跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.69) 您好!臺灣時間:2021/07/29 13:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳家銘
研究生(外文):Chia-Ming Chen
論文名稱:氧化鋅與摻鎵氧化鋅奈米柱之無催化劑合成與特性研究
論文名稱(外文):Catalyst-Free Synthesis and Characterization of Aligned ZnO and ZnO:Ga nanorods
指導教授:洪魏寬
口試委員:王耀德黃智賢林泰源
口試日期:2011-07-25
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:光電工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:59
中文關鍵詞:奈米柱氧化鋅氧化鎵摻雜
外文關鍵詞:nanorodsZnOGa2O3doping
相關次數:
  • 被引用被引用:1
  • 點閱點閱:59
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,以氧化鋅薄膜作為緩衝層(buffer layer),成功藉由氣相傳輸法,以無催化劑的方式將單晶的氧化鋅奈米柱成長於c-plane 藍寶石基板上,並且利用掃描式電子顯微鏡(scanning electron microscope, SEM)觀察其表面結構,發現改變其成長時間對於長度有所影響,由X-ray繞射觀察奈米柱成長方向為(002),光激螢光光譜(Photoluminescence Spectrum, PL)的強度與結晶品質良好。
接下來使用氧化鎵加入摻雜反應,其他的製程參數皆與製作純氧化鋅奈米柱時一樣,由於氧化鎵的摻雜,從SEM可觀察到奈米柱的長度明顯減少,經由PL與X-ray繞射分析,以及高解析穿透式電子顯微鏡做後續的量測觀察,其摻雜過後的結晶性品質變差,得知其在有限的有效摻雜量,氧化鎵對氧化鋅奈米柱特性的影響相當敏銳。

In this thesis, by using ZnO as buffer layer successfully via catalyst-free vapor transport, single crystal ZnO grows on c-plane sapphire board. We can detect growing time relative to its length under SEM when observing its surface. PL strength and crystal quality is good under the observation of X-ray diffraction of growth direction of nanorods.
Then using Ga2O3 as doping reaction, other setting numbers are the same as making the ZnO nanorods. Because the doping of Ga2O3, obvious shortening of the length of nanorods is observed under SEM. Analyzing under PL and X-ray diffraction and HRTEM, the quality of crystal is worse under limited effective doping numbers. Ga2O3 is sensitively influential to the quality of ZnO nanorods.

摘 要 .............................................................................................................................. ii
第一章 緒論.................................................................................................................. 1
1.1 前言 ................................................................................................................... 1
1.2 文獻回顧 ........................................................................................................... 2
1.3 研究動機 ........................................................................................................... 3
第二章 實驗簡介與實驗原理 ..................................................................................... 5
2.1 實驗材料簡介 .................................................................................................. 5
2.1.1 氧化鋅(Zinc Oxide, ZnO) ............................................................... 5
2.1.2 氧化鋅的光學特性 ............................................................................... 7
2.2 氧化鋅奈米結構製程簡介 .............................................................................. 8
2.2.1 合成方法 ............................................................................................... 8
2.2.2 成長機制 ............................................................................................... 9
2.2.3 製程方法 ............................................................................................. 10
第三章 實驗架構與量測儀器 ................................................................................... 15
3.1 實驗架構 ......................................................................................................... 15
3.1.1 實驗前置與製作氧化鋅緩衝層 ........................................................ 16
3.1.2 成長純氧化鋅奈米柱 ......................................................................... 17
3.1.3 成長摻雜鎵之氧化鋅奈米柱 ............................................................ 17
3.2 量測儀器 ......................................................................................................... 20
3.2.1 掃描式電子顯微鏡(SEM) ............................................................ 20
3.2.2 穿透式電子顯微鏡(TEM) ............................................................ 22
3.2.3 光激螢光光譜(Photoluminescence Spectrum, PL) ..................... 25
3.2.4 X 光繞射分析儀(X-ray diffraction, XRD) ................................ 29
3.2.5 原子力顯微鏡(AFM) .................................................................... 31
第四章 結果與討論 ................................................................................................... 33
4.1 製作純氧化鋅奈米柱 .................................................................................... 33
4.1.1. 氧化鋅緩衝層(ZnO buffer layer)製作參數 ............................... 33
4.1.2 純氧化鋅奈米柱成長參數與形貌(ZnO nanorods) .................... 36
4.1.3 純氧化鋅奈米柱的PL 分析 .............................................................. 38
4.1.4 純氧化鋅奈米柱的XRD 分析 .......................................................... 40
4.2 未摻雜與摻雜鎵之氧化鋅奈米柱 ............................................................... 41
4.2.1 未摻雜與摻雜鎵之氧化鋅奈米柱形貌比較 .................................... 41
4.2.2 未摻雜與摻雜鎵之氧化鋅奈米柱PL 光譜分析比較 .................... 47
4.2.3 摻雜鎵之氧化鋅奈米柱XRD 分析比較 ......................................... 49
4.2.4 摻雜鎵之氧化鋅奈米柱TEM 分析比較 ......................................... 51
第五章 結論................................................................................................................ 56
參考文獻 ........................................................................................................................ 57

