跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/25 01:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇恒生
研究生(外文):Heng-Sheng Su
論文名稱:利用新穎式塑膠光纖建構光纖有線電視/光纖微波傳輸系統之研究與應用
論文名稱(外文):Studies and Applications of Using Novel Plastic Optical Fiber to Setup Fiber Optical CATV / Radio-over-Fiber Transport Systems
指導教授:呂海涵呂海涵引用關係
學位類別:博士
校院名稱:國立臺北科技大學
系所名稱:光電工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:110
中文關鍵詞:光纖到X光信號雜訊比氟化漸變式折射率塑膠光纖光纖微波
外文關鍵詞:fiber-to-the-Xoptical signal to noise ratioperfluorinated graded-index plastic optical fiberradio over fiber
相關次數:
  • 被引用被引用:0
  • 點閱點閱:151
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於光纖具有低損耗、頻寬大、速度快、抗電磁波干擾等特性,以至於被廣泛建構運用於通訊傳輸系統中。對於傳輸介質來說,單模玻璃光纖 (SMF; single-mode fiber) 提供比塑膠光纖 (POF;plastic optical fiber) 更好、更多的性能,適合運用於光纖骨幹網路及擷取網路。然而,光纖通訊系統中對於最後一哩 (last mile) 終端用戶運用尚未明確定義。於終端用戶運用上,建立一個符合經濟效益且可行的技術架構是一項重大的挑戰。
近年來,一些特性好且成本低的塑膠光纖已經被開發出來,例如:氟化漸變式折射率塑膠光纖 (PF GI-POF;perfluorinated graded-index plastic optical fiber) 。在本論文中,我們提出幾種方法並驗證使用PF GI-POF於光纖傳輸系統的終端用戶運用擷取網路上。PF GI-POF對於建構光纖傳輸系統的終端用戶運用上,亦是可考慮的候選方式之一。
此外,我們分別提出二個不同的光源產生方式,並且證明是可符合運用於光纖到X (FTTX;fiber-to-the-X) 及光纖微波 (ROF;radio over fiber) 的傳輸系統運用中。一個是利用寬頻帶自發性放大幅射 (ASE;amplified spontaneous emission) 為基礎的光源運用於FTTX/ROF光纖傳輸系統;另一個是結合使用多波段光載波器搭配新型的光信號雜訊比 (OSNR;optical signal to noise ratio) 增強光路機制運用於ROF傳輸系統。


Optical fiber with characteristics like low attenuation, high bandwidth, high speed, and electromagnetic noise interference (EMI) free is widely used in constructing communication transport systems. As a communication medium, glass single-mode fiber (SMF) offers much better performances than plastic optical fiber (POF). Also, glass single-mode fiber (SMF) can apply in backbone and access network. Nevertheless, fiber optical communication systems for last mile end user applications have not yet addressed. Building a feasible and an economical technique structure to fit in with last mile end user applications is a big challenge.
In recent years, some new POFs, such as perfluorinated graded-index plastic optical fiber (PF GI-POF), have been developed with better performance and low cost. In this dissertation, we present several ways to verify optical transport systems access network with build-in PF GI-POF. PF GI-POF access network can be a candidate for last mile end user applications.
Furthermore, we proposed two light sources and demonstrated that they can conform to application of fiber-to-the-X (FTTX) and radio over fiber (ROF) transport system, respectively. One light source based on a broadband amplified spontaneous emission (ASE) is for FTTX/ROF transport system; the other light source combined an economical multi-band optical carrier generator with a novel optical signal to noise ratio (OSNR) enhancement circuit is for radio over fiber transport systems.


