理研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:101
中文關鍵詞:甲苯焚化溫度反應速率熱傳面積能源效率
外文關鍵詞:TolueneIncineration TemperatureReaction RateHeating SurfaceEnergy Efficiency
相關次數:
  • 被引用被引用:4
  • 點閱點閱:285
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要是以氣態揮發性有機污染物甲苯為標的,採用直燃式焚化爐並搭配熱能回收設備,在燃燒破壞效率方面以焚化溫度及焚化時間作為變數,在能源效率方面則以熱傳面積作為主要變數,探討甲苯燃燒破壞效率及能源效率之關連性,在同時兼顧兩者的狀況下,建議較佳之操作條件,並於實場中進行驗證。
實場中以焚化溫度710℃、720℃及730℃,焚化時間0.5s下,進行甲苯採樣分析,其甲苯燃燒破壞效率分別為94.2%、98.6%及99.3%,此時能源回收效率分別為47.6%、48.0%及48.4%,此時,甲苯燃燒焚化效率與能源回收效率之線性關係為0.8434,當焚化溫度越高,則燃燒焚化效率與能源回收效率兩者關聯性則越
低,若在定溫狀態下,因改變焚化時間而增加之燃燒焚化效率或改變熱傳面積所增加之能源回收效率,並不影響兩者之關連性,顯示同時影響兩者的參數為焚化溫度,依據本研究結果,焚化溫度在710℃~730℃,且熱傳面積介於575m2可視為最佳操作條件。

This study is based on gaseous volatile organic compound in toluene as the subject, using the direct combustion with heat recovery equipment, the combustion destruction efficiency of incineration temperature and incineration time as a variable and the energy efficiency of heating surface as the main variable to explore the toluene relevance of the combustion of the destruction and energy efficiencies. Taking into account both of the situation at the same time, it is recommended that the better operating conditions and verify the experiment.
In the experiment, to assay the sampling of toluene, the incineration temperature are 710℃, 720℃ and 730℃, and incineration time is 0.5s, the toluene destruction efficiency are 94.2%, 98.6% and 99.3%, at the mean time, the energy recycling efficiency are 47.7%, 48.0% and 48.4%, mean while, the toluene destruction efficiency and linearity of relations the energy recycling efficiency is 0.8434, when the incineration temperature is higher, the related of the destruction efficiency and energy recycling efficiency are lower, if it is in the same temperature, changing the incineration time and increase the incineration efficiency or changing the heating surface to increase the recycling efficiency of energy do not affect both of the two correlation, it shows that the incineration affects the two parameter.
According to the result of the studying, the best operation condition, the incineration temperature is between 710℃~730℃, also heating surface is about 575m2.


摘要 I
Abstract II
致 謝 IV
目 錄 V
表目錄 VII
圖目錄IX
第一章 前言 1
1.1 引言 1
1.2 動機 4
1.3 目的 7
第二章 文獻回顧 8
2.1 揮發性有機物控制技術 8
2.2 焚化技術原理 17
2.3 熱破壞處理 20
2.3.1 熱回收直燃式焚化爐的構造與操作原理 20
2.3.2 蓄熱式焚化爐的構造與操作原理 21
2.3.3 觸媒焚化爐的構造與操作原理 27
2.4 能源回收 29
第三章 研究內容與方法 31
3.1 研究內容與流程 31
3.1.1 研究內容 31
3.1.2 研究流程 32
3.2 燃燒破壞效率量測與計算方法 33
3.2.1 甲苯燃燒破壞效率量測 33
3.2.2 甲苯燃燒破壞效率計算方法 35
3.3 能源效率量測與計算方法 38
3.3.1 能源效率量測 38
3.3.2 能源效率計算方法 39
3.4 實場概述與量測 48
第四章 結果與討論 53
4.1 焚化參數對甲苯熱破壞效率之影響 53
4.1.1 裂解溫度對輔助甲苯破壞效率之影響 53
4.1.2 焚化溫度對甲苯破壞效率之影響 56
4.2 焚化參數對能源回收效率之影響 59
4.2.1 熱傳面積對甲苯預熱後溫度之影響 59
4.2.2 焚化溫度對能源回收率之影響 62
4.3 燃燒破壞效率與能源回收效率之關聯性分析 67
4.4 燃燒破壞效率與能源回收效率之操作條件分析 83
4.5 實場驗證結果 88
4.5.1 焚化溫度對甲苯燃燒破壞效率之實場驗證 88
4.5.2 焚化溫度對能源回收效率之實場驗證 91
4.5.3 燃燒破壞效率與能源回收效率關聯性之實場驗證 94
第五章 結論與建議 96
5.1 結論 96
5.2 建議 97
參考文獻 98


1.行政院勞委會網站,危害物質危害數據資料。
http://ghs.cla.gov.tw/CHT/intro/MSDS.aspx?casno=108-88-3&cssid=3, (2010)
2.行政院勞委會,工研院工業安全衛生技術開發中心,「甲苯物質安全資料表」
3.Khan F. I. and Ghoshal A. Kr., "Removal of Volatile Organic Compounds from air polluted," Journal of Loss Prevention in the Process Industries, Vol. 13, pp. 527-545, 2000.