[1] Gang Wang, Zhizhen Ye, Haiping He, Haiping Tang, Jiesheng Li, "Growth of ZnO quantum wells on sapphire substrates and observation of the two-dimensional confinement effect," Appl. Phys. Lett., 86, 032105(2005)
[2] D.A. Neamen, "Semiconductor Physics & Devices", 2 nd ed., p.105(1992)
[3] Michael H. Huang, Samuel Mao, Henning Feick, Haoquan Yan, Yiying Wu, Hannes Kind, Eicke Weber, Richard Russo, Peidong Yang " Room-Temperature Ultraviolet Nanowire Nanolasers," Science, 292, pp. 1897-1899.(2001)
[4] Seungjun Oh, Mina Jung, Jieun Koo, Youngji Cho, Sungkuk Choi, Samyung Yi, Gyungsuk Kil, Jiho Chang, "The mechanism of ZnO nanorod growth by vapor phase transportation," Physica E 42, 2285-2288,(2010)
[5] 普傳貴、斐立宅、俞海雲,「一維無機納米材料」,北京:冶金工業出版社,(2007)
[6]Zheng J., Yu., Li X., Zang S., "Enhanced photocatlytic activity of TiO2 nano structured thin film with a silver hierarchical configuration," Applied Surface Science 254(6), pp. 1630-1635.(2008)
[7]Yao B., Guan L. X., Xing G. Z., Zhang Z. Z., Li B. H., Wei Z. P., Wang X. H., Shen D. Z., "P-type conductivity and stability of nitrogen-doped zinc oxide prepared by magnetron sputtering," Journal of Luminescence 122-123(1-2), pp. 191-194(2007)
[8] Lu J., Zhang Y., Ye Z., Wang L., Zhao B., Huang J., "P-type ZnO films deposited by DC reactive magnetron sputtering at different ammonia concentrations," Materials Letters 57(22-23), pp. 3311-3314(2003)
[9] Zang X. B., Pei Z. L., Gong J., Sun C., "Investigation on the electrical properties and inhomogeneous distribution of ZnO:Al thin films prepared by DC magnetron sputtering at low deposition temperature," Journal of Applied Physics 101(1), art. No. 014910, (2007).
[10] Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, " A comprehensive review of ZnO materials and devices," JOURNAL OF APPLIED PHYSICS, 98, 041301, pp. 3-4.(2005)
[11] B. Meyer and Dominik Marx, " Density-functional study of the structure and stability of ZnO surfaces," PHYSICAL REVIEW B, 67, 035403, (2003)
[12] X. Liu, X. Wu, H. Cao, R. P. H. Chang, J. Appl. Phys., 95, 3141.(2004)
[13] Aleksandra B. Djurisˇic, Yu Hang Leung, small, 2, No. 8-9, 944-961(2006)
[14] David B. Williams, C. Barry Carter, Transmission Electron Microscopy, New York: Plenum Press, pp.485-488.(1996)
[15] B. D. Yao, Y. F. Chan and N. Wanga, Appl. Phys. Lett. 81, 4, 22 (2002).
[16] B. P. Zhang, N. T. Binh, Y. Segawa, K Wakatski and N. Usami, Appl. Phys. Lett. 83, 8, 1635(2003)
[17] Y. C. Wang, I. C. Leu and M. H. Hon, Electrochem. Solid. ST. 5, 4, C53(2002)
[18] Q. Li, V. Kumar, Y. Li, Haitao Zhang, T. J. Marks and Robert P. H. Chang, Chem. Mater. 17, 1001(2005)
[19] R. S. Wagner, W. C. Ellis, "Vapor-Liquid-Solid Mechanism Of Single Crystal Growth," Appl. Phys. Lett. 4, 5, pp. 89-9(1964)
[20] Yiying Wu, Peidong Yang, "Direct Observation of Vapor-Liquid-Solid Nanowire Growth,"J. Am. Chem. Soc., 123, 13, pp. 3165-3166.(2001)
[21] Yongjun Chen, Jianbao Li, Yongsheng Han, Xiaozhan Yang, Jinhui Dai, " The effect of Mg vapor source on the formation of MgO whiskers and sheets," Journal of Crystal Growth, 245, pp. 163-170.(2002)
[22] Yongjun Chen, Jianbao Li, Yongsheng Han, Xiaozhan Yang, Jinhui Dai, " Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport," adv. mater., 13, 2, pp. 113-116.(2001)
[23] Yongjun Chen, Jianbao Li, Yongsheng Han, Xiaozhan Yang, Jinhui Dai, "Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport," Adv. Mater., 13, 2, pp. 113-116.(2001)
[24] Bae S. H., Lee S. Y., Jun Jin B., Im S., "Pulsed laser deposition of ZnO thin films for application of light emission," Applied Surface Science 1514, pp.458-461. (2000)
[25] 張瑞明 趙修建P60~P150, 「脈衝激光沉積動力學與玻璃基薄膜」, 湖北科學技術出版社
[26] L. Reimer, Scanning Electron Microscopy Physics of Image Formation and Microanalysis, New York: Springer, pp.2-2.(1998)
[27] 汪建民,「材料分析」,新竹:中國材料科學學會,(2008)
[28] 羅聖全,「研發奈米科技的基本工具之一電子顯微鏡介紹TEM」, 工業材料雜誌,(2004)
[29] 謝嘉民、賴一凡、林永昌,枋志堯,「光激螢光量測原理、架構及應用」,奈米通訊,第十二卷,第二期,第29~30頁,(2005)
[30] 陳隆建,「發光二極體之原理與製程」,全華科技圖書有限公司,(2006)
[31] 林立娟,「X光繞射原理及其應用、X光材料分析技術與應用專題」,工業材料雜誌,第86期,(1994)
[32] Li Wei Chang, Jien Wei Yeh, Chia Liang Cheng, F.S. Shieu, Han C. Shih, "Field emission and optical properties of Ga-doped ZnO nanowires synthesized via thermal evaporation," Applied Surface Science 257, 3145-3151,(2011)
[33] Kyungwon K., Yong-Won S., Seongpil C., In-Ho K., Sangsig K., Sang Yeol L., "Fabrication and characterization of Ga-doped ZnO nanowire gas sensor for the detection of CO," Thin Solid Films 518, 1190-1193,(2009)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top