Contents


摘 要 i
Abstract iii
誌 謝 v
Contents vi
Figure Captions viii
List of Table viii
Abbreviations xii
Chapter 1 Introduction 1
Chapter 2 A Radio-over-GI-POF Transport System 6
2-1 INTRODUCTION 6
2-2 EXPERIMENTAL SETUP 8
2-3 EXPERIMENTAL RESULTS AND DISCUSSIONS 10
2-4 CONCLUSION 13
Chapter 3 Integrating Fiber to the Home and POF In-Door Routing CATV Transport System 21
3-1 INTRODUCTION 21
3-2 NETWORK CONFIGURATION AND DESIGN 23
3-3 EXPERIMENTAL SETUP 25
3-4 CONCLUSION 29
Chapter 4 Hybrid CATV/16-QAM OFDM in-building networks over SMF and GI-POF transport 36
4-1 INTRODUCTION 36
4-2 EXPERIMENTAL SETUP 38
4-3 EXPERIMENTAL RESULTS AND DISCUSSIONS 39
4-4 CONCLUSION 43
Chapter 5 RoF transport systems with OSNR enhanced multi-band optical carrier generator 51
5-1 INTRODUCTION 51
5-2 OPTICAL CARRIER GENERATOR CONFIGURATION AND DESIGN 56
5-3 EXPERIMENTAL SETUP 56
5-4 CONCLUSION 58
Chapter 6 A broadband ASE light source-based full-duplex FTTX/ROF transport system 65
6-1 INTRODUCTION 65
6-2 EXPERIMENTAL SETUP 67
6-3 EXPERIMENTAL RESULTS AND DISCUSSIONS 69
6-4 CONCLUSION 72
Chapter 7 Generation and Transmission of BB/MW/MMW Signals by Cascading PM and MZM 78
7-1 INTRODUCTION 78
7-2 EXPERIMENTAL SETUP 80
7-3 EXPERIMENTAL RESULTS AND DISCUSSIONS 83
7-4 CONCLUSION 85
Chapter 8 Summary 94
8-1 SUMMARY FOR THE DISSERATION 94
8-2 SUGGESTIONS FOR FUTURE WORK 95
References 96
Publication List 106



[1] Anthony Ng''oma, “Radio-over-fibre Technology for Broadband Wireless Communication Systems,” Technische Universiteit Eindhoven, 2005.
[2]K. Thyagarajan and A. Ghatak, “Fiber Optic Essentials,” John Wiley & Sons, Inc, 2007.
[3] A. M. J. Koonen, S. C. J. Lee, H. Yang, H.-D. Jung, E. Tangdiongga, H. P. A. van den Boom, and S. Randel, “Research trends in optical in-building networks,” presented at 8th Pacific Rim Conf. on Lasers and Electro-Optics, Shanghai, China, 2009.
[4] H. H. Lu, C. H. Chang, P C. Peng, H. S. Su, and H. W. Hu, “A radio-over-GI-POF transport system,” J. Lightwave. Technol., vol. 28, pp. 1917-1921, 2010.
[5]J. C. Palais, “Fiber Optic Communications,” 5th ed., Prentice-Hall, pp. 25-27, 2005.
[6]H. J. R. Dutton, “Understanding Optical Communications,” IBM Redbooks publication, pp. 74-77, 1998.
[7]W. Y. Lin, H. H. Lu, H. C. Peng, and C. H. Huang, “Direct-detection full-duplex radio-over-fiber transport systems”, Opt. Lett., vol. 34, pp. 3319-3321, Nov. 2009.
[8]J. Yu, D. Qian, M. Huang, Z. Jia, G. K. Chang, and T. Wang, “16Gbit/s radio OFDM signals over graded-index plastic optical fiber,” in Proc. European Conf. on Opt. Commun., pp.1-2, 2008.
[9]H. Yang, S. C. Jeffrey Lee, E. Tangdiongga, C. Okonkwo, H. P. A. van den Boom, F. Breyer, S. Randel, and A. M. J. Koonen “47.4 Gb/s transmission over 100 m graded-index plastic optical fiber based on rate-adaptive discrete multitone modulation,” IEEE/OSA J. Lightwave Technol., vol. 28, pp. 352-359, 2010.
