跳到主要內容

臺灣博碩士論文加值系統

(3.95.131.146) 您好!臺灣時間:2021/07/29 02:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡文芳
研究生(外文):Wen-Fang Tsai
論文名稱:具有崁入式銀奈米粒子之藍寶石圖案化基板的特性研究
論文名稱(外文):Properties of patterned sapphire substrate embedded silver nanoparticles
指導教授:陳隆建陳隆建引用關係
指導教授(外文):Lung-Chien Chen
口試委員:林瑞明藍文厚
口試委員(外文):Ray-Ming LinWen-How Lan
口試日期:2012-07-05
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:光電工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:56
中文關鍵詞:濕式蝕刻銀奈米粒子射頻磁控濺鍍法
外文關鍵詞:Wet etchingsilver nanoparticleRF magnetron sputtering
相關次數:
  • 被引用被引用:0
  • 點閱點閱:239
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
以氮化鎵為基底的藍綠光發光二極體之應用上,如何提升亮度是一個重要的課題。本論文以銀奈米粒子搭配圖案化藍寶石基板所製成模板,來改善氮化鎵發光二極體的發光效率。
利用高溫硫酸蝕刻藍寶石後所產生的反應物[Al(SO4)、Al(SO4)3‧17H2O]做為蝕刻遮罩,再配合高溫磷酸清除遮罩層的兩段式蝕刻法,形成具有幾何孔洞之圖案化藍寶石基板,搭配射頻磁控濺鍍法濺鍍單層銀薄膜,再以高溫退火下使銀薄膜發生團聚現象形成銀奈米粒子。藉由在不同的退火溫度與時間的條件下,觀察銀奈米粒子形成型態與光特性。實驗表明,隨著退火溫度與退火時間的增加,因為銀奈米粒子的團聚現象,使正向入射的光反射率越小;使用退火參數400度20分鐘的銀奈米粒子於藍寶石基板,可使傳統LED的光強度提升約2.58倍。另一方面崁入銀奈米粒子的圖案化藍寶石基板的蝕刻深度也與LED發光功率有關,其提升的原因可歸因於蝕刻深度造成光子有更多的機會接觸銀奈米粒子造成反射,最高可使傳統LED增強2.28倍。


GaN-based blue and green light emitting diodes (LEDs) grown on sapphire substrate are already commercially available. However, the improvement of output power is one of the most important issues for GaN-based LEDs application. In this study, the template was made by silver nanoparticle and pattern sapphire substrate improves the light power of GaN-based LEDs. In the beginning, sapphire was first etched by high temperature sulfuric acid, which later produced [Al(SO4)、Al(SO4)3‧17H2O]. This reactant was used as the etching mask, which later matched the two-section wet etching method of high temperature phosphoric acid to remove the mask layer. A single-layer silver film was deposited by RF magnetron sputtering on a pattern sapphire substrate. Annealing methods were also used to make silver film aggregate and form into silver nanoparticle. Then under different annealing temperature and time conditions, surface morphology and light characteristics of silver nanoparticle were also observed. Experiments proved that as annealing temperature and annealing time increased, reflection rate of incident light became smaller, due to the aggregation of silver nanoparticle. When annealed at 400℃ for 20 min in vacuum, can enable the light intensity of traditional LED increase about 2.58 times. Etching depth of the pattern sapphire substrate embedded with silver nanoparticle, on the other hand, also has something to do with LED light power. The reason of this improvement might be attributed to the reason that etching depth gave photon more opportunity to contact silver nanoparticle which created reflection and scattering light. At maximum, it can make traditional LED increase 2.28 times.

摘 要 i
Abstract ii
致謝 iv
目錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1研究動機 1
1.2 研究方法與論文架構 3
第二章 研究理論基礎與文獻回顧 4
2.1 藍寶石圖案化基板 4
2.1.1 藍寶石基板材料特性 4
2.1.2 乾式蝕刻技術 4
2.1.3 濕式蝕刻技術 5
2.2濺鍍(Sputter)系統原理: 7
2.2.1電漿原理 7
2.2.2 反應式濺鍍法(Reactive Sputtering) 9
2.2.3 直流式濺鍍法(Direct current Sputtering) 9
2.2.4 射頻式濺鍍法(Radio Frequency Sputtering) 10
2.2.5磁控濺鍍法(Magnetron sputtering) 10
第三章 設備儀器與實驗方法 11
3.1 實驗材料 11
3.2實驗儀器 12
3.2.1 加熱器 12
3.2.2 快速退火爐 12
3.2.3 熱電偶溫度計 12
3.2.4 射頻磁控濺鍍機 13
3.3 實驗流程 14
3.3.1 製備濕式蝕刻藍寶石基板 14
3.3.2 製備銀奈米粒子 14
3.4 量測儀器分析介紹 16
3.4.1 反射率量測 16
3.4.2 掃描式電子顯微鏡(SEM) 16
3.4.2.1 掃描式電子顯微鏡之結構 16
3.4.2.2 掃描式電子顯微鏡之工作原理 17
第四章 實驗結果與討論 19
4.1 圖案化基板分析 19
4.1.1 表面型態分析 19
4.1.2 反射率分析 20
4.2 具有銀奈米粒子之藍寶石基板分析 21
4.3 具有銀奈米粒子之圖案化藍寶石基板分析 22
第五章 結論與未來展望 23
參考文獻 24


