跳到主要內容

臺灣博碩士論文加值系統

(3.235.56.11) 您好!臺灣時間:2021/07/29 04:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳孟珠
研究生(外文):Meng-Chu Chen
論文名稱:使用Fabry-Perot etalon 和物鏡之雷射輪廓儀之研發
論文名稱(外文):Development of laser profilometer using Fabry-Perot etalon and objective.
指導教授:林世聰林世聰引用關係
指導教授(外文):Shyh-Tsong Lin
口試委員:陳元方黃敏睿
口試委員(外文):Yuan-Fang ChenMin-Jui Huang
口試日期:2012-07-10
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:光電工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:45
中文關鍵詞:表面輪廓儀Fabry-Perot etalon物鏡表面輪廓測量
外文關鍵詞:Laser profilometerFabry-Perot etalonObjectiveSurface profile measurement
相關次數:
  • 被引用被引用:0
  • 點閱點閱:160
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究提出一套「使用Fabry-Perot etalon和物鏡之雷射輪廓儀」,可用來量測受測體三維顯微輪廓。它基於兩個基本光學原理,其一是Fabry-Perot etalon的輸出光強對入射光角度的靈敏特性,其二是顯微物鏡輸出光角度對離焦量的敏感效應。本研究也實際架設出該輪廓儀量測系統,它由三大模組構成,分別為光源、本論文所提輪廓儀、及電腦監控程式與訊號處理系統。透過該量測系統的實驗,我們確認該輪廓儀系統俱2.96/μm的靈敏度、0.69nm的縱向解析度、及2.58nm/10分鐘的穩定度。又該輪廓儀也被拿來測量物鏡距焦定位器的週期性移動與88nm標準薄膜步階高度表面輪廓,量測結果驗證了該輪廓儀的可行性。

A laser profilometer for surface profile measurements is proposed in this thesis. It is based on two fundamental theories: (1) the intensity of a ray coming out from a Fabry-Perot etalon is sensitive to the angle of this ray and (2) the angle of the a ray emerging from an objective is sensitive to the defocusing of the sample under testing. A setup for realizing the proposed profilometer is installed, it is composed of a laser source, the proposed profilometer, and a control and signal processing system. The experimental results from the uses of the setup reveal that the profilometer is with a sensitivity, a vertical resolution, and a stability of 2.96/μm, 0.69nm, and 2.58nm/10min, respectively. Besides, the setup is also conducted to examine the periodic displacements of a nano-positioner and the surface profile of a standard thin film with a 88nm step-height, the results agree the validity and applicability of the proposed profilometer.

中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1前言 1
1.2文獻探討 1
1.2.1光學同調斷層掃描術 2
1.2.2共焦顯微術 2
1.2.3三角量測法 3
1.2.4 CD/DVD讀取頭技術 4
1.3研究動機 4
1.4論文架構 5
第二章 量測原理 6
2.1輪廓儀架構 6
2.2 F-P etalon 7
2.3顯微物鏡離焦效應 10
2.4系統量測原理 12
2.5模擬 14
2.5.1 A(z)模擬計算 14
2.5.2 本研究所提出之輪廓儀與共焦顯微鏡模擬比較 16
第三章 量測架設 17
3.1系統之組成 17
3.1.1光源 17
3.1.2輪廓儀 17
3.1.3電腦監控程式與訊號處理系統 20
3.2輪廓儀量測系統 26
3.3系統解析度之定義 28
3.3.1橫向解析度 28
3.3.2縱向解析度 28
第四章 量測與結果 29
4.1 Airy function 掃描 29
4.2單一凸峰掃描與靈敏度K 30
4.3正確性驗證 30
4.3.1週期性方波 31
4.3.2週期性正弦波 31
4.3.3週期性三角波 32
4.4應用性 33
4.5穩定性量測與縱向解析度 34
第五章 討論 36
5.1系統解析度之討論 36
5.1.1橫向解析度 36
5.1.2縱向解析度 37
5.1.2.1 F-P etalon的限制 37
5.1.2.2物鏡入射孔徑的限制 38
5.2波形差異之討論 38
5.2.1相位延遲 38
5.2.2誤差值 38
5.3增加靈敏度的方法 39
第六章 結論與未來展望 40
6.1結論 40
6.2未來展望 41
參考文獻 43


