跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/27 20:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳百舜
研究生(外文):Pai-Shuen Wu
論文名稱:含鍶載體對乳牙幹細胞之骨分化研究
論文名稱(外文):Osteo-differentiation of SHED cells in strontium containing scaffolds
指導教授:蘇文達蘇文達引用關係
口試委員:柯智升廖永豐陳文章
口試日期:2012-07-20
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:68
中文關鍵詞:磷酸鍶乳牙幹細胞骨分化灌流式生物反應器
外文關鍵詞:Strontium PhosphateStem Cells from Human Exfoliated Deciduous TeethOsteo-differentiationPerfusion Bioreactor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:135
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來發現含鍶藥物在預防骨質疏鬆症產生的骨折達到效果,引起大家的重視;鍶可以促進骨細胞成熟,使新生骨量增多,同時可以抑制蝕骨細胞的活性。因此,本研究嘗試將鍶運用在骨修補材料中;將4%幾丁聚醣溶液混合0.7%磷酸鍶與0.3%氫氧基磷灰石,於-20℃冷凍一天,再以冷凍乾燥法製作成多孔立體載體,其孔洞直徑約50~80μm,孔隙度約90~95%,而壓縮強度與純幾丁聚醣相比從47kPa增強到96kPa。
乳牙幹細胞具有分化為成骨細胞的潛力。將乳牙幹細胞培養於本實驗室所製成的複合材料中,持續觀察21天。結果發現含鍶複合材料對於乳牙幹細胞的生長後貼附性良好,骨分化基因osteonectin和osteocalcin的表現量提升,在載體上產生較多的鈣化沉積,顯示含鍶複合材料能促進乳牙幹細胞分化為成骨細胞,並且與添加磷酸三鈣或是氫氧基磷灰石相比,添加磷酸鍶具有更大的分化效益。
最後,將載體放置於本研究設計之灌流式生物反應器,使培養基可以直接流經載體而改善質傳的速率。實驗結果顯示,灌流培養所伴隨的流體剪力提高osteocalcin表現,對於細胞的分化有一定的幫助。


There are much attention to the drug with strontium that has been shown to reduce the fracture risk of osteoporosis in recent years. Strontium could promote osteoblasts maturation, and new bone generation under the activity of osteoclasts inhibiting. In this study, we attempted to add strontium into bone repair materials. The 4% chitosan solution were agitated with 0.7% strontium phosphate and 0.3% hydroxyapatite. After mixing, the solution were placed in a -20℃ refrigerator overnight, and freeze-dried to form 3D porous scaffolds. The scaffolds were with 50~80μm pore diameter, and 90~95% in porosity. The compressive modulus increase to 96kPa compared to the pure chitosan scaffolds with 47kPa.
Stem cells derived from pulp of human exfoliated deciduous teeth (SHEDs) have potential for osteogenic differentiation. The SHEDs were cultured in the scaffolds during 21 days. The results showed that the scaffold with strontium was suitable for SHED for attachment and growth, the gene expressions of osteonectin and osteocalcin were increased, and calcification was also increased. These results indicated that strontium could promote SHEDs in osteo-differentiation. The results shows that adding strontium has more benefits compare to tricalcium phosphate or hydroxyapatite,.
Finally, we placed scaffolds in the perfusion bioreactor. It makes medium flowing through scaffolds directly to improve mass transfer rate. It was found that the flow shear stress of perfusion system increased osteocalcin expression, and help the SHEDs differentiation.


