跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/08/02 14:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李忠益
研究生(外文):Chung-Yi Li
論文名稱:新穎光纖微波/光纖到家/光纖有線電視多頻混合式傳輸系統
論文名稱(外文):Novel ROF/FTTX/CATV Hybrid Multi-Band Transport System
指導教授:呂海涵呂海涵引用關係
口試委員:葉哲勝張慶鴻鄒志偉陳智弘廖顯奎林恭如李清庭彭朋群
口試日期:2012-07-06
學位類別:博士
校院名稱:國立臺北科技大學
系所名稱:光電工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:161
中文關鍵詞:光纖有線電視光纖到家相位調變器光纖微波
外文關鍵詞:Fiber Optical CATVFiber-to-the-HomePhase ModulatorRadio-over-Fiber
相關次數:
  • 被引用被引用:0
  • 點閱點閱:182
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著廣受歡迎無所不在的手持設備,人們對於無線和有線傳輸容量的需求越來越大,新世代通訊系統需要高傳輸速率及高頻寬服務來滿足。光纖微波(ROF)、光纖到家(FTTH)、及光纖有線電視(CATV)系統乃是具有發展及應用潛力的通訊系統,用以滿足無線網路和有線光網路需求。光纖微波傳輸系統利用了光纖高頻寬及低傳輸損失的特性,具備高速行動及經濟效益優點;而光纖到家則是對光纖網路提供了解決最後一哩的途徑;另外,對於用戶而言光纖有線電視系統提供了寬頻服務。
在本論文中,首先分別針對光纖微波(ROF)、光纖有線電視(CATV)系統、光纖到家(FTTH)三大傳輸系統進行研究;最後,整合以上三大傳輸系統,研究朝向同時傳送 光纖微波/光纖到家、光纖有線電視/光纖微波、光纖有線電視/光纖到家以及光纖微波/光纖到家/光纖有線電視 等多頻混合式傳輸系統;多頻混合式傳輸系統仍是使用不同的波長在一蕊的光纖?埵P時傳送ROF RF/FTTH BB/ CATV 三種信號,對於光纖網路而言將可帶來莫大的利基,因為可同時提供電信、網際網路、及有線電視相關服務,其多頻混合式傳輸系統的應用研究部分,主要研究目的在於探討利用直調單一顆DFB雷射產生多波長特性,與應用相位調變(PM)產生多波長取代多顆雷射,不但架構簡單、性能優異、大幅降低系統建構成本,且在應用上相當具有彈性,對於光纖微波及光纖到家應用而言,我們可得到相當低的誤碼率值;而對於光纖有線電視系統來說,同樣的可得到良好的載波雜訊比、載波二次合成拍差比、及載波合成三次拍差比參數性能。本論文所提出之多頻混合式傳輸系統提供了電信、網際網路、及有線電視等寬頻整體服務,對於先進光纖網路之應用將極具吸引力。

With growing popularity of the handheld mobile device, the demand for wireless and wired transmission has at the same time increased by a large margin. Radio-over-Fiber (ROF), Fiber-to-the-Home (FTTH), and Fiber-Optic Cable Television (CATV) systems are communication arrangements with future development and application potential, which are capable of satisfying the demand for wireless and wire-optic internet. The radio-over-fiber transport system utilizes the properties of fiber-optic high-bandwidth and low transmission loss and has the benefit of high speed transmission and economic efficiency. As for fiber to the home, it provides the “Last-Mile” solution for fiber-optic internet. In addition, to the household user, through the fiber-optic cable television also benefits from the broadband internet.
In this thesis, the research will firstly cover three major types of transport systems: Radio-over-Fiber, Fiber-Optic Cable Television, and Fiber to the Home. Finally, through the integration of the three major systems mentioned above, the research moves to the direction of simultaneous transmission of radio-over-fiber / fiber to the home, fiber-optic cable television / radio-over-fiber, fiber-optic cable television / fiber to the home, and radio-over-fiber / fiber to the home / fiber-optic television multi-band hybrid transport system and so on; The multi-band hybrid transport system is the utilization of different wave length in a single-core optical fiber at the same time transporting three different signals including ROF RF/FTTH BB/CATV. Such is of great benefit for fiber-optic internet, as it can provide telecommunication, internet and cable TV services all at once. The research on the applications of this multi-band hybrid transmission system is mainly to explore the use of directly modulated single DFB laser and creating the property of multiple wave length, as well as the application of phase modulation, creating multiple bandwidths and replacing the use of multiple laser. Not only that the setup is simple, has better performance, and has greater reduction in the cost of system construction, it also has better flexibility in terms of application. As for the applications of radio-over-fiber and fiber to the home, we have obtained a very low level of bit error rate; The fiber-optic cable television also benefits from sound carrier to noise ratio, composite second order ratio, composite triple beat coefficient performance. The multi-band hybrid transmission system put forward by this thesis provides integrated service to telecommunications, internet, and cable television, as well as posing great attractiveness to the application of advanced fiber-optic internet.