[10]A. Polley, P. J. Decker, J. H. Kim, and S. E. Ralph, “Plastic optical fiber links: A Statistical Study”, in Proc. Opt. Fiber Commun., pp. 1-3, 2009.
[11]A. Polley and S. E. Ralph, “100m, 40 Gb/s plastic optical fiber link,” in Proc. Opt. Fiber Commun., pp. 1-3, 2008.
[12]J. M. Senior, “Optical Fiber Communications: Principles and Practice,” 3rd ed., Prentice Hall, pp. 7-10, 2009.
[13]R. pimpinella and A. Brunsting, “Differential mode delay (DMD) for multimode fiber types and its relationship to measured performance,” in Proc. presented at Opt. Fiber Commun. , pp. 1-7, 2005.
[14]J. Liu, Z. M. Wu, and G. Q. Xia, “Dual-channel chaos synchronization and communication based on unidirectionally coupled VCSELs with polarization-rotated optical feedback and polarization-rotated optical injection,” Opt. Express, vol. 17, pp. 12619-12626, 2009.
[15]H. H. Lu, W. S. Tsai, C. Y. Chen, and H. C. Peng, “A-10 Gbps WDM transport system based on VCSELs to VCSELs injection locked technique and LEAF transport”, Opt. Commun., vol. 241, pp. 105-112, 2004.
[16]A. Gatto, A. Boletti, P. Boffi, and M. Martinelli, “Adjustable-chirp VCSEL-to-VCSEL injection locking for 10-Gb/s transmission at 1.55 µm,” Opt. Express, vol. 17, pp. 21748-21753, 2009.
[17]C. C. Lin, H. C. Kuo, P. C. Peng, and G. R. Lin, “Chirp and error rate analyses of an optical-injection gain-switching VCSEL based all-optical NRZ-to-PRZ converter,” Opt. Express, vol. 16, pp. 4838-4847, 2008.
[18]S. H. Lee, J. M. Kang, I. H. Choi, and S. K. Han, "Linearization of DFB laser diode by external light-injected cross-gain modulation for radio-over-fiber link," IEEE Photon. Technol. Lett., vol. 18, pp. 1545-1547, 2006.
[19]A. Kazubowska, P. Anandarajah, and L. P. Barry, "Improved performance of a hybrid radio/fiber system using a directly modulated laser transmitter with external injection," IEEE Photon. Technol. Lett., vol. 14, pp. 233-235, 2002.
[20]S. K. Mondal, B. Roycroft, P. Lambkin, F. Peters, B. Corbett, P. Townsend, and A. Ellis, “A multiwavelength low-power wavelength-locked slotted Fabry-Perot laser source for WDM applications,” IEEE Photon. Technol. Lett., vol. 19, pp.744-746, 2007.
[21]H. H. Lu, C. L. Ying, W. I. Lin, Y. W. Chuang, Y. C. Chi, and S. J. Tzeng, “CATV/ROF transport systems based on light injection/optoelectronic feedback techniques and photonic crystal fiber,” Opt. Commun., vol. 273, pp. 389-393, 2007.
[22] C. H. Chang, T. H. Tan, H. H. Lu, W. Y. Lin, and S. J. Tzeng, “Repeaterless hybrid CATV/16-QAM transport systems,” Prog. in Electromagn. Res. Lett., vol. 8, pp. 171-179, 2009.
[23] I. Mollers, D. Jager, R. Gaudino, A. Nocivelli, H. Kragl, O. Ziemann, N. Weber, T. Koonen, C. Lezzi, A. Bluschke, and S. Randel, “Plastic optical fiber technology for reliable home networking: overview and results of the EU project POF-ALL,” IEEE Commun. Mag., vol. 47, pp. 58-68, 2009.