目錄

摘 要 i
ABSTRACT ii
誌謝 iv
目錄 v
圖目錄 vii
表目錄 ix
第一章 緒論 1
1.1 前言 1
1.2研究動機 1
1.3實驗架構 2
第二章 文獻回顧 3
2.1骨骼系統 3
2.1.1骨骼結構 3
2.1.2骨骼生成 4
2.1.3骨骼的新生與重建 6
2.2骨分化 7
2.2.1骨分化過程之因子調控 7
2.2.2骨分化常用的指標 9
2.2.3骨分化誘導劑 12
2.3乳牙幹細胞 13
2.4骨組織工程 15
2.4.1組織工程的架構 15
2.4.2骨組織工程的需求 15
2.4.3骨用生醫材料的構型與特性 16
2.4.4骨組織工程的材料 17
2.5動態培養 22
2.5.1立體支架對細胞培養之問題 22
2.5.2動態培養 23
2.5.3機械性刺激對細胞的影響 24
第三章 材料與方法 25
3.1 實驗材料、藥品與儀器 25
3.1.1材料與藥品 25
3.1.2 儀器設備型號 27
3.2實驗方法 27
3.2.1幾丁聚醣支架製備 27
3.2.2幾丁聚醣複合材料製備 28
3.2.3材料內部構型 28
3.2.4機械性質 28
3.2.5膨潤度 28
3.2.6孔隙度 28
3.2.7培養基配製 29
3.2.8細胞生長活性測定 29
3.2.9鹼性磷酸酶(ALP)活性測定 29
3.2.10骨分化之基因表現 30
3.2.11礦化分析 31
3.2.12細胞分佈 32
3.2.13細胞型態觀察 32
3.2.14 BMP-2與OC表現之免疫螢光染色 32
3.2.15灌流培養系統 32
第四章 實驗結果 34
4.1 Scaffolds物理性質 34
4.1.1 Scaffolds外形 34
4.1.2 Scaffolds抗壓強度 36
4.1.3 Scaffolds膨潤度與孔隙度 36
4.2細胞於scaffolds之生長與分化 37
4.2.1以不同濃度之CS對細胞生長活性 37
4.2.2添加磷酸鈣或磷酸鍶對細胞生長影響 37
4.2.3細胞於scaffolds生長情形 38
4.2.4細胞於scaffolds生長型態 40
4.2.5細胞於scaffolds之骨分化 45
4.2.6細胞於scaffolds之ALP活性 46
4.2.7細胞於scaffolds之鈣沉積 47
4.3.1灌流式生物反應器對材料產生之剪力 48
4.3.2灌流對細胞型態影響 48
4.3.3灌流對細胞分佈影響 49
4.3.4灌流對細胞生長影響 50
4.3.5灌流對細胞分化的影響 51
第五章 結果討論 52
參考文獻 55
附錄 65
(A)平面培養乳牙幹細胞之情況 65
(B)bFGF對本實驗室之乳牙幹細胞骨分化影響 66
(C)不同濃度SH對乳牙幹細胞影響 67


[1] D.W. Hutmacher, "Scaffolds in tissue engineering bone and cartilage," Biomaterials, vol.21, 2000, pp. 2529-2543.
[2] T. Boyce, J. Edwards and N. Scarborough, "Allograft bone. The influence of processing on safety and performance," Orthopedic Clinics of North America, vol.30 (4), 1999, pp. 571-581.
[3] K.S. Katti "Biomaterials in total joint replacement." Colloids and Surfaces B: Biointerfaces, vol.39, 2004, pp. 133-142
[4] K.C. Dee, D.A. Puleo and R. Bizios, An introduction to tissue-biomaterial interactions, New York: John Wiley & Sons, 2002, pp. 248
[5] A.J. Salgado, O.P. Coutinho, and R.L. Reis, "Bone tissue engineering: state of the art and future trends," Macromolecular Bioscience, vol4 (8), 2004, pp. 743-765.
[6] P. Ammann, "Strontium ranelate: A physiological approach for an improved bone quality," Bone, vol.38, 2006, S.15-18.
[7] P.J. Marie, "Strontium ranelate: A physiological approach for optimizing bone formation and resorption," Bone, vol.38, 2006, S.10-S14.
[8] J.B. Park, Biomaterials science and engineering, New York: Plenum Press, 1984, pp. 456
[9] R. Murugan, S. Ramakrishna, "Development of nanocomposites for bone grafting," Composites Science and Technology, vol.65, 2005, pp. 2385-2406.
[10] W.S.S. Jee, Histology, cell and tissue biology, New York: Elsevier Science Inc, 1983, p200-255.
[11] W. Bonfield, "Elasticity and viscoelasticity of cortical bone. Boca Raton," Natural and Living Biomaterials, 1984; p43-60.
[12] V. Audekercke and M. Martens, "Mechanical properties of cancellous bone," Natural and Living Biomaterials, 1984; p89-98.