摘 要….. i
Abstract…. iii
誌 謝….. v
Contents… vii
Figure Captions x
Table Captions xviii
Chapter 1 Introduction 1
1.1 Research Background and Objectives 1
1.2 Literature Review 3
1.3 Structure of the Thesis 13
Chapter 2 Radio-on-Fiber Transport Systems 19
2.1 Full-Duplex Radio-on-Fiber Transport Systems Based on Main and Multiple Side Modes Injection-Locked DFB Laser Diode 19
2.1.1 Experimental Setup 20
2.1.2 Experimental Results and Discussion 23
2.2 Radio-over-Fiber Transport Systems Based on DFB LD with Main and -1 Side Modes Injection-Locked Technique 30
2.2.1 Experimental Setup 31
2.2.2 Experimental Results and Discussion 33
2.3 A Bidirectional WDM Transport System Based on RSOAs and Optoelectronic Feedback Technique 36
2.3.1 Experimental Setup 37
2.3.2 Experimental Results and Discussion 39
Chapter 3 Fiber Optical CATV Transport Systems 44
3.1 CSO/CTB Performance Improvement by Using Fabry-Perot Etalon at the Receiving Site 44
3.1.1 Experimental Setup 45
3.1.2 Experimental Results and Discussion 47
3.2 An Upconverted Phase-Modulated Fiber Optical CATV Transport System 50
3.2.1 Experimental Setup 51
3.2.2 Experimental Results and Discussion 54
3.3 Fiber Optical CATV Transport Systems based on PM and light Injection-Locked DFB LD as a Duplex Transceiver 59
3.3.1 Experimental Setup 62
3.3.2 Experimental Results and Discussion 66
Chapter 4 Fiber-to-the-Home Transport Systems 72
4.1 Fiber-to-the-Home Integration with Digital Link on Microwave Subcarrier Transport Systems 72
4.1.1 Experimental Setup 73
4.1.2 Experimental Results and Discussion 75
4.2 Integration of FTTH and GI-POF in-house networks based on injection locking and direct- detection techniques 82
4.2.1 Experimental Setup 84
4.2.2 Experimental Results and Discussion 85
4.3 Hybrid CATV/16-QAM OFDM in-building networks over SMF and GI-POF transport 90
4.3.1 Experimental Setup 92
4.3.2 Experimental Results and Discussion 94
Chapter 5 Hybrid Multi-Band Transport Systems 100
5.1 Novel ROF/FTTX/CATV Hybrid Three-Band Transport System 100
5.1.1 Experimental Setup 102
5.1.2 Experimental Results and Discussion 107
5.2 Full-Duplex Lightwave Transport Systems Employing Phase-Modulated RoF and Intensity- Remodulated CATV Signals 114
5.2.1 Experimental Setup 116
5.2.2 Experimental Results and Discussion 119
5.3 Generation and Transmission of BB/MW/MMW Signals by Cascading PM and MZM 123
5.3.1 Experimental Setup 125
5.3.2 Experimental Results and Discussion 130
Chapter 6 Conclusions 134
6.1 Radio-over-Fiber Transport Systems 136
6.2 Fiber Optical CATV Transport Systems 137
6.3 Fiber-to-the-Home Transport Systems 138
6.4 Hybrid Multi-Band Transport Systems 139
Reference.. 142
Publication List 156
Journal Papers 156
Acronyms and Abbreviations 159


[1]C. H. Chang, H. H. Lu, H. S. Su, C. L. Shih, and K. J. Chen, “A broadband ASE light source-based full-duplex FTTH/ROF transport system”, Opt. Express, vol. 17, pp. 22246-22253, 2009.
[2]R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH nettworks”, IEEE Photon. Technol. Lett., vol. 20, pp. 945-947, 2008.
[3]C. T. Lin, J. Chen, P. C. Peng, C. F. Peng, W. R. Peng, B. S. Chiou, S. Chi, “Hybrid optical access network integrating fiber-to-the-home and radio-over-fiber systems”, IEEE Photon. Technol. Lett., vol. 19, pp. 610-612, 2007.
[4]H. H. Lu, H. C. Peng, W. S. Tsai, C. C. Lin, S. J. Tzeng, and Y. Z. Lin, “A bidirectional hybrid CATV/radio-over-fiber WDM transport system”, Opt. Lett., vol. 35, pp. 279-281, 2010.
[5]A. Murakoshi, K. Tsukamoto, and S. Komaki, “ High-performance RF signals transmission in SCM/WDMA radio-on-fiber bus link using optical FM method in presence of optical beat interference”, IEEE Trans. Microw. Theory and Techniques, vol. 54, pp. 967-972, 2006.
[6]T. F. Fent, S. Shaari, and B. Y. Majlis, “Distributed CATV inputs in FTTH-PON system”, IEEE International Conf. on Semiconductor Electron. (ICSE), pp. 58-61, 2006.
[7]K. Ikeda, T. Kuri, and K. I. Kitayama, “Simultaneous three-band modulation and fiber-optic transmission of 2.5-Gb/s baseband, microwave, and 60-GHz-band signals on a single wavelength”, J. Lightw. Technol., vol. 21, no. 12, pp. 3194-3202, 2003.
[8]F. Maehara, T. Ikenaga, F. Takahata, and S. Goto, “Inter-symbol interference suppression employing sub-carrier group selection for OFDM-TDD transit diversity”, 2nd Symposium on Wireless Communication Systems, pp. 515-519, 2005.
[9]J. Yu, Z. Jia, L. Xu, L. Chen, T. Wang, and G. K. Chang, “DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver”, IEEE Photon. Technol. Lett., vol. 18, no. 13, pp.1418-1420, 2006.
[10]J. Yu, Z. Jia, T. Wang, and G. K. Chang, “A novel radio-over-fiber configuration using optical phase modulator to generate an optical mm-wave and centralized lightwave for uplink connection”, IEEE Photon. Technol. Lett., vol. 19, no. 3, pp. 140-142, 2007.
[11]H. C. Ji, H. Kim, and Y. C. Chung, “Full-duplex radio-over-fiber system using phase-modulated downlink and intensity-modulated uplink”, IEEE Photon. Technol. Lett., vol. 21, no. 1, pp. 9-11, 2009.
