跳到主要內容

臺灣博碩士論文加值系統

(3.237.38.244) 您好!臺灣時間:2021/07/24 17:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴冠儒
研究生(外文):Kuan-Ju Lai
論文名稱:利用熱濺鍍法成長ITO透明電極於偏壓式MOS結構矽太陽能電池之研究
論文名稱(外文):Silicon MOS-structure Solar Cell Based on a Biasing ITO Transparent Electrode Deposited by Thermally Sputtering Method
指導教授:何文章何文章引用關係
指導教授(外文):Wen-Jeng Ho
口試委員:蕭宏彬潘金山楊村農
口試日期:2012-07-26
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:光電工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:87
中文關鍵詞:單晶矽太陽能電池ITO抗反射層背面電場金屬/二氧化矽/半導體
外文關鍵詞:Single crystal silicon solar cellsITO anti-reflectionBack surface fieldMetal / Silica / Semiconductor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:189
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文是利用金屬/二氧化矽/半導體(MOS)結構的概念導入到單晶矽太陽能電池製作,以提升光電流及轉換效率之研究。利用熱濺鍍的方式將氧化銦錫(ITO)濺鍍在介電層二氧化矽(SiO2)上作為透明金屬電極,本研究之SiO2/ITO結構除具有抗反射效果外,當ITO透明電極加偏壓後會使底層pn半導體之空乏區增大,如此可增加其有效光吸收體積;由於入射光在半導體內吸收增加,太陽能電池的
短路電流及轉換效率隨之提高。
本論文首先利用旋轉塗佈(Spin-on film, SOF)方法,將磷擴散源與硼擴散源分別塗佈在p--Si正面與背面,在高溫爐進行擴散製程後,製作出正面n+-Si Emitter與背面p+/p-Si BSF層。其次,利用電子槍將Al與Ti/Al蒸鍍於p+-Si與n+-Si表面形成電極,再經由熱退火處理形成良好歐姆接觸,完成單晶矽太陽能裸電池結構製作。最後,利用電子槍蒸鍍二氧化矽(SiO2)與濺鍍機以250℃濺鍍氧化銦錫(ITO)製作透明閘電極於裸電池表面。本文所獲得之ITO透明電極平均穿透率約80%以上(350~1100 nm)及片電阻約為453.2Ω/□。
在AM1.5G、25℃條件下,量測所完成之單晶矽太陽電池於不同製程階段之特性參數如下:(1)裸電池(電池遮蔽率最佳化設計為10.14%):開路電壓(Open circuit voltage, Voc)為0.55V,短路電流密度(Short circuit current density, Jsc)為27.05 mA/cm2,填充因子(Fill factor, FF)為76.1%,轉換效率(Conversion efficiency, η)為11.52%;(2)經蒸鍍完SiO2與熱濺鍍ITO透明電極(MOS結構)後:開路電壓(Voc)為0.56V,短路電流密度(Jsc)為33.86mA/cm2,填充因子(FF)為76.1%,轉換效率(η)為13.93%;(3)ITO閘電極加順向偏壓 +2.5V時,太陽能電池的開路電壓(Voc)提升至0.56V,短路電流密度(Jsc)提升至44.81 mA/cm2,轉換效率(η)提升至16.73%。


This study demonstrated the concept of a Metal / Silica / Semiconductor (MOS-device) to fabricated a MOS-structure single crystal silicon solar cell which can be increased the photocurrent and conversion efficiency. The transparent indium tin oxide (ITO) electrode upon the SiO2 layer was deposited by a thermally sputtering. The depletion width of p-n junction under the region of the biased ITO transparent electrode would be extended more deeply and obtained more large volume of absorption when the biasing voltage was increased. Beside the SiO2/ITO layer also presented a good anti-reflection (AR) properties. Increasing in absorption of incident light in the solar cell, thus the solar cell short-circuit current and conversion efficiency are enhanced.

Firstly, the liquid type phosphorus (P) source and Boron (B) source were spin upon the front-side and the back-side of p--Si wafer, respectively, and then annealed treatment by RTA at 900°C.Therefore the n+-Si Emitter on the front side and p+/p-Si BSF on the back side were formed. Secondly, Al electrode on p+/p-Si and Ti/Al electrode on n+-Si were evaporated by electron beam and annealed in the RTA chamber to obtain a good ohmic-contact. After annealing, the bare-type single-crystal silicon solar cells was obtained. Finally, the SiO2 layer upon the surface of bare cell was firstly evaporated by electron beam and an indium tin oxide (ITO) upon SiO2 layer was then deposited by a thermally sputtering at temperature above 250°C.Transmittance of 80% measured (wavelength range 350~1100 nm) and sheet
resistance of 453.2Ω/□ were obtained from the obtained ITO film in this study.

