跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.69) 您好!臺灣時間:2021/07/29 13:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳俊蓉
研究生(外文):Jing-Jung Chen
論文名稱:KRAS/BRAF突變之大腸直腸癌患者可能的治療策略
論文名稱(外文):The Possible Therapeutic Strategy for Colorectal Cancer with KRAS/BRAF Mutations
指導教授:翁文慧
指導教授(外文):Wen-Hui Weng
口試委員:林琦鑫馮思中
口試委員(外文):Chi-Hsin LinSee-Tong Pang
口試日期:2012-07-26
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:38
中文關鍵詞:爾必得舒定量聚合酶鏈鎖反應大腸直腸癌細胞株細胞存活率
外文關鍵詞:CetuximabQuantity-PCRColorectal Cancer Cell-linesCell Viability
相關次數:
  • 被引用被引用:0
  • 點閱點閱:761
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
大腸直腸癌在台灣為最好發之惡性腫瘤之一,其發生率每年約有一萬人。許多研究指出藉由阻斷訊息傳遞路徑可抑制細胞異常增生。而標靶藥物爾必德舒(Cetuximab)為一表皮生長因子類似物,其証實能與表皮生長因子受體(EGFR)結合,進而抑制細胞增生使患者存活率增加。但爾必德舒使用在轉移性大腸直腸癌個案中若具有EGFR下游基因-Kirsten ras (KRAS)和v-raf murine sarcoma viral oncogene homolog B1 (BRAF) 的突變存在,其治療效果明顯不彰。2011年有研究指出微小核糖核酸-378 在 KRAS 突變型 與野生型基因中其表現量具有意義之差異性。而此微小核糖核-378 乃是具有調控 MAPK 途徑調控因子之一。據此,我們假設此微小核糖核酸-378 能調控 MAPK活化路徑,使將近50%KRAS或 BRAF突變之大腸直腸癌患者可提升標靶藥物治療效果。本篇以七株大腸直腸癌細胞株進行基因突變型態歸納做為實驗模型,觀察微小核糖核酸-378與標靶藥物反應敏感度之彼此相關性。實驗結果指出(一)KRAS或BRAF突變與否與微小核醣核酸-378表現量有高度相關性。(二)轉染微小核醣核酸-378後再添加標靶藥物,發現對所有突變型態細胞有效增加其對標靶藥物敏感性。(三)藉由微小核醣核酸-378 表現量 提升造成腫瘤細胞增生現象,間接証實 KRAS 與 BRAF 突變型大腸癌其實存在有不同 的潛在腫瘤發展機轉。研究結論,微小核糖核酸-378 的高表達對於提高標靶藥物作用性提供具體成果,未來可能成為在近五成的 KRAS 或 BRAF 突變之大腸直腸癌患者無 效治療上,重燃一新的治療契機。

Colorectal cancer (CRC) is the most common human malignancies in Taiwan, with incidences of 10 thousand people per year. A number of studies suggested that blocking abnormal cell proliferation by inhibiting the MAPK(mitogen-activated protein kinase) pathway could be a promising treatment method for CRC. Target drug “cetuximab”, an epidermal growth factor (EGF) competitor which inhibit cell proliferation has been shown to improve the survival rate. Earlier reports indicated that mutations in the genes such as KRAS and BRAF which are downstream of the EGFR lead to the deleterious activation MAPK pathway regardless of the EGFR antibody (Cetuximab) treatment. A previous report in 2011, down regulation of miR-378 was identified in CRC patients, who possesses KRAS mutations. miR-378 as one of the regulators of MAPK pathway. Herein, we aimed to compare expression levels of miR-378 in wild type and mutated CRC cell lines and further to study the role of miR-378 in Cetuximab responses. We used seven cell lines as experiment models. Our results indicated 1. The significant differences in expression of miR-378 when compare with KRAS or BRAF mutated cell and wild type cells. Further, 2. after transfected miR-378 to both the mutated and wild type cell lines, we found expression of miR-378 did increase cetuximab response rates as expected. 3. Base on the rate of cell proliferation that after transfected miR-378, the different mechanisms of tumor development could be revealed. Our findings might contribute to the development of a possible therapeutic strategy to block multiple oncogenes for near 50% of colorectal cancers contain with KRAS or BRAF mutations.