[12]S. H. Fan, H. C. Chien, Y. T. Hsueh, A. Chowdhury, J. Yu, and G. K. Chang, “Simultaneous transmission of wireless and wireline services using a single 60-GHz radio-over-fiber channel by coherent subcarrier modulation”, IEEE Photon. Technol. Lett., vol. 21, no. 16, pp. 1127-1129, 2009.
[13]C. W. Chow, and C. H. Yeh, “40-Gb/s downstream DPSK and 40-Gb/s upstream OOK signal remodulation PON using reduced modulation index”, Opt. Express, vol.18, no.25, pp. 26046-26051, 2010.
[14]W. I. Lin, H. H. Lu, S. J. Tzeng, A. S. Patra, and W. L. Tsai, “A radio-on-hybrid WDM transport systems based on mutually injection-locked F-P LDs”, Opt. Fiber Commun. Conf. (OFC), JThA65, 2008.
[15]C. Y. Li, “Radio-on-Hybrid WDM Transport Systems Based on Mutually Injection-Locked Fabry-Perot Laser Diodes”, National Taipei University of Technology, 2008.
[16]C. H. Chang, H. H. Lu, H. S. Su, C. L. Shih, and K. J. Chen, “A broadband ASE light source-based full-duplex FTTX/ROF transport systems”, Opt. Express, vol. 17, pp. 22246-22253, 2009.
[17]H. W. Chen, H. H. Lu, S. J. Tzeng, H. C. Peng, and C. Y. Li, “Analysis on DFB Laser Diode with Main and Multiple Side Modes Injection-Locked”, Laser Physics, vol. 19, no. 6, pp. 1234-1238, 2009.
[18]C. H. Chang, P. C. Peng, H. H. Lu, C. L. Shih, and H. W. Chen, “Simplified radio over fiber transport systems with an economic multi-band lightsource”, Opt. Lett., vol. 35, pp. 4021-4023, 2010.
[19]H. S. Su, C. Y. Li, H. H. Lu, C. H. Chang, P. C. Peng, P. Y. Wu, and H. W. Chen, “RoF Transport Systems with OSNR Enhanced Multi-Band Optical Carrier Generator”, Opt. Express, vol. 19, pp. 18516-18522, 2011.
[20]Q. Chang, H. Fu, Y. Su, “Simultaneous generation and transmission of downstream multiband signals and upstream data in a bidirectional radio-over-fiber system”, IEEE Photon. Technol. Lett., vol. 20, pp. 181-183, 2008.
[21]J. Capmany, B. Ortega, A. Martinez, D. Pastor, M. Popov, P.Y. Fonjallaz, “Multiwavelength single sideband modulation for WDM radio-over-fiber systems using a fiber grating array tandem device”, IEEE Photon. Technol. Lett., vol. 17, pp. 471-473, 2005.
[22]W.W. Hu, K. Inagaki, T. Tanaka, T. Ohira, A. Xu, “Millimeter-wave band (50 GHz) multi-carrier generation using injection-locking technique for radio-over- fibre WDM communication system”, Electron. Lett., vol. 40, pp. 1505-1506, 2004.
[23]A. Murakami, K. Kawashima, K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection”, IEEE J. Quantum Electron., vol. 39, pp. 1196-1204, 2003.
[24]G. Yabre, “Effect of relatively strong light injection on the chirp-to-power ratio and the 3 dB bandwidth of directly modulated semiconductor lasers”, J. Lightw. Technol., vol. 14, pp. 2367-2373, 1996.
[25]H. H. Lu, A. S. Patra, S. J. Tzeng, H. C. Peng, W. I Lin, “Improvement of fiber optical CATV transport systems performance based on lower-frequency side mode injection-locked technique”, IEEE Photon. Technol. Lett., vol. 20, pp. 351-353, 2008.
[26]Y. Hong, K.A. Shore, “Locking characteristics of a side-mode injected semiconductor laser”, IEEE J. Quantum Electron., vol. 35, pp. 1713-1717, 1999.
[27]T. R. Zaman, R. J. Ram, “Modulation of injection locked lasers for WDM-PON applications”, Opt. Fiber Commun. Conf. (OFC), JThA100, 2008.
[28]F. Mogensen, H. Olesen, G. Jacobsen, “Locking conditions and stability properties for a semiconductor laser with external light injection”, IEEE J. Quantum Electron., QE-21, pp. 784-793, 1985.
[29]F. Y. Lin, J. M. Liu, “Nonlinear dynamical characteristics of optically injected semiconductor laser subject to optoelectronic feedback”, Opt. Commun., vol. 221, pp. 173-180, 2003.
[30]Serdyuk, V. M., “Dielectric study of bound water in grain at radio and microwave frequencies”, Progress In Electromagnetics Research, PIER 84, pp. 379-406, 2008.
[31]Oraizi, H. and S. Hosseinzadeh, “A novel marching algorithm for radio wave propagation modeling over rough surfaces”, Progress In Electromagnetics Research, PIER 57, pp. 85-100, 2006.
[32]J. Prat, M. C. Santos, and M. Omella, “Square root module to combat dispersion-induced nonlinear distortion in radio-over-fiber systems”, IEEE Photon. Technol. Lett., vol. 18, pp. 1928-1930, 2006.
[33]H. H. Lu, A. S. Patra, W. J. Ho, P. C. Lai, and M. H. Shiu, “A full-duplex radio-over-fiber transport system based on FP laser diode with OBPF and optical circulator with fiber Bragg grating”, IEEE Photon. Technol. Lett., vol. 20, pp. 1652-1654, 2007.
[34]X. J. Meng, T. Chau, and M. C. Wu, “Experimental demonstration of modulation bandwidth enhancement in distributed feed-back lasers with external light injection”, Electron. Lett., vol. 34, pp. 2031-2032, 1998.
