跳到主要內容

臺灣博碩士論文加值系統

(3.236.68.118) 您好!臺灣時間:2021/08/04 22:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃建中
研究生(外文):Cien-Cung Hang
論文名稱:摻雜YAG螢光粉之奈米結構氧化鋅的光電特性研究
論文名稱(外文):Optoelectronic properties of YAG phosphor doped nanostructure ZnO films
指導教授:陳隆建陳隆建引用關係
口試委員:林瑞明藍文厚
口試日期:2012-07-05
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:光電工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:85
中文關鍵詞:氧化鋅YAG螢光粉噴霧熱解法光激發螢光
外文關鍵詞:ZnOYAG phosphorsspray pyrolysis methodPL
相關次數:
  • 被引用被引用:3
  • 點閱點閱:235
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  現今所使用的白光LED大多採用藍光晶片激發黃色螢光粉,但因為螢光粉塗佈不均會導致色彩分佈不均勻的光暈現象,為了得到更高均勻性的白光光源,本論文提出一種新穎的螢光粉分佈結構,藉由超音波噴霧法將YAG:Ce3+螢光粉摻雜於n型氧化鋅(ZnO:YAG)材料中,以探討此螢光材料的晶體結構與發光性質。
  實驗結果顯示,未摻雜的氧化鋅呈現六角板結構,[0002]優選方向垂直於基板;而隨著摻雜濃度的提升,會致使ZnO:YAG薄膜的生長機制受到改變,造成六角板的側向成長速率加快,導致(0002)有偏折的現象;當摻雜濃度持續增加,偏折程度會逐漸變大,致使ZnO:YAG薄膜呈現奈米花結構。經由XRD繞射圖得知,摻雜濃度提昇會使結晶品質變差,半高寬變大。在PL激發光譜上,可以觀察到ZnO有很強的近能隙發光,峰值約為380 nm;伴隨著摻雜比例提升,ZnO的缺陷發光與YAG:Ce3+的螢光也隨之增加;其中,YAG:Ce3+的螢光峰值位於540 nm,是由於電子從激發態5d躍遷回基發態4f所激發的螢光。由吸收邊緣圖得知,氧化鋅的吸收能隙隨摻雜濃度提升而紅移,是由於缺陷密度隨摻雜濃度提升而增加,導致發光特性變差。
  製作n-ZnO:YAG/p-Si元件,並於p型矽基板上製作鎳/銀(Ni/Ag)合金之電極,使接面達歐姆接觸;其I-V曲線呈現二極體之整流特性,且起始電壓Vth約為5V;於PL光譜上可觀察到YAG:Ce3+之峰值,且元件受光子激發後,呈現紫白光。

  Nowadays, the white light emission diode (LED) most adopts blue chips to excite yellow phosphor. However, uneven phosphor coating results in the phenomenon of uneven color distribution. In order to get higher quality of white light source, the thesis proposes a novel structure of phosphor coating. It adopts ultrasonic spray pyrolysis to doped YAG:Ce3+ phosphor into zinc oxide (ZnO:YAG) to discuss about the crystal structure and luminescence properties of fluorescent material.
  The results of the experiment show that undoped ZnO appears in the structure of hexagonal plate. It indicates an excellent crystalline along the (002) preferred orientation. With the increasing doping concentration, it would change the growth mechanism of ZnO:YAG films. Then, it results in accelerating lateral growth rate of hexagonal plate. It''s the phenomenon of deflection of hexagonal plate. As the doping concentration increasing gradually, the degree of deflection would get much bigger. It results in ZnO:YAG film appearing in the structure of nanoflower. According to the XRD patterns, the increasing doping concentration would make the crystal quality deterioration and make FWHM larger.
  Photoluminescence measurements revealed that ZnO is with stronger near-band-edge and peak value is about 380nm. As the doping percentage increasing, the defect exciting of ZnO and the luminescence of YAG:Ce3+ get increasing as well. The luminescence of YAG:Ce3+ emitted green due to the electron from excited state of 5d to ground state of 4f.
  The results of the absorption spectrum show the absorption energy gap of ZnO would get red shift with the increasing doping concentration. Because of the defect density increasing with the doping concentration as well, it results in poor luminescence properties.