[24] H. Yang, S. C. J. Lee, E. Tangdiongga, F. Breyer, S. Randel, and A. M. J. Koonen, “40-Gb/s transmission over 100m graded-index plastic optical fiber based on discrete multitone modulation,” presented at Opt. Fiber Commun., San Diego, CA, USA, 2009
[25] A. Polley, P. J. Decker, J. H. Kim, and S. E. Ralph, “Plastic optical fiber links: a statistical study,” presented at Opt. Fiber Commun., San Diego, CA, USA, 2009.
[26] F. Breyer, J. Lee, S. Randel, and N. Hanik, “Comparison of OOK- and PAM-4 modulation for 10 Gbit/s transmission over up to 300 m polymer optical fiber,” presented at Opt. Fiber Commun., San Diego, California, 2008.
[27] K. Koike and Y. Koike, “Design of low-loss graded-index plastic optical fiber based on partially fluorinated methacrylate polymer,” J. Lightwave Techno., vol. 27, pp. 41-46, 2009.
[28]J. Zeng, H. P. A. van den Boom, and A. M. J. Koonen, “Five-subcarrier multiplexed 64-QAM transmission over a 50-μm core diameter graded index perfluorinated polymer optical fiber,” presented at Opt. Fiber Commun., San Diego, California, 2008.
[29]C. Loyez, C. Lethien, N. Deparis, J. P. Vilcot, R. Kassi, N. Rolland, A. Goffin, and P. A. Rolland, “An impulse system for 60-GHz wireless networks based on polymer optical fiber,” IEEE Photo. Techno. Lett., vol. 19, pp. 1964-1966, 2007
[30]S. C. Lee Jeffrey, F. Breyer, S. Randel, R. Gaudino, G. Bosco, A. Bluschke, M. Mattews, P. Rietzsch, R. Steglich, H. P. A. van den Boom, and A. M. J. Koonen, “Discrete multitone modulation for maximizing transmission rate in step-index plastic optical fibers,” J. Lightwave Techno., vol. 27, pp. 1503-1513, 2009.
[31]C.-L. Ying, C.-H. Chang, Y.-L. Houng, H.-H. Lu, W.-S. Tsai, H.-S. Su, “Down-link CATV/FTTH and up-link FTTH transport systems based on reflective semiconductor optical amplifier,” Prog. in Electromagn. Res. C., vol. 11, pp. 109-120, 2009.
[32]W. I. Way, “Broadband Hybrid Fiber/Coax Access System Technologies,” Academic Press, 1999.
[33] F. Grassi, J. Mora, B. Ortega, and J. Capmany, “Radio over fiber transceiver employing phase modulation of an optical broadband source,” Opt. Express, 18, 21750-21756 (2010).
[34] C. H. Chang, H. H. Lu, H. S. Su, C. L. Shih, and K. J. Chen, “A broadband ASE light source-based full-duplex FTTX/ROF transport systems,” Opt. Express, vol. 17, pp. 22246-22253, 2009.
[35] C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, C. L. Pan, and S. Chi, “WDM extended reach passive optical networks using OFDM-QAM,” Opt. Express, vol. 16, pp. 12096-12101, 2008.
[36] M. Asai, R. Hirose, A. Kondo, and Y. Koike, “High-bandwidth graded-index plastic optical fiber by the dopant diffusion coextrusion process,” IEEE/OSA J. Lightw. Technol. vol. 25, pp. 3062-3067, 2007.
[37] C. H. Chang, H. S. Su, H. H. Lu, P. C. Peng, and H. W. Hu, “Integrating fiber to the home and POF in-door routing CATV transport system,” J. Lightwave. Technol. vol. 28, pp. 1864-1869, 2010.
[38] W. Jian, C. Liu, H. C. Chien, S. H. Fan, J. Yu, J. Wang, C. Yu, Z. Dong, J. Yu, and G. K.Chang, ”QPSK-OFDM radio over polymer optical fiber for broadband in-building 60GHz wireless access,” Conf. on Opt. Fiber. Commun., pp.1-3, 2010.