[35]S. H. Lee, J. M. Kang, I. H. Choi, and S. K. Han, “Linearization of DFB laser diode by external light-injected cross-gain modulation for radio-over-fiber link”, IEEE Photon. Technol. Lett., vol. 18, pp. 1545-1547, 2006.
[36]J. H. Seo, Y. K. Seo, and W. Y. Choi, “Nonlinear distortion suppression in directly modulated distributed feedback lasers by sidemode optical injection locking”, Jpn. J. Appl. Phys., vol. 41, pp. L136-L138, 2002.
[37]S. Mohrdiek, H. Burkhard, and H. Walter, “Chirp reduction of directly modulated semiconductor lasers at 10 Gb/s by strong CW light injection”, J. Lightw. Technol., vol. 12, pp. 418-424, 1994.
[38]C. H. Yeh and C. W. Chow, “Utilization of four WDM channels with signal remodulation of OFDM-QAM for 10 Gb/s uplink passive optical networks”, Opt. Commun., vol. 282, pp. 3701-3705, 2009.
[39]S. K. Mondal, B. Roycroft, P. Lambkin, F. Peters, B. Corbett, P. Townsend, and A. Ellis, “A multiwavelength low-power wavelengthlocked slotted Fabry-Perot laser source for WDM applications”, IEEE Photon. Technol. Lett., vol. 19, pp. 744-746, 2007.
[40]C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal remodulation of OFDM-QAM for long reach carrier distributed passive optical networks”, IEEE Photon. Technol. Lett., vol. 21, pp. 715-717, 2009.
[41]M. Presi, R. Proiette, K. Prince, G. Contestabile, and E. Ciaramella, “A 80 km reach fully passive WDM-PON based on reflective ONUs”, Opt. Express, vol. 16, pp. 19043-19048, 2008.
[42]J. Prat, C. Arellano, V. Polo, and C. Bock, “Optical network unit based on a bidirectional reflective semiconductor optical amplifier for fiber-tothe-home networks”, IEEE Photon. Technol. Lett., vol. 17, pp. 250-252, 2005.
[43]Y. K. Chen, C. J. Hu, C. C. Lee, K. M. Feng, M. K. Lu, C. H. Chang, Y. K. Tu, and S. L. Tzeng, “Low-crosstalk and compact optical add-drop multiplexer using a multiport circulator and fiber Bragg gratings”, IEEE Photon. Technol. Lett., vol. 12, pp. 1394-1396, 2000.
[44]J. S. Lee, Y. C. Chung, and D. J. DiGiovanni, “Spectrum-sliced fiber amplifier light source for multichannel WDM applications”, IEEE Photon. Technol. Lett., vol. 5, pp. 1458-1461, 1993.
[45]H. H. Lu, S. J. Tzeng, Y. W. Chuang, Y. C. Chi, and C. W. Liao, “Bidirectional radio-over-DWDM transport systems based on injectionlocked VCSELs and optoelectronic feedback techniques”, IEEE Photon. Technol. Lett., vol. 19, pp. 315-317, 2007.
[46]S. P. Singh, and N. Singh, “Nonlinear effects in optical fibers: Origin, management and applications”, Progress In Electromagnetics Research, PIER 73, pp. 249-275, 2007.
[47]H. Gebretsadik, H. T. Foulk, N. C. Frateschi, W. J. Choi, S. V. Robertson, and A. E. Bond, “Linearised integrated SOA-EA modulator for long-haul and FTTH CATV applications at 1.55 μm”, Electron. Lett., vol. 40, pp. 1016-1017, 2004.
[48]C. C. Lee, and S. Chi, “Repeaterless transmission of 80-channel AM-SCM signals over 100-km large-effective-area dispersion-shifted fiber”, IEEE Photon. Technol. Lett., vol. 12, pp. 341-343, 2000.
[49]S. P. Singh, R. Gangwar, and N. Singh, “Nonlinear scattering effects in optical fibers”, Progress In Electromagnetics Research, PIER 74, pp. 379-405, 2007.
[50]H. H. Lu, W. S. Tsai, C. Y. Chen, and H. C. Peng, “CATV/radio-on-fiber transport systems based on EAM and optical SSB modulation technique”, IEEE Photon. Technol. Lett., vol. 16, pp. 2565-2567, 2004.
[51]D. Piehler, X. Zou, C. Y. Kuo, A. Nilsson, J. Kleefeld, G. Garcia, J. D. Ralston, and A. Mathur, “55 dB CNR over 50 km of fiber in an 80-channel externally-modulated AM-CATV system without optical amplification”, Electron. Lett., vol. 33, pp. 226-227, 1997.
[52]H. Ghafoori-Fard, M. J. Moghimi, and A. Rostami, “Linear and nonlinear superimposed Bragg grating: a novel proposal for all-optical multi-wavelength filtering and switching”, Progress In Electromagnetics Research, PIER 77, pp. 243-266, 2007.
[53]Y. Yoon, J. Shim, D. Jang, J. Kim, Y. Eo, and F. Rhee, “Transmission spectra of Fabry-Perot etalon filter for diverged input beams”, IEEE Photon. Technol. Lett., vol. 14, pp. 1315-1317, 2002.
[54]D. Y. Song, and J. S. Lee, “Angle-tuned Fabry-Perot etalon filter having Gaussian transmittance curves”, IEEE Photon. Technol. Lett., vol. 12, pp. 1186-1188, 2000.
[55]A. Rostami, and A. Salmanogli, “Investigation of light amplification in Si-nanocrystal-Er doped optical fiber”, Progress In Electromagnetics Research B, vol. 9, pp. 27-51, 2008.
