跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/05 00:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許智凱
研究生(外文):Jhih-Kai-Syu
論文名稱:斜向二氧化矽奈米柱次波長結構之抗反射層在矽太陽電池特性改進之研究
論文名稱(外文):Fabrication of oblique Silica Nano-rods subwavelength anti-reflection structures to enhance performances of silicon solar cell
指導教授:何文章何文章引用關係
口試委員:蕭宏彬潘金山楊村農
口試日期:2012-07-26
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:光電工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:68
中文關鍵詞:抗反射層量子效率奈米柱次波長結構矽太陽能電池
外文關鍵詞:Anti-reflectionSub-wavelengthOmni-directionOblique nanorodReflectivityEQESi solar cell
相關次數:
  • 被引用被引用:0
  • 點閱點閱:162
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
我們利用乾式蝕刻(RIE)技術製作一種二氧化矽奈米柱/二氧化矽/二氧化鈦的全方位次波長抗反射層,垂直結構二氧化矽奈米柱之抗反射層的反射率在400 nm到900 nm可以降至10%以下;然而此反射光譜之低反射率分佈之波段不夠平坦,且未完全落在太陽光譜強度較強的波段,所以我們嘗試將奈米柱製作成具傾斜的角度,探討其反射光譜具更寬波段及廣角度抗反射特性。
首先,先在單晶矽基板上,蒸鍍了一層59.5 nm的二氧化鈦 (TiO2)與394.5 nm的二氧化矽 (SiO2),與35 nm的銀(Ag),以300度持溫兩分鐘進行快速熱退火,使形成銀奈米粒子。接著放置在自製的傾斜角度20、40、60的載台,以RIE通入四氟化碳反映氣體進入腔體進行RIE蝕刻SiO2,蝕刻時間9分鐘可蝕刻掉未保護之 300 nm厚的SiO2,可形成具有傾斜角度的斜向次波長SiO2奈米柱狀結構。經反射率量測,以垂直入射光打在此試片時,其平均反射率在波長範圍400 nm - 950 nm約為7% 左右。
其次,所研製出之裸太陽能電池的短路電流密度約為23~24 mA/cm2左右,將裸太陽能電池加上20、40、60斜向次波長結構後,短路電流密度提升至28~29 mA/cm2。
最後,我們將太陽能電池放在可變角度之旋轉平台上,使太陽光以不同角度入射,去探討不同傾斜角度之次波長結構,對於不同角度的入射光所造成的影響,進而探討斜向次波長結構抗反射層,對於寬波段、廣角度抗反射效果的可行性。


We use an reactive ion etching (RIE) technology to construct the silica (SiO2) Nano-rods on the silica(SiO2)/titanium (TiO2) anti-reflective (AR) coating. The reflectivity of this vertical structure of silica nanorods can be reduced below 10% from 400 nm to 900 nm wavelengths. However, the lowest reflectivity’s location is not at the strongest light intensity band of solar spectrum, and the reflectivity curve is not such flat. So we tried to fabricate oblique nanorods instead of vertical nanorods to research the diversification of reflectivity and the characteristic of Omni-direction anti-reflective. First, we deposited a TiO2 with 59.5 nm, and a SiO2 with 394.5 nm and an 30nm silver film on the silicon solar cell. Then we anneal the silver to gather as the nanoparticles mask. we use RIE with CF4 to etch the top SiO2 to form the nanorods using the oblique 2o, 4o and 6o platform to form different oblique nanorods were obtained.
These devices short-circuit current density increases from 23~24 mA/cm2 to 28~29 mA/cm2 were obtained with nomal incident. We change incident light to probe the effect of different oblique angle of Sub-Wavelength structure from 0o to 70o. Finally we probe feasibility of anti-reflective of oblique sub-wavelength structure on the wide angle.
From the experimental results, the oblique 4o sub-wavelength structure had wide incident anti-reflective angle characteristics and better than others.


摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 viii

第一章 緒論 1
1.1 前言 1
1.2常見的抗反射層 2
1.2.1 薄膜型抗反射層 2
1.2.2 倒金字塔型抗反射層 3
1.2.3 次波長結構型抗反射層 4
1.3 次波長抗反射層結構之起源 5
1.4 研究動機 6

第二章 太陽能電池工作原理介紹 7
2.1 太陽能光譜 7
2.2太陽電池工作原理 10
2.2.1 光伏特效應 10
2.2.2 p-n接面 11
2.2.3 光的吸收 12
2.2.4表面復合(Recombination) 13
2.2.5太陽光電池的特性參數 14
2.3 抗反射層的原理 20
2.3.1 單層抗反射層 21
2.3.2 雙層抗反射層 24
2.4 次波長結構之抗反射層原理 25
2.5 量子效率與光電流 27

第三章 實驗介紹與流程 28
3.1 實驗儀器與材料介紹 28
3.1.1 電子束蒸鍍機 28
3.1.2 快速熱退火機 29
3.1.3曝光機 29
3.1.4 反應離子蝕刻機(RIE) 30
3.1.5 太陽光模擬器 31
3.2 單晶矽太陽能電池結構製作之流程 32
3.2.1矽晶圓清潔 32
3.2.2 磷擴散 33
3.2.3溼式蝕刻 34
3.2.4製作背面鋁(Al)電極 35
3.2.5製作正面鈦鋁(TiAl)電極 36
3.3 次波長結構的製作流程 36
3.3.1 製作雙層抗反射層 38
3.3.2製作次波長抗反射層 39
3.4元件特性量測 40

第四章 實驗結果與分析 43
4.1 不同參數之次波長結構的比較 43
4.1.1銀奈米球在表面的分布 43
4.1.2不同傾斜角度之抗反射效果比較 44
4.2 太陽能電池的特性分析 45
4.2.1 單晶矽太陽能電池之未照光電流電壓特性 45
4.2.1 傾斜2o次波長結構太陽能電池之照光特性 48
4.2.2 傾斜4o次波長結構太陽能電池之照光特性 51
4.2.3 傾斜6o次波長結構太陽能電池之照光特性 54
4. 3不同傾斜角度的次波長結構探討 57
4. 4不同傾斜角度的次波長結構的外部量子效率 62