[13] J. Black, Orthopedic biomaterials in research and practice, New York: Churchill Livingston, 1989, pp.331-348
[14] M. Frohlich, W.L. Grayson, L.Q. Wan, D. Marolt and G. Vunjak-Novakovic, "Tissue engineered bone grafts: biological requirements. Tissue Culture and Clinical Relevance," Current Stem Cell Research & Therapy, vol.3(4), 2008, pp. 254-264.
[15] T.B. Kardos and M.J. Hubbard, "Are matrix vesicles apoptotic bodies?," Progress in Clinical & Biological Research, vol.101, 1982, pp.45-60.
[16] H.C. Anderson, R. Garimella and S.E. Tague, "The role of matrix vesicles in growth with plate development and biomineralization," Frontiers in Bioscience, vol.10, 2005, pp.822-837.
[17] L. Zhang, M. Balcerzak and J. Radisson, "Phosphodiesterase activity of alkaline phosphatase in ATP-initiated Ca2+ and phosphate deposition in isolated chicken matrix vesicles," The Journal of Biological Chemistry, vol.280, 2005 pp. 37289-37296.
[18] V.I. Sikavitsas, J.S. Temenoff and A.G. Mikos, "Biomaterials and bone mechanotransduction," Biomaterials, vol.22, 2001, pp. 2581-2593.
[19] N.E. Lane "Therapy insight:Osteoporosis and osteonecrosis in systemic lupus erythematosus," Nature Clinnical Practice Rheumatology, vol.2, 2006, pp. 562-569.
[20] G. Karsenty and E.F. Wagner, "Reaching a genetic and molecular understanding of skeletal development," Developmental Cell, vol.2 (4), 2002, pp. 389-406.
[21] H.M. Kronenberg, "Developmental regulation of the growth plate," Nature, vol.423, 2003, pp. 332−336.
[22] F.J. Hughes, W. Turner, G. Belibasakis and G. Martuscelli, "Effects of growth factors and cytokines on osteoblast differentiation," Periodontology, vol.41, 2006, pp. 48-72.
[23] F. Kugimiya, S. Ohba, K. Nakamura, H. Kawaguchi and U.I. Chung, "Physiological role of bone morphogenetic proteins in osteogenesis," Journal of Bone and Mineral Metabolism, vol.24, 2006, pp. 95-99.
[24] T. Ikeda, H. Kawaguchi, S. Kamekura, N. Ogata, Y. Mori, K. Na-kamura, S. Ikegawa and U.I. Chung, "Distinct roles of Sox5, Sox6, and Sox9 in different stages of chondrogenic differentiation," Journal of Bone and Mineral Metabolism, vol.23(5), 2005, pp. 337-340.
[25] P. Pandur, D. Maurus and M. Kuhl, "Increasingly complex: new players enter the Wnt signaling network," BioEssays, vol.24, 2002, pp. 881-884.
[26] Y. Chen and B.A. Alman, "An Akt-dependent Increase in canonical Wnt signaling and a decrease in sclerostin protein levels are involved in strontium ranelate-induced osteogenic effects in human osteoblasts," The Joural of Biological Chemistry, vol.286, no.27, 2011, pp. 23771-237791.
[27] Y. Chen and B.A. Alman, "Wnt Pathway, an essential role in bone regeneration," Journal of Cellular Biochemistry, vol.106, 2009, pp.353-362.
[28] C.Y. Logan and R. Nusse, "The Wnt signaling pathway in development and disease," Annual Review of Cell and Developmental Biology, vol.20, 2004, pp. 781-810.
[29] T.F. Day, X. Guo, L. Garrett-Beal and Y. Yan, "Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis," Developmental Cell, vol.8, 2005, pp. 739-750.
[30] T.P. Hill, D. Spater, M.M. Taketo, W. Birchmeier and C. Hartmann, "Canonical Wnt/beta-catenin signaling prevents osteoblasts from differentiating into chondrocytes," Developmental Cell, vol.8, 2005, pp.727-738.
[31] C.J. Lengner, M.Q. Hassan, R.W. Serra, C. Lepper, A.J. van Wijnen, J.L. Stein, J.B. Lian and G.S. Stein, "Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression," The Joural of Biological Chemistry, vol.280, 2005, pp.15872–15879.
[32] F.J. Hughes, W. Turner, G. Belibasakis and G. Martuscelli, "Effects of growth factors and cytokines on osteoblast differentiation," Periodontology, vol.41, pp. 48-72.