The n-ZnO:YAG/p-Si devise is made. The characteristic of ohmic contact from the electrode of Ni/Ag alloy on the p-Si substrate. The I-V is with the rectifying behavior and the starting voltage (Vth) is about 5V. According to PL, we can observe that the peak value of YAG:Ce3+ , and it would appear in the purple-white light after excited.

中文摘要 i
英文摘要 ii
誌謝 iv
目錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 前言 1
1.2 白光LED之簡介 1
1.3 白光LED之螢光粉封裝設計 3
1.4 研究動機 4
1.5 論文架構 4
1.6 白光LED之發展起源 5
第二章 理論基礎與文獻回顧 6
2.1 氧化鋅之基本特性 6
2.1.1 氧化鋅之晶格結構與特性 6
2.1.2 氧化鋅之電特性 6
2.1.3 氧化鋅之光特性 8
2.2 螢光發光原理及性質 9
2.2.1 螢光發光原理 9
2.2.2 影響螢光發光之因素 9
2.3 YAG螢光粉之基本特性 11
2.3.1 YAG螢光粉之晶體結構 11
2.3.2 稀土族離子摻雜於YAG螢光粉 12
2.3.3 文獻回顧 13
2.4 LED發光原理 15
2.5 薄膜沉積原理 16
第三章 實驗方法與量測系統 17
3.1 實驗材料 17
3.2 實驗設備 18
3.2.1 超音波噴霧熱解法 18
3.2.2 濺鍍系統 22
3.2.3 退火系統 25
3.3 實驗流程 26
3.3.1 基板清洗 26
3.3.2 氧化鋅水溶液之調配 27
3.3.3 YAG螢光粉之摻雜 27
3.3.4 薄膜之沉積 28
3.3.5 元件之製作 28
3.4 實驗量測系統 29
3.4.1 掃描式電子顯微鏡 29
3.4.2 X-ray繞射儀 30
3.4.3 光激發光量測系統 30
3.4.4 穿透光譜量測系統 31
3.4.5 電流電壓曲線量測 31
第四章 實驗結果與討論 32
4.1 ZnO:YAG薄膜之形貌分析 32
4.1.1 以SEM 觀察薄膜表面型貌 32
4.1.2 以XRD觀察薄膜晶體結構 34
4.2 ZnO:YAG薄膜之光特性分析 35
4.2.1 以PL觀察薄膜發光特性 35
4.2.2 以穿透光譜觀察薄膜光吸收 37
4.2.3 以吸收係數觀察薄膜吸收邊緣 37
4.3 n-ZnO:YAG / p-Si二極體元件 38
4.3.1 電極接點 38
4.3.2 元件特性 38
第五章 結論 39
第六章 未來研究方向 40
參考文獻 41

[1] M. G. Craford, Proc. SPIE 5941, 1-10, 2005
[2] 蘇炎坤,「白光LED之照明應用」,電機月刊,2005
[3] M.G. Craford, Phosphor global summit, USA, 2003
[4] A. Zauskas, F. Ivanauskas, R. Vaicekauskas, M. S. Shur and R. Gaska, “Optimization of mulitichip white solid state lighting source with four or more LEDs”, Proc. SPIE 4445, 148, 2001
[5] T.F. McNulty et al., “UV reflector and UV-based Light Source Having Reduced UV Radiation Leakage Incorporating The Same”, United States Patent, Us 6686676 B2, Feb. 3, 2004.
[6] D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, ―Illumination with solid state lighting technology, IEEE J. Select. Topics Quantum Electron. 8, 310-320, 2002
[7] Stelur et al., “Phosphor Blends for Generating White Light from Near-UV/Blue Light-Emitting Devices”, United States Patent, US 6685852 B2, Feb. 3, 2004.
[8] 史光國,「半導體發光二極體及固態照明」,全華圖書股份有限公司,二版一刷,2010
[9] Duclos et al., “Phosphor Coating with Self-adjusting Distance from LED Chip”, United States Patent, US 6635363 B1, Oct. 21, 2003.