中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 大腸直腸癌緣起 1
1.2 有絲分裂原活化蛋白激酶(MAPK pathway) 4
1.3 標靶藥物-爾必得舒 5
1.4 微小核糖核酸 6
第二章 研究目標 9
第三章 實驗材料 10
3.1 細胞株 10
3.2 化學藥品與實驗材料 10
3.3 儀器設備 11
第四章 實驗方法 12
4.1 細胞培養 12
4.1.1 細胞培養條件 12
4.1.2 細胞冷凍保存及解凍 12
4.2 細胞株突變篩檢 13
4.2.1 抽取基因組DNA(Genomic DNA) 13
4.2.2 突變基因熱點區段聚合酶連鎖反應 13
4.2.3 基因定序 14
4.3 微小核糖核酸表現量偵測 14
4.3.1 抽取RNA 15
4.3.2 反轉錄 15
4.3.3 Taqman real-time PCR 16
4.3.4 轉染微小核糖核酸 17
4.4 細胞存活率分析 17
4.4.1 細胞凋亡分析 17
4.4.2 細胞存活率分析 18
4.5 統計方法 19


第五章 實驗結果 20
5.1 細胞株突變型態的分類 20
5.2 比較微小核糖核酸-378於原始細胞株的表現量 22
5.3 不同濃度爾必得舒對大腸直腸癌細胞株之毒性反應 23
5.4 比較大腸直腸癌細胞株轉染微小核糖核酸-378前後之生
長情形 25
5.5細胞轉染微小核糖核酸前後添加標靶藥物反應結果 26
第六章 實驗結論 29
參考文獻 33


1.台灣癌症防治網[http://cisc.twbbs.org/lifetype/index.php?op=ViewArticle&articleId=1195&blogId=1].
2.98年癌症登記報告[http://www.doh.gov.tw/ufile/doc/98%E7%99%BB%E8%A8%98%E8%80%85%E6%9C%83%E7%B0%A1%E5%A0%B1_%E5%AE%9A_1010621.pdf]. [cited 2012 0621].
3.CANCER REGISTRY ANNUAL REPORT, 2008. TAIWAN. CANCER REGISTRY ANNUAL REPORT, 2008 TAIWAN, 2011.
4.Jemal, A., et al., Global cancer statistics. CA Cancer J Clin, 2011. 61(2): p. 69-90.
5.Ferlay, J., D.M. Parkin, and E. Steliarova-Foucher, Estimates of cancer incidence and mortality in Europe in 2008. Eur J Cancer, 2010. 46(4): p. 765-81.
6.Weinberg, R.A., The Biology Of Cancer. 2007: Garland Science.
7.Daraei, A., R. Salehi, and F. Mohamadhashem, DNA-methyltransferase 3B 39179 G > T polymorphism and risk of sporadic colorectal cancer in a subset of Iranian population. J Res Med Sci, 2011. 16(6): p. 807-13.
8.Sephton, S. and D. Spiegel, Circadian disruption in cancer: a neuroendocrine-immune pathway from stress to disease? Brain Behav Immun, 2003. 17(5): p. 321-8.
9.Pinczowski, D., et al., Risk factors for colorectal cancer in patients with ulcerative colitis: a case-control study. Gastroenterology, 1994. 107(1): p. 117-20.
10.Markowitz, S.D. and M.M. Bertagnolli, Molecular origins of cancer: Molecular basis of colorectal cancer. N Engl J Med, 2009. 361(25): p. 2449-60.
11.Cunningham, D., et al., Colorectal cancer. Lancet, 2010. 375(9719): p. 1030-47.
12.Birnbaum, D.J., et al., Expression Profiles in Stage II Colon Cancer According to APC Gene Status. Transl Oncol, 2012. 5(2): p. 72-6.
13.Davies, R.J., R. Miller, and N. Coleman, Colorectal cancer screening: prospects for molecular stool analysis. Nature reviews. Cancer, 2005. 5(3): p. 199-209.