[56]S. Ovadia, Broadband Cable TV Access Networks: Form Technologies to Applications, Prentice-Hall, 2001.
[57]W. I. Way, Broadband Hybrid Fiber/Coax Access System Technologies, Academic Press, 1998.
[58]W. Y. Lin, C. H. Chang, P.C. Peng, H. H. Lu, and C. H. Huang, “Direct CATV modulation and phase remodulated ROF transport systems”, Opt. Express, vol. 18, no. 10, pp. 10301-10307, May 2010.
[59]H. Kim, S. B. Jun, and Y. C. Chung, “Raman crosstalk suppression in CATV overlay passive optical network”, IEEE Photon. Technol. Lett., vol. 9, no. 9, pp. 695-698, May 2007.
[60]H. Gebretsadik, H. T. Foulk, N. C. Frateschi, W. J. Choi, S. V. Robertson, and A. E. Bond, “Linearised integrated SOA-EA modulator for long-haul and FTTH CATV applications at 1.55 m”, Electron. Lett., vol. 40, no. 16, pp. 1016-1017, Aug. 2004.
[61]S. J. Tzeng, H. H. Lu, C. Y. Li, K. H. Chang, and C. H. Lee, “CSO/CTB performance improvement by using Fabry–Perot etalon at the receiving site”, Progr. Electromagn. Res. Lett., vol. 6, no. 14, pp. 107-113, 2009.
[62]T. A. Adamson, Electronic Communications. Albany, New York: Delmar, 1992.
[63]L. Xu and H. K. Tsang, “WDM-PON using differential-phase-shiftkeying remodulation of dark return-to-zero downstream channel for upstream”, IEEE Photon. Technol. Lett., vol. 20, no. 10, pp. 833-835, May 2008.
[64]A. H. Gnauck and P. J. Winzer, “Optical phase-shift-keyed transmission”, J. Lightw. Technol., vol. 23, no. 1, pp. 115-130, Jan. 2005.
[65]H. H. Lu, Y. W. Chuang, G. L. Chen, C. W. Liao, and Y. C. Chi, “Fiberoptical cable television system performance improvement employing light injection and optoelectronic feedback techniques”, IEEE Photon. Technol. Lett., vol. 18, no. 16, pp. 1789-1791, Aug. 2006.
[66]C. Conti, D. Beltrame, G. D. Marchis, and M. Zitelli, “Cross-phase modulation in polarization shift-keying lightwave systems”, Appl. Opt., vol. 43, no. 1, pp. 149- 152, Jan. 2004.
[67]S. J. Tzeng, H. H. Lu, C. Y. Li, K. H. Chang, and C. H. Lee, “CSO/CTB performance improvement by using Fabry-Perot etalon at the receiving site”, Progr. Electromagn. Res. Lett., vol. 6, no. 14, pp. 107-113, 2009.
[68]D. Piehler, X. Zou, C. Y. Kuo, A. Nilsson, J. Kleefeld, G. Garcia, J. D. Ralston, and A. Mathur, “55dB CNR over 50km of fiber in an 80-channel externally-modulated AM-CATV system without optical amplification”, Electron. Lett., vol. 33, no. 3, pp. 226-227, 1997.
[69]P. Y. Wu, H. H. Lu, C. L. Ying, C. Y. Li, and H. S. Su, “An up-converted phase modulated fiber optical CATV transport system”, IEEE/OSA J. Lightwave Technol., vol. 29, no. 16, pp. 2422-2427, 2011.
[70]X. Xue, X. Zheng, H. Zhang, B. Zhou, “Optical beamforming networks employing phase modulation and direct detection”, Opt. Commun., vol. 284, no. 12, pp. 2695-2699, 2011.
[71]O. Lidoyne, and P. Gallion, “Analysis of receiver using injection-locked semiconductor laser for direct demodulation of PSK optical signals”, Electron. Lett., vol. 27, no. 11, pp. 995-997, 1991.
[72]N. Hoghooghi, I. Ozdur, S. Bhooplapur, and P. J. Delfyett, “Direct modulation and channel filtering of phase-modulated signals using an injection-locked VCSEL”, IEEE Photon. Technol. Lett., vol. 22, no. 20, pp. 1509-1511, 2010.
[73]Q. Gu, W. Hofmann, M. C. Amann, and L. Chrostowski, “Optically injection- locked VCSEL as a duplex transmitter/receiver”, IEEE Photon. Technol. Lett., vol. 20, no. 7, pp. 463-465, 2008.
[74]S. Wieczorek, W. W. Chow, L. Chrostowski, and C. J. C. Hasnain, “Improved semiconductor-laser dynamics from induced population pulsation”, IEEE J. Sel. Topics Quantum Electron., vol. 42, no. 6, pp. 552-562, 2006.
[75]M. R. Phillips, and D. M. Ott, “Crosstalk due to optical fiber nonliearities in WDM CATV lightwave systems”, IEEE/OSA J. Lightwave Technol., vol. 17, no. 10, pp. 1782-1792, 1999.
[76]Shumate, P. W., “Fiber-to-the-home: 1977-2007”, J. Lightw. Technol., vol. 26, pp. 1093-1103, 2008.
[77]R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks”, IEEE Photon. Technol. Lett., vol. 20, pp.945-947, 2008.
[78]K. Ikeda, T. Kuri, and K. Kitayama, “Simultaneous three band modulation and fiber-optic transmission of 2.5Gb/s baseband, microwave and 60 GHz band signals on a single wavelength”, J. Lightw. Technol., vol. 21, pp. 3194-3202, 2003.