4.Anguil Environmental system網站,http://www.anguilasia.com/prrecthe.php, (2007)
5.Met-prosystems網站,http://www.met-prosystems.com/index.htm, (2010)
6.Everaert K. and Baeyens J., "Catalytic combustion of volatile organic compounds," Journal of Hazardous Materials, Vol. B109, pp. 113-119, 2004
7.Liotta L.F., "Catalytic oxidation of volatile organic compounds on supported noble metals," Applied Catalysis B: Environmental, Vol. 100, pp. 404-405, 2010
8.Li W.B., Wang J.X. and Gong H., "Catalytic combustion of VOC on non-noble metal catalysts," Catalysis Today, Vol. 148, pp. 81-87, 2009.
9.O’reilly A., "Estimation of Residence Time in VOC Incineration," Institution of Chemical Engineers, Vol. 75(B), pp. 33-42, 1997.
10.Donley D. and Lewandowski D., "Optimized Design and Operating Parameters for Minimizing Emissions During VOC Thermal Ozidation," Metal Finishing, Vol. 98(6), pp. 446-458, 2000.
11.Marks J. R. and T. Rhoads, " Planning saves time and money,when installing VOC controls," Chemical Processing, Vol. 5, p. 42, 1991.
12.Salvador S., Kara Y. and Commandre J. M., " Factors Influencing Pollutant Gas Emissions of VOC Recuperative Incinerators—Large-scale Parametric Study," Applied Thermal Engineering, Vol. 26, pp. 1640-1651, 2006.
13.O’reilly A., "A Series Reaction Approach to VOC Incineration," Institution of Chemical Engineers, Vol. 76(B), pp. 302-312, 1998.
14.Choi B. S. and Yi J., "Simulation and Optimization on the Regenerative Thermal Oxidation of Volatileorganic Compounds," Chemical Engineering Journal, Vol. 76, pp. 103-114, 2000.
15.國科會,「開發常壓均勻電漿系統處理空氣污染物技術」,科技研究合作計畫,1999。
16.郭福升,大面積常壓電漿技術之研究,碩士論文,國立成功大學化學研究所,台南,2003。
17.Chang J. S., "Recent Development of Plasma Pollution Control Technology:A Critical Review," Science and Technology of Advanced Materials, Vol. 2, pp. 571-576, 2001.
18.Anfruns A., Martin M. J. and M-Moran M. A., "Removal of Odourous VOCs Using Sludge-based Adsorbents," Chemical Engineering Journal, Vol. 166, pp. 1024-1026, 2011.
19.Ozturk B. and Yilmaz D., "Absorptive Removal of Volatile Organic Compounds From Flue Gas Streams," Process Safety and Enviromental Protection, Vol. 84(B5), pp. 393-397, 2006.
20.Gupta V.K. and Verma N., "Removal of Volatile Organic Compounds by Cryogenic Condensation Followed by Adsorption," Chemical Engineering Science, Vol. 57, pp. 2679-2696, 2002.
21.Neal A. B. and Loehr R. C., "Use of bioflters and suspended-growth reactors to treat VOCs," Waste Management Vol. 20, pp. 67-68, 2000.
22.國科會,「半導體產業產生有害空氣污染物處理技術」,1999。
23.周明顯,「清潔生產:VOCs及異味減量實務」,產業VOCs法規與減量技術講習會,國立台灣科技大學國際大樓,2009年6月,第17頁。
24.Vaart D. R., Vatvuk W. M. and Wehe A. H., "Thermal and Catalytic Incinerators for the Control of VOCs," Air & Waste Management Association, Vol. 41(1), pp. 92-93, 1991.