[33] W.N.Addison, F. Azari, E.S. Sorensen, M.T. Kaartinen and M.D. McKee, "Pyrophosphate inhibits mineralization of osteoblast cultures by binding to mineral, upregulating osteopontin, and inhibiting alkaline phosphatase activity," The Joural of Biological Chemistry, vol.282(21), 2007, pp. 15872–15883.
[34] H.C. Anderson, R. Garimella and S.E. Tague, "The role of matrix vesicles in growth plate development and biomineralization," Bioscience, vol.10, 2005, pp. 822-837.
[35] C.G. Bellows, J.E. Aubin and J.N. Heersche, "Initiation and progression of mineralization of bone nodules formed in vitro: the role of alkaline phosphatase and organic phosphate," Bone and Mineral, vol.14, 1991, pp. 27-40.
[36] M.P. Whyte, "Hypophosphatasia and the role of alkaline phosphatase in skeletal mineralization," Endocrine Reviews, vol.15, 1994, pp. 439-461.
[37] C.E. Tye, G.K. Hunter and H.A. Goldberg, "Identification of the type I collagen-binding domain of bone sialoprotein and characterization of the mechanism of interaction," The Joural of Biological Chemistry, vol.280(14), 2005, pp. 13487-13492.
[38] P. Ducy, "Increased bone formation in osteocalcin-deficient mice" Nature, vol.382(1), 1996, pp. 488-452.
[39] G.K. Hunter and H.A. Goldberg, "Modulation of crystal formation by bone phosphoproteins: role of glutamic acid-rich sequences in the nucleation of hydroxyapatite by bone sialoprotein," The Joural of Biological Chemistry, vol.302, 1994, pp. 175-179.
[40] Y. Ogata, "Bone sialoprotein and its transcriptional regulatory mechanism," Journal of Periodontal Research, vol.43(2), 2008, pp.127-135.
[41] C. Maniatopoulos, J. Sodek and A.H. Melcher, "Bone formation in vitro by stromal cells obtained from bone marrow of young adult rats," Cell and Tissure Research, vol.254, 1988, pp. 317-330.
[42] H. Orimo and T. Shimada, "The role of tissue-nonspecific alkaline phosphatase in the phosphate-induced activation of alkaline phosphatase and mineralization in SaOS-2 human osteoblast-like cells." Molecular and Cellular Biochemistry, vol.315 (1–2), 2008, pp.51-60.
[43] T. Fujita, T. Meguro, N. Izumo, C. Yasutomi, R. Fukuyama, H. Nakamuta and M. Koida, "Phosphate stimulates differentiation and mineralization of the chondroprogenitor clone ATDC5," The Japanese Journal of Pharmacology, vol.85(3), 2001, pp. 278-281.
[44] Y.L. Chang, C.M. Stanford and J.C. Keller, "Calcium and phosphate supplementation promotes bone cell mineralization: implications for hydroxyapatite enhanced bone formation," Journal of Biomedical Materials Research, vol.52 (2), 2000, pp.270-278.
[45] R.T. Franceschi and B.S. Iyer, "Relationship between collagen synthesis and expression of the osteoblast phenotype in MC3T3-E1 cells," Journal of Bone and Mineral Research, vol.7, 1992, pp. 235-246.
[46] J.N. Beresford, C.J. Joyner, C. Devlin and J.T. Triffitt, "The effects of dexamethasone and 1,25-dihydroxyvitamin D3 on osteogenic differentiation of human marrow stromal cells in vitro," Archives of Oral Biology, vol.39, 1994, pp. 941-947.
[47] H. Atmani, D. Chappard and M.F. Basle, "Proliferation and differentiation of osteoblasts and adipocytes in rat bone marrow stromal cell cultures: effects of dexamethasone and calcitriol," Journal of Cellular Biochemistry, vol.89, 2003, pp. 364-372.
[48] S. Walsh, G.R. Jordan, C. Jefferiss, K. Stewart and J.N. Beresford, "High concentrations of dexamethasone suppress the proliferation but not the differentiation or further maturation of human osteoblast precursors in vitro: relevance to glucocorticoid-induced osteoporosis," Rheumatology, vol.40, 2001, pp. 74-83.