Under AM1.5G illumination and at temperatures of 25°C, the characteristics of the fabricated cell are characterized in different stages. (1) Bare solar cell (without any surface coating and the shadowing of 10.14%) : The open-circuit voltage (Voc) of 0.55V, short-circuit current density (Jsc) of 27.05 mA/cm2, fill factor (FF) of 76.1%, and conversion efficiency (η) of 11.52% are presented. (2) Solar cell with SiO2 and ITO layer:Voc of 0.56V, Jsc of 33.86 mA/cm2, FF of 76.1%, and η of 13.93% are obtained. (3) Solar cell with SiO2 / ITO layers and ITO electrode biased + 2.5V:Voc is increased from 0.55V to 0.56V, Jsc is increased to 44.81mA/cm2, and η is increased to16.73%


摘要 i
ABSTRACT iii
誌謝 v
目錄 vi
圖目錄 x
表目錄 xiv
第一章 緒論 1
1.1 前言 1
1.2 太陽能電池的歷史與發展 3
1.3 文獻回顧 4
1.3.1 介電質薄膜SiO2材料特性 4
1.3.2 熱濺鍍ITO(Indium Tin Oxide)薄膜 5
1.3.3 金屬二氧化矽半導體(MOS)結構太陽能電池 6
第二章 太陽能電池工作原理介紹 8
2.1 太陽能光譜 8
2.2 光伏特效應 10
2.3 太陽電池工作原理 11
2.3.1 P-N接面 11
2.3.2 太陽能電池等效電路圖 13
2.3.3 太陽能電池的特性參數 15
2.4 太陽能電池效率損失探討 18
2.4.1 短路電流損失 18
2.4.2 開路電壓之損失 18
2.4.3 填充因子損失 19
2.5 MOS結構太陽能電池工作模型 20
2.6 濺鍍系統工作原理 24
2.6.1 電漿工作原理 24
2.6.2 直流式濺鍍系統(Direct Current Sputtering System) 25
2.6.3 磁控濺鍍系統(Magnetron Sputtering System) 25
2.6.4 多靶射頻濺鍍系統(Dual-Targets Radio Frequency Sputtering System) 26
第三章 研究方法與實驗架構 27
3.1 ITO(Indium Tin Oxide)薄膜特性分析 27
3.1.1 氧化銦錫(ITO)的結構與基本特性 27
3.1.2 氧化銦錫(ITO)當作抗反射層 29
3.2 儀器介紹 31
3.2.1 製程設備 31
2.3.2 量測設備 34
3.3 旋轉塗佈硼擴散源形成背面電場製作 36
3.4 旋轉塗佈磷擴散源形成正面n+擴散製作 36
3.5 晶矽太陽能電池製作流程 37
3.5.1 單晶矽晶片清洗 38
3.5.2 硼擴散製程 39
3.5.3 磷擴散製程 40
3.5.4 正面濕式蝕刻隔離 41
3.5.5 背面電極製作 42
3.5.6 正面指狀電極製作 43
3.5.7 氧化層的製作 44
3.5.8 透明導電薄膜的製作 45
第四章 實驗結果與分析 47
4.1 磷擴散源特性分析 47
4.1.1 磷擴散源旋轉塗佈正面片電阻量測 47
4.1.2 不同擴散條件下表面片電阻變化情形 47
4.1.3 表面濃度與擴散深度分析 50
4.2 硼擴散源特性分析 51
4.2.1 硼擴散源旋轉塗佈背面片電阻量測 51
4.2.2 不同擴散條件下表面片電阻變化情形 51
4.3 MOS結構透明閘極薄膜特性分析 53
4.3.1 ITO薄膜的電特性 54
4.3.2 不同ITO薄膜厚度穿透率與反射率特性圖分析 55
4.3.3 不同ITO薄膜濺鍍時間影響SiO2厚度 58
4.4 n+-p二極體特性分析 62
4.4.1 不同擴散時間無照光下I-V特性曲線 62
4.4.2 無照光下電流電壓特性分析 65
4.5 矽晶太陽能電池分析 66
4.5.1 介紹 66
4.5.2 裸單晶矽太陽電池特性分析 68
4.5.3 MOS結構偏壓式矽太陽能電池 71
第五章 結論 80
參考文獻 81