[10] R. C. Jordan, J. Bauer, and H. Oppermann, “Optimized heat transfer and homogeneous color converting for Ultra High Brightness LED Package”, Proc. SPIE 6198, 61980B1- 61980B12, 2006
[11] 鄭佳申,「白光LED之ㄧ階與二階光學設計」,國立中央大學,2008
[12] D. C. Look and J. W. Hemsky, “Residual Native Shallow Donor in ZnO”, Physical review letters, Volume 82, number 12, 1999
[13] S.Cho, J.Ma, Y.Kim, Y.Sun, G.K.L.Wong, and J.B.Ketterson, “Photoluminescence and ultraviolet lasing of polycrystalline ZnO thin films prepared by the oxidation of the metallic Zn”, Appl.Phys.Lett.Vol.75, No.18, 2761, 1999
[14] 郭浩中、賴芳儀、郭守義,「LED原理與應用」,五南圖書出版股份有限公司,初版,2009
[15] 劉如熹,王健源,「白光發光二極體製作技術:21世紀人類的新曙光」,全華科技圖書公司,初版,2001
[16] J. H. Lim, C. K. Kang, K. K. Kim, I. K. Park. D. K. Hwang, S. J. Park, Adv. Materials 18, 2720, 2006
[17] Z. P. Wei, Y. M. Lu, D. Z. Shen, Z. Z. Zhang, B. Yao, B. H. Li, J. Y. Zhang, D. X. Zhao, X. W. Fan, Z. K. Tang, Appl. Phys. Lett. 90, 2007, 042113.
[18] Eunice S. P. Leong, S. F. Yu, S. P. Lau, Appl. Phys. Lett. 89, 2006, 221109.
[19] C. W. Lee, H. Choi, M. K. Oh, D. J. Ahn, J. Kim, J. M. Kim, F. Ren, S. J. Pearton, Electrochem. Solid-State Lett. 10, 2007, J1.
[20] G. Grosso, G. P. Parravicini, Solid State Physics, Cambridge University Press, Cambridge, 2000.
[21] 陳怡嘉,使用有機金屬化學氣相沉積法在玻璃基板上成長氧化鋅薄膜之研究,碩士論文,國立東華大學光電工程研究所,2009
[22] Numerical Data and Functional Relationships in Science and Technology. V.22, “Subvolume a. Intrinsic Properties of Group IV Elements and III-V, II-VI and I-VII Compounds”, BerlinSpringer-Verlag, 1987
[23] F. D. Paraguay, J. Morales, W. L. Estrada, E. Andrade, M. M. Yoshida, “Influence of Al, In, Cu, Fe and Sn dopants in the microstructure of zinc oxide thin films obtained by spray pyrolysis”, Thin solid Films 366, 16-27. , 2000
[24] R. Wang, L. H. King, A. W., “Highly conducting transparent thin films based on zinc oxide”, Sleight, J. Mater. Res. 11, 1659-1664. , 1996
[25] Qiping Zhong and Egon Matijevic, “Preparation of uniform zinc oxide colloids by controlled double-jet precipitation”, J. Mater. Chem., 6, 3, 443, 1996
[26] 郭耿宏,原子層沉積法直接低溫成長氧化鋅薄膜於氧化鋁基板之研究,碩士論文,國立中興大學物理系,2008
[27] 洪茂峰,高亮度ZnO發光二極體,行政院國家科學委員會補助專題研究計畫-成果報告,2009
[28] Y. Igasaki and H. Saito, Thin Solid Films 199, 223, 1991
[29] 張哲維,氧化鋅螢光材料及氧化鋅奈米線之研製及其特性探討,碩士論文,國立成功大學電機工程研究所,2005
[30] X. L. Wu, G. G. Siu, C. L. Fu, H. C. Ong, “Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films”, Appl. Phys. Lett. 2285 78, 2001
[31] Q. P. Wang, D. H. Zhang, Z. Y. Xue, X. J. Zhang, “Mechanisms of green emission from ZnO films prepared by rf magnetron sputtering”, Opt. Mater. 23 26, 2004
[32] Emre Gür, S. Tüzemen, Kadem Meral, Y. Onganer, “Oxygen deficiency effects on recombination lifetime and photoluminescence characteristics of ZnO thin films; correlationwith crystal structure”, Appl Phys A: 549-554 94, 2009