[1] F. R. Tolmon and J. G. Wood, “Fringe spacing in interference microscopes,” J.Sci.
Instrum., 33, 236-238(1956).
[2] J. W. Gates, “Fringe spacing in interference microscopes,” J. Sci. Instrum., 33,
507-507(1956).
[3] C. F. Bruce and B. S. Thornton, “Obliquity effects in interference microscopes,” J.
Sci. Instrum., 34, 203-204(1957).
[4] E. Ingelstam and L. P. Johansson, “Correction due to aperture in transmission
interference microscopes,” J. Sci. Instrum., 35, 15-17(1958).
[5] G. Schulz and K.-E. Elssner, “Error in phase-measurement interferometry with
numerical apertures,” Appl. Opt., 30, 4500-4506 (1991).
[6] C. J. R. Sheppard and K. G. Larkin, "Effect of numerical aperture on interference
fringe spacing," Appl. Opt., 34, 4731-4734 (1995).
[7] J. F. Biegen, “Calibration requirements for Mirau and Linnik microscope
interferometers,” Appl. Opt. 28, 1972-1974 (1989).
[8] K. Creath, "Calibration of numerical aperture effects in interferometric microscope
objectives," Appl. Opt. 28, 3333-3338 (1989).
[9] J. C. Wyant, White Light Interferometry, http://www.optics.arizona.edu/jcwyant.
[10] G. S. Kino and S. S. C. Chim, “Mirau Correlation Microscope,” Appl. Opt., 29,
3775~3783(1990).
[11] B. S. Lee and T. C. Strand, “ Profilometry with a Coherence Scanning
Microscope,” Appl. Opt., 29, 3784~3788(1990).

[12] A. Harasaki, J. Schmit, and J. C. Wyant, “Improved Vertical-scanning
Interferometry,” Appl. Opt., 39, 2107~2115( 2000).
[13] P. D. Groot, X. C. D. Lega, J. Kramer, and M. Turzhitsky, “Determination of
Fringe Order in White-light Interference Microscopy,” Appl. Opt., 41,4571~4578
( 2002).
[14] A.Dubois, L. Vabre, A. C. Boccara, and E. Beaurepaire, “High-resolution
Full-field Optical Coherence Tomography with a Linnik Microscope, Appl.Opt.,
41(4), 805~812(2002).
[15] K. Hamilton and T. Wilson, “Surface Profile Measurement Using the Confocal
Microscope,” J. of Appl. Physics, 53, 5320-5322 (1982).
[16] M. Minsky, “Memoir on Inventing the Confocal Microscope,” Scanning, 10,
128–138 (1988).
[17] T. Wilson and A.R.Carlini, "Three Dimensional Imaging in Confocal
Imaging Systems with Finite-sized Detectors." J. Microsc.,141 , 51–66 (1988).
[18] C. J. R. Sheppard and D. M. Shotton," Confocal Laser Scanning Microscopy,"
Springer-Verlag New York Inc., New York, 1997.
[19] D. K. Hamilton and T. Wilson, "Surface profile measurement using the confocal
microscope, " Journal of Applied Physics, vol.53, 1982, pp. 5320-5322.
[20] Th. Zapf and R. W. Wijnaendts-van-Resandt, "Confocal laser microscope for
sub-micron structure measurement," Microelectronic Engineering, vol.5, 1986, pp.
573-580.
[21] C. H. Lee and J. Wang, "Noninterferometric differentical confocal microscopy with
2-nm depth resolution," Optics Communications, vol.135, 1997, pp. 233-237.
[22] R. Juskaitis, T. Wilson and N. P. Rea, "Compact confocal interference
microscopy," Optics Communications , vol.109, 1994, pp.167-177.
[23] T. Fukano and I. Yamaguchi, "Geometrical cross-sectional imaging by a
heterodyne wavelength-scanning interference confocal microscope," Optics
Letters, vol.25, 2000, pp.548-550.
[24] Kebin Shi, Peng Li, Shizhuo Yin, and Zhiwen Liu," Surface profile measurement
using chromatic confocal microscopy", Proceedings of SPIE Vol. 5606,
2004,pp.124-131.
[25] M. Assoul, M. Zahidi, P. Corcuff, and J.Mignot, “Three Dimensional
Measurements of Skin Surface Topography by Triangulation with a New Laser
Profilometer,” J. Med. Eng. Technol. 18, 11–21(1994).
[26] J. Mignot, M. Chuard, D. Nita and M. Sofa, “3-D Profilometer Using a CCD
Linear Image Sensor: Application to Skin Surface Topography Measurement,”
Skin Research and Technology, 4, 121-129 (1998).
[27] Q. Li, L. Bai, S. Xue, and L. Chen, “Autofocus System for Microscope,”Opt.
Eng., 41, 1289-12942002.
[28] J. Benschop and G. V. Rosmalen, "Confocal Compact Scanning Optical
Microscope Based on Compact Disc Technology," Appl. Opt., 30,1179-1184
(1991).
[29] K. Ehrmann, A. Ho and K. Schindhelm, "A 3D Optical Profilometer Using a
Compact Disc Reading Head," Measurement Science and Technology, 9,
1259-1265 (1998).
[30] K. C. Fan, C. L. Chu and J. I. Mou, "Development of a Low-Cost Autofocusing
Probe for Profile Measurement," Measurement Science and Technology, 12,
2137-2146 (2001).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top