[39] B. Liu, X. Xin, L. Zhang, K. Zhao, and C. Yu, “Broad convergence of 32QAM-OFDM ROF and WDM-OFDM-PON system using an integrated modulator for bidirectional access networks,” Conf. on Opt. Fiber. Commun., pp. 1-3, 2010.
[40] E. Hugues-Salas, R. P. Giddings, X. Q. Jin, J. L. Wei, X. Zheng, Y. Hong, C. Shu, and J.M. Tang, “Real-time experimental demonstration of low-cost VCSEL intensity-modulated 11.25Gb/s optical OFDM signal transmission over 25km PON systems,” Opt. Express, vol. 19, pp. 2979-2988, 2011.
[41] H. J. R. Dutton, “Understanding Optical Communications,” Prentice Hall PTR, pp. 61-62, 1998.
[42] A. M. J. Koonen, A. Ng’oma, M. G. Larrode, F. M. Huijskens, I. T. Monroy, and G. D. Khoe, “Novel cost-efficient techniques for microwave signal delivery in fibre-wireless networks,” European Conf. on Opt. Commun., 2004.
[43] H. H. Lu, W. S. Tsai, C. Y. Chen, and H. C. Peng, “CATV/radio-on-fiber transport systems based on EAM and optical SSB modulation techniques,” IEEE Photon. Technol. Lett., vol. 16, pp. 2565-2567, 2004.
[44] R. Hui, and M. O’Sullivan, “Fiber Optic Measurement Techniques,” Elsevier Inc., 2009.
[45] H. C. Chien, Y. T. Hsueh, A. Chowdhury, J. Yu, and G. K. Chang, “Optical millimeter-wave generation and transmission without carrier suppression for single- and multi-band wireless over fiber applications,” IEEE/OSA J. Lightw. Technol., vol. 28, pp. 2230-2237, 2010.
[46] C. H. Chang, H. H. Lu, H. S. Su, C. L. Shih, and K. J. Chen, “A broadband ASE light source-based full-duplex FTTX/ROF transport systems,” Opt. Express, vol. 17, pp. 22246-22253, 2009.
[47] Z. Zhu, X. Zheng, G. Xu, Y. Guo, and H. Zhang, “A super-tripling technology used in radio-over-fiber systems for multiservice wireless signals within a millimeter-wave band multi-band,” IEEE Photon. Technol. Lett., vol. 21, pp. 1520-1522, 2009.
[48] Z. Jia, J. Yu, Y. T. Hsueh, A. Chowdhury, H. C. Chien, J. A. Buck, and G. K. Chang, “Multiband signal generation and dispersion-tolerant transmission based on photonic frequency tripling technology for 60-GHz radio-over-fiber systems,” IEEE Photon. Technol. Lett., vol. 20, pp. 1470-1472, 2008.
[49] J. Yu, G. K. Chang, A. Chowdhury, and J. L. Long, “Spectral efficient DWDM optical label/payload generation and transport for next-generation internet,” IEEE/OSA J. Lightw. Technol., vol. 22, pp. 2469-2482, 2004.
[50] W. J. Ho, H. C. Peng, H. H. Lu, C. L. Ying, and C. Y. Li, “A novel ROF/FTTX/CATV hybrid three-band transport system,” Opt. Express, vol. 19, pp. 6980-6989, 2011.
[51] C. T. Lin, W. J. Jiang, J. Chen, P. T. Shih, P. C. Peng, E. Z. Wong, and S. Chi, “Novel optical vector signal generation with carrier suppression and frequency multiplication based on a single-electrode Mach-Zehnder modulator,” IEEE Photon. Technol. Lett., vol. 20, pp. 2060-2062, 2008.
