跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 15:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:游承銘
研究生(外文):Cheng-Ming Yu
論文名稱:利用奈米銦粒表面電漿子改進三接面砷化鎵太陽能電池電流匹配之研究
論文名稱(外文):Triple-Junction GaAs Solar Cell Performance Improvement Based on Current Matching by an Indium Nanoparticles Plasmonics
指導教授:何文章何文章引用關係
口試委員:蕭宏彬潘金山揚村農
口試日期:2012-07-26
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:光電工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:91
中文關鍵詞:砷化鎵太陽能電池表面電漿銦奈米粒子電流匹配外部量子效率
外文關鍵詞:GaAs solar cellSurface plasmonicIndium nanoparticlesCurrent matchingExternal quantum efficiency
相關次數:
  • 被引用被引用:0
  • 點閱點閱:86
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文是藉由奈米金屬粒子表面電漿效應改進三接面砷化鎵太陽能電池(Triple-Junction GaAs Solar Cells)電流匹配(Current Matching)之研究。將銦(Indium)奈米粒子形成在有二氧化鈦(TiO2)鈍化層的三接面砷化鎵太陽能電池上,透過奈米金屬粒子表面電漿效應使電場侷域性增強,增加半導體長波長光的吸收,由於光吸收的增加讓中間層太陽能電池之光電流提升,促使三接面砷化鎵太陽能電池之效率提高。
本論文利用電子槍依序蒸鍍二氧化鈦和銦薄膜於玻璃基板及三接面砷化鎵太陽能電池,蒸鍍完成之試片放入氫氣爐以200 0C及30分鐘退火處理後形成我們要的奈米金屬粒子。藉由穿透率和外部量子效率之量測,本文完成之銦奈米粒子的共振波段大約為700~900 nm。
在AM1.5G、25°C條件下,量測所完成之三接面砷化鎵裸太陽能電池之特性如下:開路電壓(Open circuit voltage, Voc)為2.52 V,短路電流密度(Short circuit current, Isc)為9.87 mA/cm2,填充因子(Fill factor, FF)為87 %,轉換效率(Conversion Efficiency, η)為21.8 %;由外部量子效率儀器模擬出的頂層太陽能電池電流密度為11.49 mA/cm2,中間層太陽能電池電流密度為9.1 mA/cm2。其次,在裸電池經蒸鍍完單層TiO2(50 nm)的鈍化層和In(3.8 nm)及退火處理後,開路電壓為2.52 V,短路電流密度為11.47 mA/cm2,填充因子為87 %,轉換效率提升至25.2 %;及經外部量子效率儀器模擬出的頂層太陽能電池電流密度為14.05 mA/cm2,中間層太陽能電池電流密度為11.35 mA/cm2。經比較分析,有奈米銦粒表面電漿子之三接面砷化鎵太陽能電池其短路電流密度共提升9.6 %,轉換效率共提升9.1 %。


This thesis is focused on improvement of the current matching in triple-junction GaAs solar cell by surface plasmon effect of nano-metallic particles.The indium nanoparticles are deposited on the surface of triple-junction GaAs solar cell with a passivation layer of TiO2. The electric field localized on the surface was enhanced by In nanoparticals plasmon. It lead to the increase of the absorption at the long wavelength in semiconductor. Thus the photocurrent of the middle cell was raised up and caused the increase in photovoltaic efficiency.
In the experiment, we use the E-beam thermal evaporator to deposit a TiO2 and an Indium film on the glass substrate and triple-junction GaAs solar cell. After film deposition, we treated the samples at 2000C thermally annealed in H2 for 30 minutes to form the nano-metallic particles. According to the transmission spectrum and external quantum efficiency measurement, the range of wavelength in plasmon resonance was about 700~900 nm.
Under AM 1.5G of illumination at 25°C, the obtained characteristics of the bare-type triple-junction GaAs solar cell are as the following: the open circuit voltage (Voc) is 2.52 V, the short-circuit current (Isc) is 9.87 mA/cm2, the fill factor is 86 %, and the conversion efficiency(η) is 21.8 %; from the external quantum efficiency characteristics, the calculated current density in top-cell is 11.49 mA/cm2, and the middlecell is 9.1 mA/cm2. After evaporated the passivation TiO2 of 50 nm and of In 3.8 nm upon the bare cell and thermally annealed, the Voc is 2.52 V, the Isc is 11.47 mA/cm2, the fill factor is 87 % , and the conversion efficiency is 25.2 %; the top cell current density is 14.05 mA/cm2, and the middle cell current density is 11.35 mA/cm2. Comparing with bare-type cell, the performance of triple-junction GaAs solar cell with In nano-particles show that the Isc is increased 9.6 %, and the conversion efficiency is increased 9.1 %.