14.Yang, J., et al., Adenomatous polyposis coli (APC) differentially regulates beta-catenin phosphorylation and ubiquitination in colon cancer cells. J Biol Chem, 2006. 281(26): p. 17751-7.
15.Weinstein, I.B., Cancer. Addiction to oncogenes--the Achilles heal of cancer. Science, 2002. 297(5578): p. 63-4.
16.Etienne-Grimaldi, M.C., et al., K-Ras mutations and treatment outcome in colorectal cancer patients receiving exclusive fluoropyrimidine therapy. Clin Cancer Res, 2008. 14(15): p. 4830-5.
17.van Wyk, R., et al., Somatic mutations of the APC, KRAS, and TP53 genes in nonpolypoid colorectal adenomas. Genes Chromosomes Cancer, 2000. 27(2): p. 202-8.
18.Martin, G.S., Cell signaling and cancer. Cancer Cell, 2003. 4(3): p. 167-74.
19.Corcoran, R.B., J. Settleman, and J.A. Engelman, Potential therapeutic strategies to overcome acquired resistance to BRAF or MEK inhibitors in BRAF mutant cancers. Oncotarget, 2011. 2(4): p. 336-46.
20.De Roock, W., et al., KRAS, BRAF, PIK3CA, and PTEN mutations: implications for targeted therapies in metastatic colorectal cancer. Lancet Oncol, 2011. 12(6): p. 594-603.
21.Montagut, C. and J. Settleman, Targeting the RAF-MEK-ERK pathway in cancer therapy. Cancer Lett, 2009. 283(2): p. 125-34.
22.Young, A., et al., Ras signaling and therapies. Adv Cancer Res, 2009. 102: p. 1-17.
23.Golsteyn, R.M., The story of gefitinib, an EGFR kinase that works in lung cancer. Drug Discov Today, 2004. 9(14): p. 587.
24.Davies, H., et al., Mutations of the BRAF gene in human cancer. Nature, 2002. 417(6892): p. 949-54.
25.Xu, H., et al., Epidermal growth factor receptor (EGFR)-related protein inhibits multiple members of the EGFR family in colon and breast cancer cells. Mol Cancer Ther, 2005. 4(3): p. 435-42.
26.Wang, L., et al., BRAF mutations in colon cancer are not likely attributable to defective DNA mismatch repair. Cancer Res, 2003. 63(17): p. 5209-12.
27.Di Nicolantonio, F., et al., Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J Clin Oncol, 2008. 26(35): p. 5705-12.
28.Fang, J.Y. and B.C. Richardson, The MAPK signalling pathways and colorectal cancer. Lancet Oncol, 2005. 6(5): p. 322-7.
29.Messa, C., et al., EGF, TGF-alpha, and EGF-R in human colorectal adenocarcinoma. Acta Oncol, 1998. 37(3): p. 285-9.
30.Mayer, A., et al., The prognostic significance of proliferating cell nuclear antigen, epidermal growth factor receptor, and mdr gene expression in colorectal cancer. Cancer, 1993. 71(8): p. 2454-60.
31.Van Cutsem, E., et al., Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J Clin Oncol, 2011. 29(15): p. 2011-9.
32.Giuliani, F. and G. Colucci, Cetuximab in colon cancer. Int J Biol Markers, 2007. 22(1 Suppl 4): p. S62-70.
33.Ciardiello, F., et al., Antitumor activity of sequential treatment with topotecan and anti-epidermal growth factor receptor monoclonal antibody C225. Clin Cancer Res, 1999. 5(4): p. 909-16.
34.Pao, W., et al., EGF receptor gene mutations are common in lung cancers from "never smokers" and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci U S A, 2004. 101(36): p. 13306-11.
35.Yu, Z., et al., Novel irreversible EGFR tyrosine kinase inhibitor 324674 sensitizes human colon carcinoma HT29 and SW480 cells to apoptosis by blocking the EGFR pathway. Biochem Biophys Res Commun, 2011. 411(4): p. 751-6.
36.Rocha-Lima, C.M., et al., EGFR targeting of solid tumors. Cancer Control, 2007. 14(3): p. 295-304.
