跳到主要內容

臺灣博碩士論文加值系統

(3.237.38.244) 您好!臺灣時間:2021/07/26 10:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張勝杰
研究生(外文):Sheng-Chieh Chang
論文名稱:單一光載波同時傳輸有線電視與正交分頻多工訊號建構雙向光纖微波傳輸系統
論文名稱(外文):A CATV and Bidirectional OFDM Transport System Basing on One Single Wavelength
指導教授:呂海涵呂海涵引用關係
口試委員:蔡文星董正成彭朋群
口試日期:2012-07-02
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:光電工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:51
中文關鍵詞:有線電視正交分頻多工極化調變光纖微波
外文關鍵詞:cable televisionorthogonal frequency division multiplexingpolarization modulationradio-over-fiber
相關次數:
  • 被引用被引用:0
  • 點閱點閱:155
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們提出一種架構,僅使用單一光載波來同時調變及傳輸有線電視與正交分頻多工訊號,可應用於不同之網路概念。相較於先前所提出之光纖有線電視系統,必須使用兩個以上之光載波來同時傳輸有線電視與微波訊號,或是使用負色散光纖來補償光纖色散,此種系統不僅能更有效的利用光載波,且不須色散補償元件。
有別於從電域上結合有線電視與正交分頻多工訊號的系統,我們提出於光域上結合有線電視(CATV)與正交分頻多工訊號(OFDM)來建構全雙工光纖微波傳輸系統。此系統運用極化調變的方式來整合有線電視與正交分頻多工訊號。相較於從光域上整合的強度調變系統,運用極化調變,能更有效的對抗光纖非線性色散現象,且在接收端僅只需使用一個極化光分光器,即可將極化訊號轉換為強度訊號。
此外,為了實現雙向傳輸僅使用單一光載波,我們利用反射式半導體光放大器再次調變下行之光載波與上行之正交分頻多工訊號,並經過單模光纖傳輸20公里後,不論下行有線電視以及雙向之正交分頻多工訊號,訊號品質良好,且皆符合有線電視與光纖微波傳輸系統的規範。


In this thesis, we propose an architecture using a single optical carrier to modulate and transmit both cable television (CATV) and orthogonal frequency division multiplexing (OFDM) signal to be applied to different network concepts. Compared to the previous proposed fiber optic CATV systems, using two or more optical carrier to transmit CATV and microwave signals, or using of negative dispersion fiber to compensate for fiber dispersion, this system can not only make more effective in using the optical carrier, but also have no dispersion compensation components.
Different from combining with CATV and OFDM signal in the electrical domain, we propose a novel method of optical domain to combine CATV and OFDM signal for bidirectional radio over fiber (RoF) transport systems. This system uses polarization modulation to integrate CATV and OFDM signal. Compared with the general intensity modulation system in the optical domain, using the polarization modulation can be more effective against the fiber nonlinear phenomena, and only use a simply polarized light beam splitter (PBS) to convert the polarization signal to the intensity signal at the receiver.
Furthermore, to achieve bidirectional transmissions by a single wavelength, this downstream carrier is remodulated with the upstream OFDM signal through a reflective semiconductor optical amplifier (RSOA). After transmitting through 20km single mode fiber (SMF), both the downstream CATV and bidirectional OFDM signal qualities are all satisfy the requirement of CATV and ROF systems.


摘 要 i
Abstract iii
誌謝 v
Contents vi
Chapter 1
Introduction 1
1.1 Optical Fiber Communication 1
1.2 Motivation of the Thesis 2
1.3 Organization of the Thesis 3
Chapter 2
The Concept of Fiber Optical Modulation System 4
2.1 Radio-over-Fiber (RoF) Transport Systems 4
2.2 Phase modulator (PM) 6
2.3Polarization modulation 9
Chapter 3
Fiber-Optic CATV Transport Systems Parameter and OFDM Systems Description 13
3.1 Overview of Optical Cable Television (CATV) Parameters 13
3.1.1 Carrier-to-Noise Ratio (CNR) 13
3.1.2 Nonlinear Distortions 14
3.2 OFDM Systems Description 17
3.2.1 Principle of OFDM 18
3.2.2 Multicarrier modulation 18
3.2.3 Sequences of Symbols and the Cyclic Prefix 22
3.2.4 Individual OFDM Subcarriers 22
3.2.5 FFT Implementation 25
3.2.6 OFDM in a Dispersion Environment: the Cyclic Prefix Frequency Selective Fading and the Signal Tap Equalizer 25
3.2.7 Mapping 30
3.2.8 Equalization 31
3.2.9 Bit Error Ratio 32
3.2.10 Direct Detection Optical OFDM Systems 32
Chapter 4
A CATV and bidirectional OFDM transport system basing on one single wavelength 35
4.1 Introduction 35
4.2 Experimental setup 36
4.3 Experimental results and discussions 39
4.4 Conclusion 43
Chapter 5
Summary 45
References 47
Publications List 51