目錄

摘要 (中文) i
Abstract (英文) iii
誌謝 v
目錄 vi
圖目錄 viii
表目錄 xiii
第一章 前言 1
1.1 緒論 1
1.2 多接面太陽電池簡介 3
1.2.1 內部結構調整 4
1.2.2 外部結構調整 5
1.3 表面電漿簡介 6
1.4 研究動機 7
第二章 太陽能電池工作原理 8
2.1 太陽光光譜 8
2.2 太陽電池工作原理 10
2.2.1光伏特效應 10
2.2.2 P-N接面 12
2.2.3太陽電池等效電路圖 13
2.2.4太陽光電池的特性參數介紹 14
2.2.5太陽電池效率損失探討 17
2.3 表面電漿 20
2.3.1 Drude 模型 20
2.3.2侷域性表面電漿子 24
2.3.3紅移現象 25
2.4 外部量子效率與光電流密度 27
第三章 實驗與量測 29
3.1 三接面太陽能電池結構 29
3.2 奈米銦粒子製作與量測 33
3.2.1 奈米銦粒子 33
3.2.1.1 電子槍直接蒸鍍 33
3.2.1.2 濾網罩幕蒸鍍 35
3.2.1.3 光微影選擇性蒸鍍 38
3.2.2 量測 40
3.2.2.1 穿透率和反射率光譜 41
3.2.2.2 掃描式電子顯微鏡和光學顯微鏡 41
3.2.2.3 UV-VIS-IR光反射模後量測儀 44
3.3 具表面奈米銦粒子三接面太陽能電池製作與量測 45
3.3.1 製作 45
3.3.1.1電子槍直接蒸鍍 45
3.3.1.2 濾網罩幕蒸鍍 46
3.3.1.3 光微影選擇性蒸鍍 47
3.3.2 量測 48
第四章 結果與討論 54
4.1 穿透率與SEM分析 54
4.1.1電子槍直接蒸鍍奈米銦粒子 54
4.1.2濾網罩幕蒸鍍奈米銦粒子 60
4.1.3光微影選擇性蒸鍍奈米銦粒子 62
4.2 反射率 63
4.2.1電子槍直接蒸鍍 63
4.2.2濾網罩幕蒸鍍 66
4.2.3光微影選擇性蒸鍍 67
4.3未照光電流-電壓特性 68
4.3.1 不同二氧化鈦厚度分析 69
4.4照光電流-電壓特性 73
4.4.1電子槍直接蒸鍍分析 73
4.4.2濾網罩幕蒸鍍分析 80
4.4.3光微影選擇性蒸鍍分析 84
第五章 結論與未來展望 87
參考文獻 88