第五章 結論 65
參考文獻 66


[1]Stephen Y. Chou, Peter R. Krauss, and Preston J. Renstrom, “Imprint of sub‐25 nm vias and trenches in polymers,” Appl. Phys. Lett, Vol. 67, No. 21, 1995, pp. 3114-3116.
[2]Stephen Y. Chou, Peter R. Krauss, and Preston J. Renstrom, “Imprint Lithography with 25-Nanometer Resolution,”Science, Vol. 272, No. 5258, 1996, pp. 85-87.
[3]C. G. Bernhard and W. H. Miller, “A corneal nipple pattern in insect compound eyes,” Acta Physiol. Scand. Vol. 56, Issue. 3-4, 1962, pp. 385-386.
[4]P. B. Clapham, and M. C. Hutley, “Reduction of lens reflection by moth eye principle,” Nature 244, 1973, pp. 281 – 282.
[5]S. J. Wilson, and M. C. Hutley, “The optical-properties of moth eye antireflection surfaces,” Optica Acta, Vol. 29, No. 7, 1982, pp. 993-1009.
[6]P. Lalanne and G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light,” Nanotechnology, Vol. 8, No. 53, 1997, pp. 53–56.
[7]Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. , vol. 21, Issue. 6, 2003, pp. 2874-2877.
[8]C. Lee, Sam Y. Bae, S. Mobasser, and H. Manohara, “A novel silicon nanotips antireflection surface for the micro sun sensor,” Nano Lett. , Vol. 5, No. 12, 2005, pp. 2438–2442.
[9]J. -Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nature Photon, Vol. 1, 2007, pp. 176-179.
[10]P. R. Gast, “Solar Radiation”, in Handbook of Geophysics, ed. C. F. Campen et al., New York, Macmillan, 1960.
[11]V. Azaroff and J. J. broohy, “Electronic Processes in Materials” McGraw-Hill, 1963.
[12]W. Shockley, “Electrons and Holes in Semiconductors,” Van Nostrand Rheinhold, 1950.
[13]A. van der Ziel, “Solid State Physical Electronics, 3rd ed. ,” Englewood Cliffs, N.J. : Prentice-Hall, 1976
[14]曹昭陽、狄大衛、李秀文,太陽電池工作原理、技術與系統應用,五南書局,2009.
[15]P. Campbell and M. A. green, “The limiting efficiency of the silicon of solar cells under concentrated sunlight,” IEEE Transactions on Electro Devices, vol. 33, No. 2, 1986, pp. 234-239.
[16]T. Tideje, and E. Yablonovitch, “Limiting efficiency of silicon solar cells,” IEEE Transactions on Electro Devices, vol. 31, Issue. 5, 1984, pp. 711-716.
[17]W. Shockley, and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” Journal of Applied Physics, vol. 32, 1991, pp. 510-519.
[18]Martin A. Green , Keith Emery, Yoshihiro Hishikawa, Wilhelm Warta, Ewan D. Dunlop, “Solar cell efficiency tables, ” John Wiley & Sons, Ltd. 2011
[19]H. J. Hovel, “Semiconductors and Semimetals Series,” Academic Press, 1975
[20]Martin A. Green, “Solar Cells: Operating Principles, Technology, and SystemB Applications, ” New Jersey: Prentice-Hall, 1982, pp. 96-98.
[21]E. S. Heavaens. “Optical Properties of Thin Solid Films ,” Butterworths, 1955.
[22]E. Y. Wang et al., “Optimum Design of Antireflection Coatings for Silicon Solar Cells,” Conference Record, 10th IEEE Photovoltaic Specialists Confererce, Palo Alto, 1973, p. 168.
[23]葉玉堂, “幾何光學” 五南書局, 2008.
[24]GL. Araujo and E. Sanchel, “A new method for experimental determination of the series resistance of a solar cell,” IEEE Trans. Electron Devices, vol. 29, No. 10, 1982, pp. 1511-1513.
[25]M. A. Green, “Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by intrinsic Auger process,” IEEE Trans. Electron Devices, vol. 31, 1987, pp. 671-678.
[26]Hong Xiao, “Introduction to Semiconductor Manufacturing Technology,” Prentice-Hall, 2000.
[27]K.W. Jacobsen, M. Puska and J. K. Norskov, “Theory of Adsorbate-Induced Surface Relaxations: Hydrogen on Cu(110)” Phys. Rev. Lett., Vol. 59, No. 24, 1987, pp. 2764-2767.
[28]K.W. Jacobsen, P. Stoltze and J. K. Norskov, “A semi-empirical effective medium theory for metals and alloys.” Surf. Sci. Vol. 366, 1996, pp. 394.
[29]Maxwell J. C. Garnett, “Colours in metal glasses and metallic films, ” Philos. Trans., R Soc. London Vol. 203, No. 359-371, 1904, pp. 385-420.
[30]T. Minami, and H. Sonohara, “Physics of very thin ITO conducting films with high transparency prepared by DC magnetron sputtering,” Thin solid films, vol. 270, Issue. 1-2, 1995, pp. 37- 42.
[31]Dinguo Chen, “Anti-reflection (AR) coatings made by sol-gel processes: A review, ” Solar Energy Materials & Splar Cells, Vol. 68, Issue. 3-4, 2001, pp.313-336.
[32]M. Quaas, C. Eggsl, and H. Wulff, “Structural studies of ITO thin films with the Rietveld method,” Thin Solid Films, vol. 332, Issues 1–2, 1998, pp. 277-281.
[33]N. Danson, and I. Safi, “Techniques for the sputtering of optimum indium-tin oxide films on to room-temperature substrates,” Surface and Coatings Technology, vol. 99, No. 1, 1998, pp. 147-160.
[34]T. Minami, and H. Sonohara, “Physics of very thin ITO conducting films with high transparency prepared by DC magnetron sputtering,” Thin solid films, vol. 270, Issue 1-2, 1995, pp. 37- 42.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