[52] W. S. Tsai, H. L. Ma, H. H. Lu, Y. P. Lin, H. Y. Chen, and S. C. Yan, “Bidirectional direct modulation CATV and phase remodulation radio-over-fiber transport systems,” Opt. Express, vol. 18, pp. 26077-26083, 2010.
[53] C. T. Lin, J. Chen, P. C. Peng, C. F. Peng, W. R. Peng, B. S. Chiou, and S. Chi, “Hybrid optical access network integrating fiber-to-the-home and radio-over-fiber systems,” IEEE Photon. Technol. Lett., vol. 19, pp. 610-612, 2007.
[54] H. H. Lu, Y. W. Chuang, G. L. Chen, C. W. Liao, and Y. C. Chi, “Fiber-optical cable television system performance improvement employing light injection and optoelectronic feedback techniques,” IEEE Photon. Technol. Lett., vol. 18, pp. 1789-1791, 2006.
[55] H. Olesen, G. Jacobsen, “A theoretical and experimental analysis of modulated laser fields and power spectra,” IEEE J. Quantum Electron., vol. 18, pp. 2069-2080, 1982.
[56] M. Yoshino, N. Miki, N. Yoshimoto and K. Kumozaki, “Multiwavelength optical source for OCDM using sinusoidally modulated laser diode,” IEEE/OSA J. Lightw. Technol., vol. 27, pp. 4524-4529, 2009.
[57] D. C. Kilper and W. Weingartner, “Monitoring optical network performance degradation due to amplifier noise,” IEEE/OSA J. Lightw. Technol., vol. 21, pp. 1171-1178, 2003.
[58] D. Torrientes, P. Chanclou, F. Laurent, S. Tsyier, Y. (Frank) Chang, B. Charbonnier, F. Raharimanitra, “RSOA-based 10.3 Gbit/s WDM-PON with pre-amplification and electronic equalization,” In Proc. Opt. Fiber Commun., pp. 1-3, 2010.
[59] H. H. Lu, W. Y. Lin, H. C. Peng, C. Y. Li, and H. S. Su, “Fiber-to-the-home integration with digital link on microwave subcarrier transport systems,” Prog. Electromagn. Res., vol. 7, pp. 125–136, 2009.
[60] H. H. Lu, C. Y. Li, C. H. Lee, Y. C. Hsiao, and H. W. Chen, “Radio-over-Fiber Transport Systems Based on DFB LD with Main and -1 Side Modes Injection-Locked Techniques,” Prog. Electromagn. Res. Lett., vol. 7, pp. 25–33, 2009.
[61] V. M. Serdyuk, “Dielectric study of bound water in grain at radio and microwave frequencies,” Prog. Electromagn. Res., vol. 84, pp. 379–406, 2008.
[62] R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH nettworks,” IEEE Photon. Technol. Lett., vol. 20, pp. 945–947, 2008.
[63] K.-I. Kitayama, T. Kuri, H. Toda, and J. J. V. Olmos, “Radio over fiber: DWDM analog/digital access network and its enabling technologies,” in Proceedings of Lasers and Electro-Optics Society, pp.794–795, 2007.
[64] ITU-T Recommendation G.984.1, “Gigabit-capable Passive Optical Networks (GPON): General characteristics,” .
[65] J. Li, and G. Shen, “Cost Minimization Planning for Greenfield Passive Optical Networks,” IEEE/OSA J. Opt. Commun., vol. 1, pp. 17–29, 2009.
[66] H. Kim, S. Kim, S. Hwang, and Y. Oh, “Impact of dispersion, PMD, and PDL on the performance of spectrum-sliced incoherent light sources using gain-saturated semiconductor optical amplifiers,” J. Lightwave Technol., vol. 24, pp.775–785, 2006.
[67] H. D. Kim, S. G. Kang, and C. H. Lee, “A low-cost WDM source with an ASE injected Fabry-Perot semiconductor laser,” IEEE Photon. Technol. Lett., vol. 12, pp. 1067–1069, 2000.