[49] L. Yang, T. Tao, X. Wang, N. Du, W. Chen, S. Tao, Z. Wang and L. Wu, "Effects of dexamethasone on proliferation, differentiation and apoptosis of adult human osteoblasts in vitro," Chinese Medical Journal, vol.116, 2003, pp. 1357-1360.
[50] M.D. Stewart. Stem cell handbook, Humana Press Inc., New Jersey, 2004, pp. 1-11.
[51] M.F. Pittenger, A.M. Mackay, S.C. Beck, R.K. Jaiswal, R. Douglas and J. D. Mosca, "Multilineage potential of adult human mesenchymal stem cells," Science, vol.284, 1999, pp. 143-147.
[52] A.I. Caplan, "Mesenchymal stem cells: cell-based reconstructive therapy in orthopedics," Tissue Engineering, vol.11, 2005, pp. 1198-1211.
[53] H. Yamazaki, M. Tsuneto, M. Yoshino, K.I. Yamamura and S.I. Hayashi, "Potential of dental mesenchymal cells in developing tooth," Stem Cells, vol.25, 2007, pp.78-87.
[54] A. Arthur, G. Rychkov, S. Shi, S.A. Kobler and S. Gronthos, "Adult human dental pulp stem cells differentiate toward functionally active neurons under appropriate environmental cues,"Stem Cells, vol.26, 2008, pp. 1787-1795.
[55] R. Aquino, A. Graziano, M. Sampaolesi, G. Laino, G. Pirozzi, A.D. Rosa and G. Papaccio, "Human postnatal dental pulp cells co-differentiate into osteoblasts and endotheliocytes: a pivotal synergy leading to adult bone tissue formation," Cell Death & Differentiation, vol.14, 2007, pp. 1162-1171.
[56] J.M. Seong, B.C. Kim, J.H Park, I.K. Kwon, A. Mantalaris and Y.S. Hwang, "Stem cells in bone tissue engineering," Biomedical Materials, vol.5, 2010, pp. 15.
[57] S. Gronthos, M. Mankani, J. Brahim, P.G. Robey and S. Shi, "Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo, " Proceedings of the National Academy of Sciences, vol.97, 2000, pp.13625-13630.
[58] G. Laino, R. d’Aquino, A. Graziano, V. Lanza, F. Carinci, F. Naro, G. Pirozzi and G. Papaccio, "A new population of human adult dental pulp stem cells: a useful source of living autologous fibrous bone tissue," Journal of Bone and Mineral Research, vol.20, 2005, pp. 1394-1402.
[59] R. Shalak and C.F. Fox, Preface. In: tissue engineering, Alan R.Liss, New York: Elsevier Science Inc, 1988, pp. 26-29.
[60] R. Langer and J.P. Vacanti, "Tissue engineering," Science, vol.260, 1993, pp. 920-926.
[61] D.W. Hutmacher, "Scaffold design and fabrication technologies for engineering tissues-state of the art and future perspectives," Journal of Biomaterials Science, Polymer Edition, vol.12, 2001, pp. 107-124.
[62] T.W. Bauer and G.F. Muschler, "Bone graft materials. An overview of the basic science," Clinical Orthopaedics, vol.371, 2000, pp. 10-27.
[63] S. Bhumiratana and G. Vunjak-Novakovic, "Concise Review: Personalized human bone grafts for reconstructing head and face," Stem cells Translational Medicine, vol.1, 2012, pp.64-69.
[64] Y. Wang, U.J. Kim, D.J. Blasioli, H.J. Kim and D.L. Kaplan, "In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells," Biomaterials, vol.26, 2005, pp. 7082-7094.
[65] L. Meinel, S. Hofmann, V. Karageorgiou, L. Zichner, R. Langer, D. Kaplan and Vunjak-Novakovic G. “Engineering cartilage-like tissue using human mesenchymal stem cells and silk protein scaffolds," Biotechnol Bioengineering, vol.88, 2004, pp. 379-391.
[66] L. Meinel, V. Karageorgiou, S. Hofmann, R. Fajardo, B. Snyder, C. Li, L. Zichner, R. Langer, G. Vunjak-Novakovic, D.L. Kaplan, "Engineering bone-like tissue in vitro using human bone marrow stem cells and silk scaffolds," Journal of Biomedical Materials Research Part A, vol.71, 2004, pp. 25-34.