參考文獻

[1] Jianhua Zhao, Aihua Wang, and Martin A. Green “19.8% efficient honeycomb textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett, 1998, 73, pp. 1991-1993.
[2] G. J. Bauhuis, P. Mulder, and J. J. Schermer “High efficiency thin film GaAs solar cells with improved radiation hardness,” 20th European Photovoltaic Solar Energy Conference, Barcelona, Spain, 2005, pp. 468-471.
[3] Wolfgang Guter,a Jan Schone, Simon P. Philipps, Marc Steiner, Gerald Siefer,
Alexander Wekkeli, Elke Welser, Eduard Oliva, Andreas W. Bett, and Frank
Dimroth “Current-matched triple-junction solar cell reaching 41.1% conversion
efficiency under concentrated sunlight” Appl. Phys. Lett, 2009, 94, 223504
[4] Becquerel, A.E “Memoire sur les effects d''electriques produits sous l''influence des rayons solaires”, Comptes Rendus de L''Academie des Sciences, Vol. 9, pp. 1839, pp. 561- 567.
[5] Adams W. and Day R., Proe. Roy. Soc. A 25, 1877, pp. 113.
[6] D. M. Chapin, C. S. Fuller, G. L. Pearson “A New Silicon P-N Junction Photocell for Converting Solar Radiation into Electrical Power,” J.Appl. Phys. Lett, Vol.25, 1954, pp. 676.
[7] R. W. Birkmire and L. L. Kazmerski “Photovoltaics for the 21st Century,” Electrochemical Society, New Jersey, US, 2000, pp. 274-299.
[8] J. Meier and J. Spitznagel and U. Kroll and C. Bucher and S. Fay and T. Moriarty A.Shah “Potential of amorphous and microcrystalline Silicon solar cell,” Thin Solid Film, 2004, pp. 518-524.
[9] O. Shultz, S.W. Glunz, J.C. Goldschmidt, H. Lautenschlager A. Leimenatoll E. Scheiderlochner and G.P. Willeke “Thermal oxidation processes for high-efficiency multicrystalline silicon solar cells,” 19th European Photovoltaic Solar Energy conference, 2004.
[10] Y.A. Akimov “Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes,” Opt. Express 17 (12), 2009, pp. 1015.
[11] D. Derkacs “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticle” Appl. Phys. Lett, 89, 2006, pp. 093103-1–093103-3.
[12] E. Moulin, “Improved light absorption in thin-film silicon solar cells by integration of silver nanoparticles,” J. Non-Cryst. Solids, 354, 2008, pp. 2488–2491.
[13] Y. A. Akimov “Surface plasmon enhancement of optical absorption in thin-film silicon solar cells,” Plasmonics 4, 2009, pp. 107–113.
[14] R. A. Pala “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater, 21, 2009, pp. 1–6.
[15] C. Wen “Effect soft silver particles on the photovoltaic properties of dye-sensitized TiO2 thin films,” Sol. Energy Mater. Sol. Cells, 61, 2001, pp. 339–351.
[16] B. P. Rand “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. Let, 96 (12), 2004, pp. 7519–7526.
[17] H. R. Stuart “Island size effects in nanoparticle enhanced photo-detectors,” Appl. Phys. Lett, 73 (26), 1998, pp. 3815–3817.
[18] D. M. Schaadt “Enhanced semiconductor optical absorption via surface Plasmon excitation in metal nanoparticles,” Appl. Phys. Lett, 86, 2005, pp. 063106-1–063106-3.
[19] S. Pillai “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. Lett, 2007, pp. 093105-1–093105-8.
[20] P. F. Liao and A. Wokaun “Lightning rod effect in surface enhanced Raman scattering,” J. Chem. Phys, 76, 1982, pp. 751-752.
[21] P. J. Verlinden, R. M. Swanson, and R. A. Crane “A 26.8% Efficient Concentrator Point-Contact Solar Cell,” Proceedings of the 13th European Photovoltaic Solar Energy Conference-Nice, Kluwer, The Netherlands, 1995, pp. 1582-1585.
[22] M.E. Nell, A.M. Barnett “The Spectral p-n junction model for tandem solar-cell design,” IEEE Transactions on electron devices, vol. Ed-34, 1987, pp. 257-266.
[23] M. A. Green and K. Emery “Solar cell efficiency tables (Version 32),” Progress in Photovoltaics: Research and Applications, vol. 16, 2008, pp. 435-440.
[24] Martin A. Green, SOLAR CELLS Operating Principles Technology, and System Applications, N.J: Prentice Hal 1982, ch3-ch5.
[25] M. P. Hanser “The solar constant and the solar spectrum measurement from a research aircraft,” NASA Technical Report, no.R-351, 1970.
[26] W. Shockley, H. J. Queisser “Detailed balance limit on efficiency of p-n junction solar cells,” phys, vol. 32, 1991, pp. 510-519.
[27] T. Tideje “Limiting efficiency of silicon solar cells,” IEEE Transactions on electron devices, vol. ED31, 1984, pp. 711-716.
[28] P. Campbell and M. A. green “The limiting efficiency of the silicon solar cells under concentrated sunlight,” IEEE Transactions on electron devices, vol. ED33, 1986, pp. 234-239.
[29] Van Dye E, Meyer EL “Analysis of the effect of parasitic resistances on the performance of photovoltaic modules,” Renew Energy, vol. 29, 2004, pp. 333.
[30] GL. Araujo and E. Sanchel “A new method for experimental determination of the series resistance of a solar cell,” IEEE Trans Electron Devices, vol. ED-29, Mar. 1982, pp. 1511-1513.
[31] M. A. Green “Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by intrinsic Auger process,” IEEE, vol. ED 31, 1987, pp. 671-676.
[32] 邱國斌、蔡定平,“金屬表面電漿簡介” 物理雙月刊, 2006.
[33] 曾賢德“金奈米的粒子表面電漿共振特性:耦合、應用與樣品製作”, 物理雙月刊, 2010 .
[34] J. Tiggesbaumker, L. Koller, H. O. Lutz and K. H. Meiwesbroer “Giant resonances in silver-cluster photo frag mentation, ” Chem. Phys. Lett , 190 , 1992, pp. 42.
[35] J. Tiggesbaumker, L. Koller, K. H. Meiwesbroer and A. Liebsch “Blue shift of the Mie plasma frequency in Ag clusters and particles,” Phys. Rev. A: At., Mol. Opt. Phys, 48, 1993, R1749.
[36] A. Liebsch “Relation between momentum dispersion of surface plasmonand size dependence of Mie resonance: Silver vs simple metals,” B: Condens. Matter, 48, 1993, pp. 11317.
[37] K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S.Schultz “Interparticle coupling effect on plasmon resonances of nanogold particles,” Nano Letter, 3, 2002, pp. 1087-1090.
[38] 廖士霆, “矽晶太陽能電池與特性分析” 國立清華大學, 2009, 碩士論文.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top