[68] J. S. Lee, Y. C. Chung, and D. J. DiGiovanni, “Spectrum-sliced fiber amplifier light source for multichannel WDM applications,” IEEE Photon. Technol. Lett., vol. 5, pp. 1458–1461, 1993.
[69]H. S. Kim, Y. Y. Won, Y. H. Son, and S. K. Han, “Full colorless WDM-RoF system with simultaneous transmission of 63-GHz and baseband 1.25-Gbps data by sideband separation,” In Proc. Opt. Fiber Commun., pp. 1-3, 2010.
[70]Y. T. Hsueh, Z. Jia, H. C. Chien, J. Yu, and G. K. Chang, “A novel bidirectional 60-GHz radio-over-fiber scheme with multiband signal generation using a single intensity modulator,” IEEE Photon. Technol. Lett., vol. 21, pp. 1338-1340, 2009.
[71]F. Lecoche, E. Tanguy, B. Charbonnier, H. Li, F. V. Dijk, A. Enard, F. Blache, M. Goix, and F. Mallecot, “Transmission quality measurement of two types of 60 GHz millimeter-wave generation and distribution systems,” IEEE/OSA J. Lightw. Technol., vol. 27, pp. 5469-5474, 2009.
[72]H. Shams, P. Perry, P. M. Anandarajah, and L. P. Barry, “Modulated millimeter-wave generation by external injection of a gain switched laser,” IEEE Photon. Technol. Lett., vol. 23, pp. 447-449, 2011.
[73]J. Li, T. Ning, L. Pei, and C. Qi, “A bidirectional 60 GHz RoF system based on FWM in a semiconductor optical amplifier,” Opt. Commun., vol. 283, pp. 2238-2242, 2010.
[74]T. Wang, M. Chen, H. Chen, and S. Xie, “RoF downlink transmission system using FWM effect of SOA for generating MM-Wave,” Opt. Commun., vol. 282, pp. 3360-3363, 2009.
[75]H. C. Chien, Y. T. Hsueh, A. Chowdhury, J. Yu, and G. K. Chang, “Optical millimeter-wave generation and transmission without carrier suppression for single- and multi-band wireless over fiber applications,” IEEE/OSA J. Lightw. Technol., vol. 28, pp. 2230-2237, 2010.
[76]S.-H. Fan, H.-C. Chien, Y.-T. Hsueh, A. Chowdhury, J. Yu and G.-K. Chang, “Simultaneous transmission of wireless and wireline services using a single 60-GHz radio-over-fiber channel by coherent subcarrier modulation,” IEEE Photon. Technol. Lett., vol. 21, pp. 1127-1129, 2009.
[77]A. Chowdhury, H. –C. Chien, Y.-T. Hsueh and G.-K. Chang, “Advanced system technologies and field demonstration for in-building optical-wireless network with integrated broadband services,” IEEE/OSA J. Lightw. Technol., vol. 27, pp. 1920-1927, 2009.
[78]J. Yu, M. F. Huang, Z. Jia, A. Chowdhury, H. C. Chien, Z. Dong, W. Jian, and G.-K. Chang, “Arbitrary-frequency optical millimeter-wave generation for radio over fiber systems,” In Proc. Opt. Fiber Commun., pp. 1-3, 2010.
[79]A. Chowdhury, H. C. Chien, G.-K. Chang, “Demonstration of simultaneous all-optical up-conversion of gigabit wireless services at 60-GHz and 64-GHz in converged optical wireless system carried by single wavelength lightwave,” In Proc. Opt. Fiber Commun., pp. 1-3, 2010.
[80]H.-S. Su, C.-Y. Li, H.-H. Lu, C.-H. Chang, P.-C. Peng, P.-Y. Wu and H.-W. Chen, “RoF transport system with OSNR enhanced multi-band optical carrier generator,” Opt. Express, vol.19, pp. 18516-18522, 2011.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top