[67] V. Karageorgiou, D. Kaplan, "Porosity of 3D biomaterial scaffolds and osteogenesis," Biomaterials, vol.26, 2005, pp.5474-5491.
[68] S. Hofmann, H. HagenmuIller, A.M. Koch, R. MuIller, G. Vunjak-Novakovic , D.L. Kaplan, H.P. Merkle and L. Meinel, "Control of in vitro tissue-engineered bone-like structures using human mesenchymal stem cells and porous silk scaffolds," Biomaterials, vol.28, 2007, pp. 1152-1162.
[69] A.C. Jones, C.H. Arns, D.W. Hutmacher, B.K. Milthorpe, A.P. Sheppard, M.A. Knackstedt, "The correlation of pore morphology, interconnectivity and physical properties of 3D ceramic scaffolds with bone ingrowth," Biomaterials, vol.30, 2009, pp. 1440-1451.
[70] S. Sundelacruz, "Stem cell-and scaffold-based tissue engineering approaches to osteochondral regenerative medicine," Seminars in Cell & Developmental Biology, vol.20, 2009, pp. 646-655.
[71] A.J. Engler, S. Sen, H.L. Sweeney and D.E. Discher, "Matrix elasticity directs stem cell lineage specification," Cell, vol.126, 2006, pp.677-689.
[72] L. Uebersax, H. HagenmuIller, S. Hofmann, E. Gruenblatt, R. MuIller, G. Vunjak-Novakovic, D.L. Kaplan, H.P. Merkle and L. Meinel, "Effect of scaffold design on bone morphology in vitro," Tissue Engineering, vol.12, 2006, pp. 3417-3429.
[73] Y. Wang, D.D. Rudym, A. Walsh, L. Abrahamsen, H.J. Kim, H.S. Kim, C. Kirker-Head and D.L. Kaplan, "In vivo degradation of three-dimensional silk fibroin scaffolds," Biomaterials, vol.29, 2008, pp. 3415-3428.
[74] A.D. Martino and M. Sittinger “Chitosan: A versatile biopolymer for orthopaedic tissue-engineering” Biomaterials, 2005; vol.26: pp. 5983-5990
[75] S.V. Madihally and H.W.T. Matthew, "Porous chitosan scaffolds for tissue engineering," Biomaterials, vol.20, 1999, pp. 1133-1142.
[76] B. Buranapanitkit, V. Srinilta, N. Ingviga, K. Oungbho, A. Geater and C. Ovatlarnporn, "The efficacy of a hydroxyapatite composite as a biodegradable antibiotic delivery system," Clinical Orthopaedics, vol.424, 2004, pp. 244-252.
[77] J.K.F. Suh and H.W.T. Matthew, "Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review," Biomaterials, vol.21, 2000, pp. 2589-2598.
[78] A. Lahiji, A. Sohrabi, D.S. Hungerford, C.G. Frondoza, A. Lahiji, A. Sohrabi, D.S. Hungerford and C.G. Frondoza, "Chitosan supports the expression of extracellular matrix proteins in human osteoblasts and chondrocytes," Journal of Biomedical Materials Research, vol.51(4), 2000, pp. 586-595.
[79] S.H. Hsu, S.W. Whu, S.C. Hsieh, C.L. Tsai, D.C. Chen and T.S. Tan, "Evaluation of chitosan–alginate–hyaluronate complexes modified by an RGD-containing protein as tissue-engineering scaffolds for cartilage regeneration," ArtifOrg, vol.28, 2004, pp. 693-703.
[80] M. Risbud, J. Ringe, R. Bhonde and M. Sittinger. “In vitro expression of cartilage-specific markers by chondrocytes on a biocompatible hydrogel: implications for engineering cartilage tissue," Cell Transplant, vol.10, 2001, pp. 755-763.
[81] Y.L. Cui, A.D. Qi, W.G. Liu, X.H. Wang, H. Wang, D.M. Ma and K.D. Yao, "Biomimetic surface modification of poly(L-lactic acid) with chitosan and its effects on articular chondrocytes in vitro" Biomaterials, vol.24, 2003, pp. 3859-3868.
[82] Y.J. Seol, Y.J. Lee, Y.J. Park, Y.M. Lee, Young-Ku, I.C. Rhyu, S.J. Lee, S.B. Han and C.P. Chung, "Chung,Chitosan sponges as tissue engineering scaffolds for bone formation," Biotechnol Letter, vol.26, 2004, pp. 1037–1041.