25.許朝翔,以粒狀觸媒氧化甲苯之研究,碩士論文,國立中山大學環境工程研究所,高雄,2007。
26.張艮輝,燃燒原理與污染控制,桃園:環訓所,1996,第10頁。
27.章裕民,排放量規模及最佳可行控制技術介紹,空污專責人員在職訓練教材,2006。
28.沈克鵬、施志恆、張豐堂等,揮發性有機廢氣減量及處理技術技術手冊,台北:經濟部工業局,2004,第5-27頁。
29.Durr Environmental網站 http://www.durr.com/en/company/divisions/clean-technology-systems/environmental-and-energy-systems/, (2011)
30.Abanto J., Reggio M. and P-Ouellet S., "On the Design of the RTO Unit Using CFD," Applied Thermal Engineering, Vol. 26, pp. 2327-2335, 2006.
31.黑正明,以蓄熱式焚化爐處理含氯揮發性有機物之操作性能研究,碩士論文,國立中山大學環境工程研究所,高雄,2002。
32.蔣少勇,以蓄熱式焚化爐(RTO)處理銅箔基板業排氣中VOCs之效率探討,碩士論文,國立中央大學環境工程研究所,桃園,2009。
33.基隆貿易有限公司 http://www.klinpak.com.tw/rings.htm, (2011)
34.粘愷峻,「VOCs防制設備之BACT選用原則說明與防制設備設計應注意之重點」,固定污染源許可及管理計畫(97及98年度)稽查檢測前作業宣導說明會,高雄市環保局,2008。
35.工業技術研究院,「臭氧處理程序設計評估技術」,工業技術研究院材料與化工研究所,1991。
36.Anguil Environmental system網站,http://www.anguil.com, (2011)
37.Kosusko M. and Nunez C. M., "Destruction of Volatile Organic Compounds Using Catalytic Oxidation," Air & Waste Management Association, Vol. 40(2), pp. 254-259, 1990.
38.張艮輝,燃燒原理與污染控制,桃園:環訓所,1996,第97頁。
39.Nicholson R., "Recuperative and Regerative Techniques at High Temperature," Heat Recovery Systems, Vol.3(5), pp.385-404, 1983.
40.Alrabghi O. M., Beirutty M., Akyurt M., Najjar Y. and Alp T., "Recovery and Utilization of Waste Heat," Heat Recovery Systems, Vol. 3(5), pp. 463-470, 1993.
41.Stehlik P., "Heat transfer as an important subject in waste-to-energy systems," Applied Thermal Engineering, Vol. 27, pp. 1659-1661, 2007.
42.Durmus A., "Heat transfer and exergy loss in cut out conical turbulators," Energy Conversion and Management, Vol. 45, pp. 785-796, 2004
43.環保署環檢所,排放管道中總碳氫化合物及非甲烷總碳氫化合物含量自動檢測方法-線上火焰離子偵測法,NIEA A723.72B,桃園,2002。
44.環保署環檢所,排放管道中氣態有機化合物檢測方法-採樣袋採樣/氣相層析火焰離子化偵測法,NIEA A722.74B,桃園,2008。
45.章裕民,焚化處理技術,新北市:新文京開發,2004,第110頁。
46.李王永泉、賴以賢譯,空氣污染防制工程,台北:美商麥格羅‧希爾,2005,第429頁。
47.燁欣實業,測溫電阻體RTD型錄, (2009)
48.Lewandowski D. A., Design of Thermal Oxidation System for Volatile Organic Compounds, Florida:Boca Raton, 2000, pp325-328.
49.Katari V. S., Vatavuk W. M. and Wehe A. H.," Incineration Techniques for Control of Volatile Organic Compound Emissions," JAPCA, Vol. 37(1), pp. 91-99, 1987.
50.經濟部能源局,節約能源技術手冊,台北:能源局,2008,第112頁。
51.張兆豐,機械設計圖表便覽,台北:臺隆書局,1984,第19-8頁。
52.王鎮雄、朱朝煌、李世榮、劉傳仁及蔡豐欽,熱傳遞學,台北:美商麥格羅‧希爾,2000,第672頁。
53.Van der vaart D. R., Vatvuk W. M. and Wehe A. H., "Thermal and Catalytic Incinerators for the Control of VOCs, " Air & Waste Management Association, Vol. 41(1), pp. 97-98, 1991.
54.Matthew A. O., David F. D., and Ronald K. H., "Thermal Decomposition of Toluene:Overall rate and branching ratio, " Proceedings of The Combustion Institute, Vol. 31, pp. 211-219, 2007.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