[1] H. MorkoG, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large-band-gap SIC, Ill-V nitride, and II-VI ZnSe-based semiconductor device technology”, J. Appl. Phys. vol. 76, pp. 1363, 1994.
[2]W. S. Wong, T. Sands, N. W. Cheung, M. Kneissl, D. P. Bour, P. Mei, L. T. Romano, and N. M. Johnson, “Fabrication of thin-film InGaN light-emitting diode membranes by laser lift-off,” Appl. Phy. Lett. 75, 1360 (1999)
[3] X. Guo and E. F. Schubert, “Current crowding in GaN/InGaN light emitting diodes on insulating substrates”, Journal of Applied Physics Vol. 90, 8 (2001)
[4] L. Liu and J.H. Edgar, “Substrates for gallium nitride epitaxy,” Materials Science and Engineering R, 37 p.61 (2002)
[5] Hong Xiao, Introduction to Semiconductor Manufacturing Technology,upper Saddle River,New jersey,the Pearson Prentice Hall Inc
[6] C. C. Sun, C. Y. Lin, T. X. Lee, and T. H. Yang, “Enhancement of light extraction of GaN-based LED with introducing micro-structure array, “Optical Engineering (Letters) 43, 1700-1701 (2004).
[7] S. Nakamura, T. Mukai, and M. Senoh, “Candela-class highbrightness InGaN/
AlGaN double-heterostructure blue-light-emitting diodes,” Applied Physics Letters, Vol. 64, pp. 1687, 1994.
[8] F. Dwikusuma, D. Saulys, and T.F. Kuech, “Study on sapphire surface preparation for III-nitride heteroepitaxial growth by chemical treatments,” J. Electrochem. Soc., 149, G603 (2002)
[9] H.Y. Gao, F.W. Yan, Y. Zhang, J.M. Li, Y.P. Zeng, and G.H. Wang,“Fabrication of nano-patterned sapphire substrates, and their application to the improvement of the performance of GaN-based LEDs,” Journal of Physics, Vol. 41, pp. 115106, 2008.
[10] H.Y. Gao, F.W. Yan, Y. Zhang, J.M. Li, Y.P. Zeng, and G.H. Wang, “Enhancement of the light output power of InGaN/GaN lightemitting diodes grown on pyramidal patterned sapphire substrates in the micro- and nanoscale,” Journal of Applied Physics, Vol. 103, pp.014314, 2008.
[11] T.V. Cuong, H.S. Cheong, H.G. Kim, H.Y. Kim, C.H. Hong, E.K. Suh, H.K. Cho HK, and B.H. Kong, “Enhanced light output from aligned micropit InGaN-based light emitting diodes using wet-etch sapphire patterning,” Applied Physics Letters, Vol. 90, pp. 131107, 2007.
[12] D.S. Wuu, W.K. Wang, K.S. Wen, S.C. Huang, S.H. Lin, R.H. Horng, Y.S. Yu, and M.H. Pan, “Fabrication of pyramidal patterned sapphire substrates for high-efficiency InGaN-based light emitting diodes,” Journal of the Electrochemical Society, Vol. 153, pp. G765, 2006.
[13] D.S. Wuu, W.K. Wang, K.S. Wen, S.C. Huang, S.H. Lin, S.Y. Huang, C.F. Lin, and R.H. Horng, “Defect reduction, and efficiency improvement of near-ultraviolet emitters via laterally overgrown GaN on a GaN/patterned sapphire template,” Applied Physics Letters, Vol. 89, pp. 161105, 2006.
[14] D.S. Wuu, W.K. Wang, W.C. Shih, R.H. Horng, C.E. Lee, W.Y. Lin, and J.S. Fang, “Enhanced output power of near-ultraviolet InGaN– GaN LEDs grown on patterned sapphire substrates,” IEEE Photonics Technology Letters, Vol. 17, pp. 2, 2005.
[15] http://en.wikipedia.org/wiki/Sulfuric_acid
[16] http://en.wikipedia.org/wiki/Phosphoric_acid
[17] F. Dwikusuma, D. Saulys, and T.F. Kuech, “Study on sapphire surface preparati
on for III-nitride heteroepitaxial growth by chemical treatments,” J. Electrochem. Soc., 149, G603 (2002)
[18] H.-C. Lin, R.-S. Lin, J.-I. Chyi, and C.-M. Lee, “Light Output Enhancement of InGaN Light-Emitting Diodes Grown on Masklessly Etched Sapphire Substrates,” IEEE Photon. Technol. Lett. 20, 1621 (2008)
[19] 宋晏瑭,利用斜角沉積法製作非均向性ITO導電層及其在GaN-based LED之應用,國立臺北科技大學光電工程系,碩士論文(2008)
[20] Hong Xiao, Introduction to Semiconductor Manufacturing Technology, Prentice-Hall, Inc.(2000).
[21] 翁睿哲,以射頻磁控濺鍍氮化鉭薄膜製程條件對顯微結構及電性影響研究,國立成功大學材料科學與工程學系,碩士論文(2001)。
[22] 周育正,使用Ag金屬粒子輔助式蝕刻技術,國立臺北科技大學光電工程系,碩士論文(2009)。
[23] 汪建民,材料分析,中國材料科學學會(1998)。
[24] D.W. Kim, C.H. Jeong, K.N. Kim, H.Y. Lee, H.S. Kim, Y.J. Sung and G.Y. Yeom, “High rate sapphire (Al2O3) etching in inductively coupled plasmas using axial external magnetic field,” Thin Solid Films, 435, 242-246 (2003)
[25] Hadis Morkoc, Nitride Semiconductors and Devices
[26] S. W. kennerly, J. W. little, R. J. Warmack, and T.L. Ferrell, “Optical properties of heated Ag film”, Phys. Rev. B, 29, 2926-2929 (1984).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top