[83] Y. Zhang and M. Zhang, "Calcium phosphate/chitosan composite scaffolds for controlled in vitro antibiotic drug release," Journal of Biomedical Materials Research, vol.62, 2002, pp. 378-386.
[84] Y. Zhang, M. Ni, M. Zhang and B. Ratner, "Calcium phosphatechitosan composite scaffolds for bone tissue engineering," Tissue Engineering, vol.9, 2003, pp. 337-345.
[85] S.V. Dorozhkin, "Bioceramics of calcium orthophosphates," Biomaterials, vol.31, 2010, pp. 1465-1485.
[86] S. Weiner, H.D. Wagner, "Material bone: structure-mechanical function relations,"Annual Review of Materials Research, vol.28, 1998, pp.271-298.
[87] S.V. Dorozhkin, "Calcium orthophosphates," Journal of Materials Science, vol.42, 2007, pp.1061-1095.
[88] S.V. Dorozhkin, "Calcium orthophosphates in nature, biology and medicine," Materials, vol.2, 2009, pp. 399-498.
[89] S. Kumar, D. Chanda and S. Ponnazhagan, "Therapeutic potential of genetically modified mesenchymal stem cells," Gene Theropy, vol.15, 2008, pp. 711–715.
[90] S. Choudhary, P. Halbout, C. Alander, L. Raisz and C. Pilbeam, "Strontium ranelate promotes osteoblastic differentiation and mineralization of murine bone marrow stromal cells: Involvement of prostaglandins," Journal of Bone and Mineral Research, vol.22, 2007, pp. 1002-1010.
[91] F. Yang, F. Yang, J. Tu, Q. Zheng and L. Cai, "Strontium Enhances Osteogenic Differentiation of Mesenchymal Stem Cells and In Vivo Bone Formation by Activating Wnt/Catenin Signaling," Stem cells, vol.29, 2011, pp. 981-991.
[92] S. Peng, G. Zhou, K.D. Luk, K.M. Cheung, Z. Li, W.M. Lam, Z. Zhou and W.W. Lu, "Strontium promotes osteogenic differentiation of mesenchymal stem cells through the Ras/MAPK signaling pathway," Cell Physiology Biochemistry, vol.23, 2009, pp. 165-174.
[93] P.J. Marie and D. Felsenberg, "How strontium ranelate, via opposite effects on bone resorption and formation, prevents osteoporosis," Osteoporos International, vol.22, 2011, pp. 1659-1667.
[94] E.M. Brown, "Is the calcium receptor a molecular target for the actions of strontium on bone?" Osteoporos International, vol.14(S3), 2003, S25-S34.
[95] J. Coulombe, H. Faure, B. Robin and M. Ruat, "In vitro effects of strontium ranelate on the extracellular calcium-sensing receptor," Biochemical and Biophysical Research Communications, vol.323(4), 2004, pp. 1184-1190.
[96] O. Fromigue, E. Hay, A. Barbara and P.J. Marie, "Essential role of nuclear factor of activated T cells (NFAT)-mediated WNT signalling in osteoblast differentiation induced by strontium ranelate," The Joural of Biological Chemistry, vol.285, 2010, pp.25251-25258.
[97] M.S. Rybchyn, M. Slater and A.D. Conigrave, "An Akt-dependent Increase in canonical Wnt signaling and a decrease in sclerostin protein levels are involved in strontium ranelate-induced osteogenic effects in human osteoblasts," The Joural of Biological Bhemistry, vol.286, no.27, 2011, pp. 23771-23779.
[98] S.L. Ishaug-Riley, G.M. Crane, A. Gurlek, M.J. Miller, A.W. Yasko, M.J. Yaszemski and A.G. Mikos, "Ectopic bone formation by marrow stromal osteoblast transplantation using poly(DL-lactic-co-glycolic acid) foams implanted into the rat mesentery," Journal of Biomedical Materials Research, vol.36, 1997, pp.1-8.
[99] L.E. Freed and G. Vunjak-Novakovic, "Culture of organized cell communities," Advanced Drug Delivery Reviews, vol.33, 1998, pp. 15-30.