[33] Changzheng Wang, Dongran Xu, Xiaoguang Xiao, “Effects of oxygen pressure on the structure and photoluminescence of ZnO thin films”, J Mater: 9795-9800 Sci 42, 2007
[34] A. Zubiaga, J. A. García, F. Plazaola, F. Tuomisto, K. Saarinen, J. Zuñiga Pérez, V. Muñoz-Sanjosé, “Correlation between Zn vacancies and photoluminescence emission in ZnO films”, J. Appl. Phys. 99 053516, 2006
[35] F. Tuomisto, V. Ranki, K. Saarinen, “Evidence of the Zn Vacancy Acting as the Dominant Acceptor in n-Type ZnO”, Phys. Rev. Lett. 91 205502, 2003
[36] W. Q. Peng, S. C. Qu, G. W. Cong, Z. G. Wang, “Structure and visible luminescence of ZnO nanoparticles”, Mater. Sci. Semicond. Process. 156 9, 2006
[37] A. Zubiaga, F. Plazaola, J. Zuñiga Pérez, “Correlation between Zn vacancies and photoluminescence emission in ZnO films”, JOURNAL OF APPLIED PHYSICS 99, 053516, 2006
[38] K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, J. A. Voigt, “Correlation between photoluminescence and oxygen vacancies in ZnO phosphors”, Appl. Phys. Lett. 68, 403, 1996
[39] 蘇勉增,「發光材料」,世康,第四卷,1~39頁
[40] J. Chen, Z. Feng, P. Ying, M. Li, B. Han and C. Li, "The visible luminescent characteristics of ZnO supported on SiO2 powder", PCCP, Vol. 6, No. 18, pp. 4473-4479, 2004
[41] 蘇炎坤,劉如熹,黃琬瑜,「LED工程師基礎概念與應用-白光發光二極體用之螢光粉結構與特性」,五南圖書出版股份有限公司,出版一刷,2012
[42] 陳政次,氧化釔和氧化鋅摻雜鋱之發光特性研究,逢甲大學化學工程學系,碩士論文,2005
[43] 石景仁,白光發光二極體用之石榴石螢光粉合成及特性分析,國立台灣大學化學研究所,碩士論文,2001
[44] G. T. Adylov, G. V. Voronov. E. P. Mansurova, L. M. Sigalov. E. M. Urazaeva. Zh. Neorg. Khtm., J. Inorg. Chem. 33, 7, 1867-1869, 1988
[45] 陸學善,激光基質釔鋁石榴石的發展,科學出版社,p10,p27-42,1972
[46] T. Hahn, International tables for crystallography Published for the International Union of Crystallography by Kluwer Academic Publishers, 1995
[47] R. R. Jacobs, W. F. Krupke and M. J. Weber, Appl. Phys. Lett. 33, 410, 1978
[48] X. Liu, X. Wang and Z. Wang, Phys. Rev. B, 39, 10633, 1989
[49] S. Geller and M.A. Gilleo, “Structure and ferrimagnetism of yttrium and rare earth iron garnets”, Acta crystallogr. 10, 239, 1957
[50] J.E. Geusic and L.G. Van Uitert, “Laser oscillations In Nd doped yttrium aluminum, yttrium gallium and gadolinium garnets”, Appl. Phys. Lett. 4, 182, 1964
[51] T. Takamori and L. D. David, “Controlled Nucleation for Hydrothermal Growth of Yttrium-Aluminum Garnet Powders”, Am. Ceram. Bull. 65, 1982(1986)
[52] P. Apte, H. Burke and H. Pickup, “Synthesis of Yttrium Aluminum Garnet by Reverse Strike Precipitation”, J. Mater. Res., 7, No.3, 706, 1991
[53] A. Ikesue and I. Furusato,”Fabrication of polycrystalline, Transparent YAG ceramics by a solid-state reaction method”, J.Am.Ceram.Soc., 78 [1], pp.225-228, 1995
[54] May Nyman, James Caruso, Mark J. Hampden-Smith, and Toivo T. Kodas, “Comparison of Solid-State and Spray-Pyrolysis Synthesis of Yttrium Aluminate Powders”, Journal of the American Ceramic Society, Vol. 80, Issue 5, pp. 1231,1997
[55] 朱穗君,奈米級鋁酸釔螢光體微粒之製備與特性鑑定,碩士論文,交通大學應用化學研究所,1998年