[1]D. Wake, D. Johansson, and D. G. Moodie, “Passive Picocell─A New Concept in Wireless Network Infrastructure,” Electronics Letters, Vol.33, 1997, pp. 404-406.
[2]H. Al-Raweshidy, and S. Komaki, editors, Radio over Fiber Technologies for Mobile Communications Networks, Norwood: Artech House, 2002, p221-226.
[3]D. R. Goff, Fiber Optic Video Transmission: The Complete Guide, Oxford: Focal Press, 2003, pp. 222-224.
[4]R. Calvani, “Polarization phase-shift keying: a coherent transmission technique with differential heterodyne detection,” Electronics Letters, vol. 24, no. 10, 1988, pp. 642-643.
[5]E. Dietrich, “Heterodyne transmission of a 560 Mbit/s optical signal by means of polarization shift keying,” Electronics Letters, vol. 23, no. 8, 1987, pp. 421-422.
[6]S. Betti, “State of polarization and phase noise independent coherent optical transmission system based on Stokes parameter detection,” Electronics Letters, vol. 24, no. 23, 1988, pp. 1461-1462.
[7]S. Betti, “Phase-noise and polarization state insensitive optical coherent systems: A general approach,” EFOC/LAN 1989, Amsterdam, The Netherlands, 1989.
[8]L. J. Cimini, “Preservation of polarization orthogonality through a linear optical system,” Electronics Letters, vol. 23, no. 23, 1987, pp. 1365-1366.
[9]C. D. Poole, “Phenomenological approach to polarization dispersion in long single-mode fibres,” Electronics Letters, vol. 22, no. 19, 1986, pp. 1029-1030.
[10]C. D. Poole, “Polarization dispersion and principal states in a 147-km undersea lightwave cable,’’ Journal of Light Technology, vol. 6, July 1988, pp. 1185-1190.
[11]S. Benedetto, and P. Poggiolini, “Theory of Polarization Shift Keying Modulation,” IEEE Transctions On Commnications. vol. 40, no. 4, 1992, pp 708-721.
[12]T. Y. Kim, C. K. Oh, S. J. Kim, and C. S. Park, "Tunable Photonic Microwave Notch Filter With Negative Coefficient Based on Polarization Modulation," IEEE Photonics Technology Letters, vol. 19, 2007, pp. 907-909.
[13]J. Zhou, S. Fu, S. Aditya, P. P. Shum, and C. Lin, “Photonic Temporal Differentiator based on Polarization Modulation in a LiNbO3 Phase Modulator,” Microwave Photonics, MWP ''09. International Topical Meeting on, 2009.
[14]W. P. Lin, “A Robust Fiber-Radio Architecture for Wavelength-Division- Multiplexing Ring-Access Networks,” Journal of Light Technology, vol. 23, no. 9, 2007, pp. 2610-2620.
[15]W. I. Way, “Broadband Hybrid Fiber/Coax Access Systems Technology,”Academic Press, 1999.
[16]S. P. Singh, and N. Singh, “Nonlinear effects in optical fibers: Origin, management and applications,” Progress In Electromagnetics Research, vol. 73, 2007, pp. 249-275.
[17]W. C. Liu, “Simultaneous Transmission CATV and OFDM Signals for Full-Duplex Radio-over-Fiber Transport System,” MS. Thesis, National Taipei University of Technology, 2011.
[18]S. Hara, and R. Prasad, “Multicarrier Techniques for 4G Mobile Communications,” 2003.
[19]J. Armstrong, “OFDM for optical communications,” Journal of Light Technology, vol. 27, 2009, pp. 189-204.
[20]K. J. Chen, “Bidirectional Subcarrier Multiplexing Transport Systems Based on RSOA,” MS. Thesis, National Taipei University of Technology, 2010.
[21]S. Weinstein, and P. Ebert, “Data transmission by frequency division multiplexing using the discrete Fourier transform,” IEEE Transactions On Communication Technology, vol. COM-19, 1971, pp. 628-634.
[22]S. K. Wilson and J. Armstrong, “Digital modulation techniques for optical asymmetrically-clipped OFDM,” IEEE Wireless Communications and Networking Conference, Las Vegas, NV, USA, 2008, pp. 538-542.
[23]A. R. S. Bahai, B. R. Saltzberg, and M. Ergen, “Multi-Carrier Digital Communica -tions Theory and Applications of OFDM,” 2004.
[24]V. J. Urick, J. X. Qiu, and F. Bucholtz, “Wide-Band QAM-Over-Fiber Using Phase Modulation and Interferometric Demodulation,” IEEE Photonics Technology Letters, vol. 16, 2004, pp. 2374-2376.
[25]B. J. C. Schmidt, A. J. Lowery, and J. Armstrong, “Experimental Demonstrations of Electronic Dispersion Compensation for Long-Haul Transmission Using Direct-Detection Optical OFDM,” Journal of Light Technology, vol. 26, 2008, pp. 196-203.
[26]K. i. Kitayama, T. Kuri, H. Toda, and J.J.V. Olmos, “Radio over Fiber: DWDM Analog/digital Access Network and its Enabling Technologies,” Lasers and Electro-Optics Society, 2007, ThO1.
[27]H. H. Lu, H. L. Ma, and A. S. Patra, “Radio-on-Fiber Transport Systems Integration with 622-Mb/s Baseband Transmission,” IEEE Photonics Technology Letters, vol. 30, 2008, pp. 1618-1620.
[28]M. Hajduczenia, “EPON versus APON and GPON: a detailed performance comparison,” Journal of Optical Networking, vol. 5, 2006, pp. 298-319.
[29]E. Ciaramella, A. D’Errico, and V. Donzella, “Using Semiconductor-Optical Amplifiers With Constant Envelope WDM Signals,” IEEE Journal of Quantum Electronics, vol. 44, 2008, pp. 403-409.
[30]R. Hui, M. O’Sullivan, Fiber Optic Measurement Techniques, Elsevier Inc., 2009, pp. 409-411.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