[100] I. Martin, R.F. Padera, G. Vunjak-Novakovic and L.E. Freed, "In vitro differentiation of chick embryo bone marrow stromal cells into cartilaginous and bone-like tissues," Journal of Orthopaedic Research, vol.16, 1998, pp.181-189.
[101] A.J. Vander, J.H. Sherman and D.S. Luciano, Human Physiology, New York: McGraw-Hill, 1985, pp.341-366.
[102] W.H. Eaglstein and V. Falanga, "Tissue engineering and the development of ApligrafR, a human skin equivalent,” " Clinnal Theropy, vol.19, 1997, pp. 894-905.
[103] S.L. Ishaug, G.M.Crane, M.J. Miller, A.W. Yasko, M.J. Yaszemski and A.G. Mikos, "Bone formation by three-dimensional stromal osteoblast culture in biodegradable polymer scaffolds," Journal of Biomedical Materials Research, vol.36, 1997, pp. 17-28.
[104] I. Martin, B. Obradovic, L.E. Freed and G. Vunjak-Novakovic, "Method for quantitative analysis of glycosaminoglycan distribution in cultured natural and engineered cartilage," Annals of Biomedical Engineering, vol.27, 1999, pp. 656-662.
[105] S. Kapur, S. Mohan, D.J. Baylink and K.H. Lau, "Fluid shear stress synergizes with insulin-like growth factor-1 (IGF-I) on osteoblast proliferation through integrindependent activation of IGF-mitogenic signaling pathway," The Joural of Biological Chemistry, vol.280, 2005, pp. 20163-20170.
[106] S.D. Tan, A.D. Bakker, C.M. Semeins, A.M. Kuijpers-Jagtman and J. Klein-Nulend, "Inhibition of osteocyte apoptosis by fluid flow is mediated by nitric oxide," Biochemical and Biophysical Research Communications, vol.369, 2008, pp. 1150-1154.
[107] A.D. Bakker, K. Soejima, J. Klein-Nulend and E.H. Burger, "The production of nitric oxide and prostaglandin E2 by primary bone cells is shear stress dependent," Journal of Biomechanics, vol.34, 2001, pp. 671-677.
[108] G.N. Bancroft, V.I. Sikavitsas, J van den Dolder, T.L. Sheffield, C.G. Ambrose, J.A. Jansen and Micos AG, "Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner," Proceedings of the National Academy of Sciences, vol.99, 2002, pp.12600-12605.
[109] L.D. Blecha, L. Rakotomanana, F. Razafimahery, A. Terrier and D.P. Pioletti, "Mechanical interaction between cells and fluid for bone tissue engineering scaffold: modulation of the interfacial shear stress," Journal of Biomechanics, vol.43, 2010, pp. 933-937.
[110] H. Carmen, H.H. Miep and M.A. Richard, "Parallel-plate fluid flow systems for bone cell stimulation," Journal of Biomechanics, vol.43, 2010, pp. 1182-1189.
[111] Y. Lidan, T. Sara, L. Peling, H.K. Chi, T. Padmaja, Y. Wei, K. Wade, M.M. Amanda, Y.K. Ronald and C.R. Jacobs, "Osteocytes as mechanosensors in the inhibition of bone resorption due to mechanical loading," Bone, vol.42, 2008, pp. 172-179.
[112] A.S. Goldstein, TM. Juarez, C.D. Helmke, M.C. Gustin, A.G. Mikos, "Effect of convection on osteoblastic cell growth and function in biodegradable polymer foam scaffolds," Biomaterials, vol.11, 2001, pp. 1279-1288
[113] B. Li, C. Qu, C. Chen, Y. Liu and K. Akiyama, "Basic fibroblast growth factor inhibits osteogenic differentiation of stem cells from human exfoliated deciduous teeth through ERK signaling," Oral Disease, vol.18, 2011, pp.285-292.
[114] R. Visser, P.M. Arrabal, L. Santos-Ruiz and J. Becerra, "Basic fibroblast growth factor enhances the osteogenic differentiation induced by bone morphogenetic protein-6 in vitro and in vivo," Cytokine, vol.58, 2012, pp. 27-33.
[115] S. H. Hsu, G. S. Huang and F. Feng, "Isolation of the multipotent MSC subpopulation from human gingival fibroblasts by culturing on chitosan membranes," Biomaterials, vol. 33, 2012, pp. 2642-2655.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top