[56] Y. Liu, L. Gao,”Low-Temperature Synthesis of Nanocrystalline Yttrium Aluminum Garnet Powder Using Triethanolamine”, J AM CERAM SOC, Pages 1651-1653, 2003
[57] F. Y., H. Ryua, “Ce-doped YAG phosphor powders prepared by co-precipitationand heterogeneous precipitation”, Materials Science and Engineering, B107, 14–18, 2004
[58] M. Medraj, R. Hammond, M.A. Parvez, R.A.L. Drew and W.T. Thompson, “High temperature neutron diffraction study of the Al2O3–Y2O3 system”, Journal of the European Ceramic Society, Volume 26, Issue 16, pp. 3515-3524, 2006
[59] Kai Zhang, He-Zhou Liu, Ya-Ting Wu and Wen-Bin Hu,“Co-precipitation synthesis and luminescence behavior of Ce-doped yttrium aluminum garnet (YAG:Ce) phosphor: The effect of precipitant, “Journal of Alloys and Compounds”, In Press, Corrected Proof, Available online 29 December, 2006
[60] A. Zukauskas, M. S. Shur & R. Caska , “Introduction to Solid-State Lighting”, Wiley, New York, 2002
[61] K.K. Kim, J.H. Song, H.J. Jung, W.K. Choi, S.J. Park, J.H. Song, “The grain size effects on the photoluminescence of ZnO/α-Al2O3 grown by radio-frequency magnetron sputtering”, J. Appl.Phys. 87, 3573., 2000
[62] 許雅瑛,p-MnZnO/n-Si結構光偵測二極體於強磁場下之光電特性的研究,碩士論文,國立臺北科技大學光電工程系,2009。
[63] G. L. Messing, S.C. Zhang and G. V. Jayanthi, J. Am. Ceram. Soc. 76, 1993, 2707.
[64] Lauterborn, W., et al., Acoustic cavitation, “bubble dynamics and sonoluminescence”. Ultrason Sonochem, 14(4): p. 484-91, 2007
[65] Burns, P.N. and S.R. Wilson, Microbubble contrast for radiological imaging:1. Principles. Ultrasound Q, 22(1): p. 5-13, 2006
[66] A. V. Singh, R. M. Mehra, Nuttawuth Buthrath, Akihiro Wakahara, and Akira Yoshida, J. Appl. Phys. 90,5661, 2001.
[67] 郭湘吟,直流磁控濺鍍氧化鋅薄膜特性之研究,碩士論文,國立東華大學材料科學與工程研究所,2010
[68] 周育正,使用Ag金屬力子輔助式蝕刻技術製作具有為米孔洞結構砷化鎵混合型光伏元件之研究,碩士論文,國立臺北科技大學光電系,2010
[69] J. L. Vossen and W. Kern, “Thin Film Processes II”, Academic Press, Inc., Bonton, 21, 1991
[70] 廖韋茜,使用具有螢光特性之In2O3:Tb透明導電層的GaN系紫外光發光二極體,碩士論文,國立臺北科技大學光電系,2010
[71] H. S. Kim, S. J. Pearton, D. P. Norton, and F. Ren, “Behavior of rapid thermal annealed ZnO:P films grown by pulsed laser deposition”, J. Appl. Phys. 102., 104904., 2007
[72] Kyoung-Kook Kim, Hyun-Sik Kim, Dae-Kue Hwang, Jae-Hong Lim, and Seong-Ju Park, “Realization of p-type ZnO thin films via phosphorus doping and thermal activation of the dopant”, Appl. Phys. Lett. 83. 63., 2003
[73] 郭書榮,具有奈米結構氮化銦緻密層及Au奈米粒子之染料敏化太陽能電池之應用,碩士論文,國立臺北科技大學光電系,2011
[74] 簡志峰,脈衝雷射蒸鍍法蒸鍍氧化鋅及氧化釓鋅薄膜,碩士論文,國立臺灣師範大學物理研究所,2011
[75] Wen-Jun Li, Er-Wei Shi,Wei-Zhuo Zhong, J. Crystal Growth, 203, P.186, 1999
[76] R. A. Laudise, A. A. Ballman, J. Phys. Chem. 64(5), 688., 1960
[77] K. Vanheusden,W.L.Warren, and Z. L.Wang, Adv. Funct. Mater. 13, 9, 2003
[78] N. E. Hsu,W. K. Hung, and Y. F. Chen, J. Appl. Phys. 96, 4671, 2004
[79] X.Wang, C. J. Summers, and Z. L.Wang, Nano Lett. 3, 423, 2004

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top