[79]C. T. Lin, W. R. Peng, P. C. Peng, J. Chen, C. F. Peng, B. S. Chiou, and S. Chi, “Simultaneous generation of baseband and radio signals using only one single-electrode Mach-Zehnder modulator with enhanced linearity”, IEEE Photon. Technol. Lett., vol. 18, pp. 2481-2483, 2006.
[80]G. Q. Xia, Z. M. Wu, and X. H. Jia, “Theoretical investigation on commanding the bistability and self-pulsation of bistable semiconductor laser diode using delayed optoelectronic feedback”, J. Lightw. Technol., vol. 23, pp. 4296-4304, 2005.
[81]H. H. Lu, W. S. Tsai, A. S. Patra, S. H. Tzeng, H. C. Peng, and H. L. Ma, “CATV/ROF transport systems based on -1 side mode injection-locked and optoelectronic feedback techniques”, J. Opt. A: Pure Appl. Opt., vol. 10, pp. 055309-1-055309-5, 2008.
[82]H. H. Lu, C. L. Ying, W. I. Lin, Y. W. Chuang, Y. C. Chi, and S. J. Tzeng, “CATV/ROF transport systems based on light injection/optoelectronic feedback techniques and photonic crystal fiber”, Opt. Commun., vol. 273, pp. 389-393, 2007.
[83]Y. Hong, and K. A. Shore, “Locking characteristics of a sidemode injected semiconductor laser”, IEEE J. Quantum Electron., vol. 35, pp. 1713-1717, 1999.
[84]P. Saboureau, J. P. Foing, and P. Schanne, “Injection-locked semiconductor lasers with delayed optoelectronic feedback”, IEEE J. Quantum Electron., vol. 33, pp. 1582-1591, 1997.
[85]J. Wang, M. K. Haldar, and F. V. C. Mendis, “Formula for twotone and third-order intermodulation distortion in semiconductor laser diodes”, Electron. Lett., vol. 29, pp. 1341-1343, 1993.
[86]E. K. Lau, and M. C. Wu, “Amplitude and frequency modulation of the master laser in injection-locked laser systems”, IEEE International Topical Meeting, MC-29, pp. 142-145, 2004.
[87]W. S. Tsai, H. L. Ma, H. H. Lu, Y. P. Lin, H. Y. Chen, and S. C. Yan, “Bidirectional direct modulation CATV and phase remodulation radio-over-fiber transport systems”, Opt. Express, vol. 18, pp. 26077-26083, 2010.
[88]A. Polley, P. J. Decker, J. H. Kim, and S. E. Ralph, “Plastic optical fiber links: a statistical study”, Opt. Fiber Commun. Conf. (OFC), OMS3, 2009.
[89]A. Polley, P. J. Decker, and S. E. Ralph, “10 Gb/s, 850 nm VCSEL based large core POF links”, Conf. on Lasers and Electro-Optics (CLEO), CTuLL3, 2008.
[90]H. Yang, S. C. Lee, E. Tangdiongga, F. Breyer, S. Randel, and A. M. J. Koonen, ”40-Gb/s transmission over 100m graded-index plastic optical fiber based on discrete multitone modulation”, Opt. Fiber Commun. Conf. (OFC), PDPD8, 2009.
[91]J. Yu, D. Qian, M. Huang, Z. Jia, G. K. Chang, and T. Wang, “16Gbit/s radio OFDM signals over graded-index plastic optical fiber”, European Conf. on Opt. Commun. (ECOC), 5-237, 6.16, 2008.
[92]M. Asai, R. Hirose, A. Kondo, and Y. Koike, “High-bandwidth graded-index plastic optical fiber by the dopant diffusion coextrusion process”, IEEE/OSA J. Lightwave Technol., vol. 25, pp. 3062-3067, 2007.
[93]Y. Song, X. Zheng, W. Wang, H. Zhang, and B. Zhou, “All-optical broadband phase modulation of a subcarrier in a radio over fiber system”, Opt. Lett., vol. 31, pp. 3234-3236, 2006.
[94]C. H. Chang, L. Chrostowski, C. J. Chang-Hasnain, and W. W. Chow, “Study of long-wavelength VCSEl-VCSEL injection locking for 2.5-Gb/s transmission”, IEEE Photon. Technol. Lett., vol. 14, pp. 1635-1637, 2002.
[95]H. K. Sung, E. K. Lau, and M. C. Wu, “Optical single sideband modulation using strong optical injection-locked semiconductor lasers”, IEEE Photon. Technol. Lett., vol. 19, pp. 1005-1007, 2007.
[96]H. S. Ryu, Y. K. Seo, and W. Y. Choi, “Dispersion-tolerant transmission of 155-Mb/s data at 17 GHz using a 2.5-Gb/s-grade DFB laser with wavelength-selective gain from an FP laser diode”, IEEE Photon. Technol. Lett., vol. 16, pp. 1942-1944, 2004.
[97]H. J. R. Dutton, Understanding Optical Communications, Prentice Hall PTR, 61-62, 1998.
[98]F. Grassi, J. Mora, B. Ortega, and J. Capmany, “Radio over fiber transceiver employing phase modulation of an optical broadband source”, Opt. Express, vol. 18, pp. 21750-21756, 2010.
[99]C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, C. L. Pan, and S. Chi, “WDM extended reach passive optical networks using OFDM-QAM”, Opt. Express, vol. 16, pp. 12096-12101, 2008.
[100]H. H. Lu, C. H. Chang, P C. Peng, H. S. Su, and H. W. Hu, “A radio-over-GI-POF transport system”, J. Lightw. Technol., vol. 28, pp. 1917-1921, 2010.