37.Emery, C.M., et al., MEK1 mutations confer resistance to MEK and B-RAF inhibition. Proc Natl Acad Sci U S A, 2009. 106(48): p. 20411-6.
38.Dunn, E.F., et al., Dasatinib sensitizes KRAS mutant colorectal tumors to cetuximab. Oncogene, 2011. 30(5): p. 561-74.
39.Kertesz, M., et al., The role of site accessibility in microRNA target recognition. Nat Genet, 2007. 39(10): p. 1278-84.
40.Winter, J., et al., Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol, 2009. 11(3): p. 228-34.
41.Griffiths-Jones, S., et al., miRBase: tools for microRNA genomics. Nucleic Acids Res, 2008. 36(Database issue): p. D154-8.
42.Friedman, R.C., et al., Most mammalian mRNAs are conserved targets of microRNAs. Genome Res, 2009. 19(1): p. 92-105.
43.Brennecke, J., et al., Principles of microRNA-target recognition. PLoS Biol, 2005. 3(3): p. e85.
44.Krek, A., et al., Combinatorial microRNA target predictions. Nat Genet, 2005. 37(5): p. 495-500.
45.Nielsen, C.B., et al., Determinants of targeting by endogenous and exogenous microRNAs and siRNAs. RNA, 2007. 13(11): p. 1894-910.
46.Grimson, A., et al., MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell, 2007. 27(1): p. 91-105.
47.Schickel, R., et al., MicroRNAs: key players in the immune system, differentiation, tumorigenesis and cell death. Oncogene, 2008. 27(45): p. 5959-74.
48.Garzon, R., et al., MicroRNA expression and function in cancer. Trends Mol Med, 2006. 12(12): p. 580-7.
49.Ambros, V., The functions of animal microRNAs. Nature, 2004. 431(7006): p. 350-5.
50.Tsuchida, A., et al., miR-92 is a key oncogenic component of the miR-17-92 cluster in colon cancer. Cancer Sci, 2011. 102(12): p. 2264-71.
51.Graziano, F., et al., Genetic modulation of the Let-7 microRNA binding to KRAS 3''-untranslated region and survival of metastatic colorectal cancer patients treated with salvage cetuximab-irinotecan. Pharmacogenomics J, 2010. 10(5): p. 458-64.
52.Akao, Y., Y. Nakagawa, and T. Naoe, MicroRNAs 143 and 145 are possible common onco-microRNAs in human cancers. Oncol Rep, 2006. 16(4): p. 845-50.
53.Bandres, E., et al., MicroRNAs as cancer players: potential clinical and biological effects. DNA Cell Biol, 2007. 26(5): p. 273-82.
54.Chang, H., RNAi-mediated knockdown of target genes: a promising strategy for pancreatic cancer research. Cancer Gene Ther, 2007. 14(8): p. 677-85.
55.Nie, J., et al., microRNA-365, down-regulated in colon cancer, inhibits cell cycle progression and promotes apoptosis of colon cancer cells by probably targeting Cyclin D1 and Bcl-2. Carcinogenesis, 2012. 33(1): p. 220-5.
56.Li, C., et al., Therapeutic microRNA strategies in human cancer. AAPS J, 2009. 11(4): p. 747-57.
57.Mosakhani, N., et al., MicroRNA profiling differentiates colorectal cancer according to KRAS status. Genes Chromosomes Cancer, 2012. 51(1): p. 1-9.
58.Estep, A.L., et al., Mutation analysis of BRAF, MEK1 and MEK2 in 15 ovarian cancer cell lines: implications for therapy. PLoS One, 2007. 2(12): p. e1279.
59.Geer, L.Y., et al., The NCBI BioSystems database. Nucleic Acids Res, 2010. 38(Database issue): p. D492-6.
60.Chen, C., et al., Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res, 2005. 33(20): p. e179.
61.Chan, T.L., et al., BRAF and KRAS mutations in colorectal hyperplastic polyps and serrated adenomas. Cancer Res, 2003. 63(16): p. 4878-81.