[101]C. H. Chang, H. S. Su, H. H. Lu, P. C. Peng, and H. W. Hu, “Integrating fiber to the home and POF in-door routing CATV transport system”, J. Lightw. Technol., vol. 28, pp. 1864-1869, 2010.
[102]W. Jian, C. Liu, H. C. Chien, S. H. Fan, J. Yu, J. Wang, C. Yu, Z. Dong, J. Yu, and G. K.Chang, “QPSK-OFDM radio over polymer optical fiber for broadband in-building 60GHz wireless access”, Opt. Fiber Commun. Conf. (OFC), OTuF3, 2010.
[103]B. Liu, X. Xin, L. Zhang, K. Zhao, and C. Yu, “Broad convergence of 32QAM-OFDM ROF and WDM-OFDM-PON system using an integrated modulator for bidirectional access networks”, Opt. Fiber Commun. Conf. (OFC), JThA26, 2010.
[104]E. Hugues-Salas, R. P. Giddings, X. Q. Jin, J. L. Wei, X. Zheng, Y. Hong, C. Shu, and J.M. Tang, “Real-time experimental demonstration of low-cost VCSEL intensity-modulated 11.25Gb/s optical OFDM signal transmission over 25km PON systems”, Opt. Express, vol. 19, pp. 2979-2988, 2011.
[105]A. M. J. Koonen, A. Ng’oma, M. G. Larrode, F. M. Huijskens, I. T. Monroy, and G. D. Khoe, “Novel cost-efficient techniques for microwave signal delivery in fibre-wireless networks”, European Conf. on Opt. Commun. (ECOC), Th1, 2004.
[106]R. Hui, and M. O’Sullivan, Fiber Optic Measurement Techniques, Elsevier Inc., 483, 2009.
[107]C. H. Chang, H. H. Lu, H. S. Su, C. L. Shih, and K. J. Chen, “A broadband ASE light source-based full-duplex FTTX/ROF transport system”, Opt. Express, vol. 17, pp. 22246-22253, 2009.
[108]H. H. Lu, H. C. Peng, W. S. Tsai, C. C. Lin, S. J. Tzeng, and Y. Z. Lin, “Bidirectional hybrid CATV/radio-over-fiber WDM transport system”, Opt. Lett., vol. 35, pp. 279-281, 2010.
[109]S. Gao, C. Yang, X. Xiao, Y. Tian, Z. You, and G. Jin, “Wavelength conversion of spectrum-sliced broadband amplified spontaneous emission light by hybrid four-wave mixing in highly nonlinear, dispersion-shifted fibers”, Opt. Express, vol. 14, pp. 2873-2879, 2006.
[110]K. H. Han, E. S. Son, K. W. Lim, H. Y. Choi, S. P. Jung, and Y. C. Chung, “Bi-directional WDM passive optical network using spectrum-sliced light-emitting diodes”, Opt. Fiber Commun. Conf. (OFC), 1, 23-27, 2004.
[111]M. Yoshino, N. Miki, N. Yoshimoto, and K. Kumozaki, “Multiwavelength optical source for OCDM using sinusoidally modulated laser diode”, IEEE/OSA J. Lightwave Technol., vol. 27, pp. 4524-4529, 2009.
[112]H. Olesen, and G. Jacobsen, “A theoretical and experimental analysis of modulated laser fields and power spectra”, IEEE J. Quantum Electron., vol. 18, pp. 2069-2080, 1982.
[113]W. I. Lin, H. H. Lu, H. C. Peng, and C. H. Huang, “Direct-detection full-duplex radio-over-fiber transport systems”, Opt. Lett., vol. 34, pp. 3319-3321, 2009.
[114]G. H. Smith, and D. Novak, “Broad-band millimeter-wave (38GHz) fiber-wireless transmission system using electrical and optical SSB modulation to overcome dispersion effects”, IEEE Photon. Technol. Lett., vol. 10, pp. 141-143, 1998.
[115]M. R. Phillips, T. E. Darcie, D. Marcuse, G. E. Bodeep, and N. J. Frigo, “Nonlinear distortion generated by dispersive transmission of chirped intensity-modulated signals”, IEEE Photon. Technol. Lett., vol. 3, pp. 481-483, 1991.
[116]C. C. Lin, H. H. Lu, W. J. Ho, H. C. Peng, and C. Y. Li, “A bidirectional WDM transport system based on RSOAs and optoelectronic feedback technique”, IEEE Commun. Lett., vol. 14, pp. 969-971, 2010.
[117]M. Omella1, I. Papagiannakis, B. Schrenk1, D. Klonidis, J. A. Lázaro, A. N. Birbas, J. Kikidis, J. Prat, and I. Tomkos, “Full-duplex bidirectional transmission at 10 Gbps in WDM PONs with RSOA-based ONU using offset optical filtering and electronic equalization”, Opt. Express, vol. 17, pp. 5008-5013, 2009.
[118]C. W. Chow, “Wavelength remodulation using DPSK down-and-upstream with high extinction ratio for 10-Gb/s DWDM-passive optical networks”, IEEE Photon. Technol. Lett., vol. 20, pp. 12-14, 2008.
[119]W. Y. Lin, C. H. Chang, P. C. Peng, H. H. Lu, and C. H. Huang, “Direct CATV modulation and phase remodulated radio-over-fiber transport system”, Opt. Express, vol. 18, pp. 10301-10307, 2010.
[120]K. Y. Cho, Y. J. Lee, H. Y. Choi, A. Murakami, A. Agata, Y. Takushima, and Y. C. Chung, “Effects of reflection in RSOA-based WDM PON utilizing remodulation technique”, IEEE/OSA J. Lightwave Technol., vol. 27, pp. 1286-1295, 2009.
[121]X. Yu, J. B. Jensen, D. Zibar, C. Peucheret, and I. T. Monroy, “Converged wireless and wireline access system based on optical phase modulation for both radio-over-fiber and baseband signals”, IEEE Photon. Technol. Lett., vol. 20, pp. 1816-1817, 2008.
[122]W. J. Ho, H. C. Peng, H. H. Lu, C. L. Ying, and C. Y. Li, “Novel ROF/FTTX/CATV hybrid three-band transport system”, Opt. Express, vol. 19, pp. 6980-6989, 2011.
[123]C. H. Yeh and C. W. Chow, “Heterogeneous radio-over-fiber passive access network architecture to mitigate Rayleigh backscattering interferometric beat noise”, Opt. Express, vol. 19, pp. 5735-5740, 2011.
[124]Y. T. Hsueh, H. C. Chien, A. Chowdhury, J. Yu, and G. K. Chang, “Performance assessment of radio links using millimeter-wave over fiber technology with carrier suppression through modulation index enhancement”, J. Opt. Commun. Netw., vol. 3, pp. 254-258, 2011.
[125]C. Bonang, and C. Y. Kuo, “Long distance 1550 nm fiber optic CATV supertrunking”, Harmonic Lightwaves Inc. Technical Report, 1997.
[126]H. H. Lu, “CSO/CTB Performances improvement by using optical VSB modulation technique”, IEEE Photon. Technol. Lett., vol. 14, pp. 1478-1480, 2002.
[127]J. C. Palais, “Fiber optical communications, 5th”, Ed., Prentice Hall, pp. 24-28, 2005.
[128]J. M. Senior, “Optical fiber communications: principles and practice, 3rd”, Ed., Prentice Hall, pp. 7-10, 2009.
[129]H. S. Kim, Y. Y. Won, Y. H. Son, and S. K. Han, “Full colorless WDM-RoF system with simultaneous transmission of 63-GHz and baseband 1.25-Gbps data by sideband separation”, Opt. Fiber Commun. Conf. (OFC), OThO2, 2010.
[130]Y. T. Hsueh, Z. Jia, H. C. Chien, J. Yu, and G. K. Chang, “A novel bidirectional 60-GHz radio-over-fiber scheme with multiband signal generation using a single intensity modulator”, IEEE Photon. Technol. Lett., vol. 21, pp. 1338-1340, 2009.
[131]F. Lecoche, E. Tanguy, B. Charbonnier, H. Li, F. V. Dijk, A. Enard, F. Blache, M. Goix, and F. Mallecot, “Transmission quality measurement of two types of 60 GHz millimeter-wave generation and distribution systems”, IEEE/OSA J. Lightwave Technol., vol. 27, pp. 5469-5474, 2009.
[132]H. Shams, P. Perry, P. M. Anandarajah, and L. P. Barry, “Modulated millimeter-wave generation by external injection of a gain switched laser”, IEEE Photon. Technol. Lett., vol. 23, pp. 447-449, 2011.
[133]J. Li, T. Ning, L. Pei, and C. Qi, “A bidirectional 60 GHz RoF system based on FWM in a semiconductor optical amplifier”, Opt. Commun., vol. 283, pp. 2238-2242, 2010.
[134]T. Wang, M. Chen, H. Chen, and S. Xie, “RoF downlink transmission system using FWM effect of SOA for generating MM-Wave”, Opt. Commun., vol. 282, pp. 3360-3363, 2009.
[135]H. C. Chien, Y. T. Hsueh, A. Chowdhury, J. Yu, and G. K. Chang, “Optical millimeter-wave generation and transmission without carrier suppression for single- and multi-band wireless over fiber applications”, IEEE/OSA J. Lightwave Technol., vol. 28, pp. 2230-2237, 2010.
[136]Z. Jia, J. Yu, Y. T. Hsueh, A. Chowdhury, H. C. Chien, J. A. Buck, and G. K. Chang, “Multiband signal generation and dispersion-tolerant transmission based on photonic frequency tripling technology for 60-GHz radio-over-fiber systems”, IEEE Photon. Technol. Lett., vol. 20, pp. 1470-1472, 2008.
[137]A. Chowdhury, H. -C. Chien, Y.-T. Hsueh and G.-K. Chang, “Advanced system technologies and field demonstration for in-building optical-wireless network with integrated broadband services”, IEEE/OSA J. Lightwave Technol., vol. 27, pp. 1920-1927, 2009.
[138]J. Yu, M. F. Huang, Z. Jia, A. Chowdhury, H. C. Chien, Z. Dong, W. Jian, and G.-K. Chang, “Arbitrary-frequency optical millimeter-wave generation for radio over fiber systems”, Opt. Fiber Commun. Conf. (OFC), OTuF2, 2010.
[139]A. Chowdhury, H. C. Chien, G.-K. Chang, “Demonstration of simultaneous all-optical up-conversion of gigabit wireless services at 60-GHz and 64-GHz in converged optical wireless system carried by single wavelength lightwave”, Opt. Fiber Commun. Conf. (OFC), OWQ5, 2010.
[140]H. S. Su, C. Y. Li, H. H. Lu, C. H. Chang, P. C. Peng, P. Y. Wu and H. W. Chen, “RoF transport system with OSNR enhanced multi-band optical carrier generator”, Opt. Express, vol.19, pp. 18516-18522, 2011.
[141]D. Torrientes, P. Chanclou, F. Laurent, S. Tsyier, Y. (Frank) Chang, B. Charbonnier, F. Raharimanitra, “RSOA-based 10.3 Gbit/s WDM-PON with pre-amplification and electronic equalization”, Opt. Fiber Commun. Conf. (OFC), JThA28, 2010.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