62.Farrell, C., et al., Somatic mutations to CSMD1 in colorectal adenocarcinomas. Cancer Biol Ther, 2008. 7(4): p. 609-13.
63.Oliveira, C., et al., BRAF mutations characterize colon but not gastric cancer with mismatch repair deficiency. Oncogene, 2003. 22(57): p. 9192-6.
64.Oikonomou, E., et al., Selective BRAFV600E inhibitor PLX4720, requires TRAIL assistance to overcome oncogenic PIK3CA resistance. PLoS One, 2011. 6(6): p. e21632.
65.Ikehara, N., et al., BRAF mutation associated with dysregulation of apoptosis in human colorectal neoplasms. Int J Cancer, 2005. 115(6): p. 943-50.
66.Wan, J., et al., Detection of K-ras gene mutation in fecal samples from elderly large intestinal cancer patients and its diagnostic significance. World J Gastroenterol, 2004. 10(5): p. 743-6.
67.Gan, Y., et al., Differential roles of ERK and Akt pathways in regulation of EGFR-mediated signaling and motility in prostate cancer cells. Oncogene, 2010. 29(35): p. 4947-58.
68.Hennessy, B.T., et al., Exploiting the PI3K/AKT pathway for cancer drug discovery. Nature reviews. Drug discovery, 2005. 4(12): p. 988-1004.
69.Ryan Bruce Corcoran, H.E., David P. Ryan, Jeffrey A. Meyerhardt, Jeffrey A. Engelman, Relationship of incomplete inhibition of PI3K pathway signaling and efficacy of cetuximab in KRAS wild-type colorectal cancers. J Clin Oncol, 2012. 30: p. (suppl 4; abstr 462).
70.Cho, H.J., et al., Snail is required for transforming growth factor-beta-induced epithelial-mesenchymal transition by activating PI3 kinase/Akt signal pathway. Biochem Biophys Res Commun, 2007. 353(2): p. 337-43.
71.Wada, T. and J.M. Penninger, Mitogen-activated protein kinases in apoptosis regulation. Oncogene, 2004. 23(16): p. 2838-49.
72.Knuefermann, C., et al., HER2/PI-3K/Akt activation leads to a multidrug resistance in human breast adenocarcinoma cells. Oncogene, 2003. 22(21): p. 3205-12.
73.Feng, M., et al., Myc/miR-378/TOB2/cyclin D1 functional module regulates oncogenic transformation. Oncogene, 2011. 30(19): p. 2242-51.
74.Lee, D.Y., et al., MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression. Proc Natl Acad Sci U S A, 2007. 104(51): p. 20350-5.
75.Wajapeyee, N., et al., Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Cell, 2008. 132(3): p. 363-74.
76.Sharma, R.I. and T.A. Smith, Colorectal tumor cells treated with 5-FU, oxaliplatin, irinotecan, and cetuximab exhibit changes in 18F-FDG incorporation corresponding to hexokinase activity and glucose transport. J Nucl Med, 2008. 49(8): p. 1386-94.
77.Balin-Gauthier, D., et al., In vivo and in vitro antitumor activity of oxaliplatin in combination with cetuximab in human colorectal tumor cell lines expressing different level of EGFR. Cancer Chemother Pharmacol, 2006. 57(6): p. 709-18.
78.Rossi, L., E. Bonmassar, and I. Faraoni, Modification of miR gene expression pattern in human colon cancer cells following exposure to 5-fluorouracil in vitro. Pharmacol Res, 2007. 56(3): p. 248-53.
79.Bild, A.H., et al., Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature, 2006. 439(7074): p. 353-7.
80.Prahallad, A., et al., Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature, 2012. 483(7387): p. 100-3.
81.Rinaldi, F., E. George, and A.I. Adler, NICE guidance on cetuximab, bevacizumab, and panitumumab for treatment of metastatic colorectal cancer after first-line chemotherapy. Lancet Oncol, 2012. 13(3): p. 233-4.
82.Tol, J., et al., Chemotherapy, bevacizumab, and cetuximab in metastatic colorectal cancer. N Engl J Med, 2009. 360(6): p. 563-72.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top