[1]K. N. Amulya and J. Goldemberg, “Energy for the developing world,” Sci. Amer, vol. 263, 1990, pp. 63-71.
[2]W. Hoagland, “Solar energy,” Scientific. American, vol. 273, 1995, pp. 170-173.
[3]D. M. Chapin and C. S. Fueller, “A new silicon p-n junction photocell for converting solar radiation into electrical power, ” Journal of Applied Physics, vol. 25, 1954, pp. 676-677.
[4]Jenny Nelson, “The Physics of Solar Cells,” London: Imperial College Press, 2003, pp. 3-7.
[5]李正中,”薄膜光學與鍍膜技術,” 藝軒圖書出版社,第五版,2004,p.439-498.
[6]G. Hass and J. B. Ramsey, “Vacuum deposition of dielectric and semiconductor films by a CO2 laser,” Applied Optics, 8, pp. 1115-1118, 1969.
[7]A. P. Bradford, G. Hass, M. McFarland, and E. Ritter, “Effect of Ultraviolet Irradiation on the OpticalProperties of Silicon Oxide Films,” Applied Optics, 8, pp. 971-976, 1965.
[8]E. Klemberg-Sapieha, "Mechanical characteristics of optical coatings prepared by various techniques : a comparative study," Appl. Opt., Vol. 43, no. 13, 2004, pp. 2670-2679.
[9]J. T. Cox, G. Hass, and J. B. Ramsey, “Vacuum Deposition of Dielectric and Semiconductor Films by a CO2 Laser,” Journal of Physics (France), 25, pp. 250, 1964.
[10]Frank Rainer, W. Howard Lowdermilk, David Milam, Charles K. Carniglia, Trudy Tuttle Hart, and Terri L. Lichtenstein, “Materials for optical coatings in the ultraviolet,” Applied Optics, 24, pp. 496-500, 1985.
[11]K. Scherer, L. Nouvelot, P. Lacan, and R. Bosmans, “Optical and mechanical characterization of evaporated SiO2 layers. Long-term evolution,” Applied Optics, 35, pp. 5067-5072, 1996.
[12]H. Leplan, B. Geenen, J. Y. Robic, and Y. Pauleau, “Residual stresses in evaporated silicon dioxide thinfilms: Correlation with deposition parameters and aging behavior,” J. Appl. Phys., 78, pp. 962-969, 1995.
[13]Hans K. Pulker, “Optical coatings deposited by ion and plasma PVD processes,” Surface and Coatings Technology, 112, pp. 250-256, 1999.
[14]W. A. Pliskin, “Comparison of properties of dielectric films deposited by various methods,” J. Vac. Sci. Technol. 14, pp. 1064-1081, 1977.
[15]Jolanta E. Klemberg-Sapieha, Jorg Oberste-Berghaus, Ludvik Martinu, Richard Blacker, Ian Stevenson,George Sadkhin, Dale Morton, Scott McEldowney, Robert Klinger, Phil J. Martin, Nadia Court, SvetlanaDligatch, Mark Gross, and Roger P. Netterfield, “Mechanical characteristics of optical coatings prepared by various techniques: a comparative study,” Applied Optics, 43, pp. 2670-2679, 2004.
[16]C. May, J. Stru Empfel “ITO coating by reactive magnetron sputtering comparison of properties from DC and MF processing,” Thin solid films, 351, 48-52, 1999.
[17]R. N. Joshi, V. P. Singh, J. C. McClure “, Characteristics of indium tin oxide films deposited by r.f. magnetron sputtering,” Thin solid Films, 257, 32-35, 1995.
[18]P. F. Carcia, R. S. McLean, M. H. Reilly, and Z. G. Li “Resistivity and Microstructure Issues in Indium-Oxide Based Films Grown by RF Magnetron Sputtering on Flexible Polyester Substrates,” Society of Vacuum Coaters , 46th Annual Technical Conference Proceedings, 95-199, 2003.
[19]J. L. Grieser “Comparison of ITO Films Produced by Standard D.C. Sputtering and Ion Beam Assisted Sputtering,” 1995 Society of Vacuum Coaters, 38th Annual Technical Conference Proceedings, 155-162, 1995.
[20]M. Bender, W. Seelig, C. Daube, H. Frankenberger, B. Ocker, J. Stollenwerk, “ Dependence of oxygen flow on optical and electrical properties of DC-magnetron,” Thin solid Films 326, 72-77, 1998.
[21]C. Choi, W. J. Lee, J. K., S. O. Jung, W. J. Lee, W. S. Kim, S. J. Kim, C. Yoon“, Effects of oxygen partial pressure on the microstructure and electrical properties of indium tin oxide film prepared by d.c. magnetron sputtering,” Thin solid Films 258, 274-278, 1995.
[22]A. N. H. Al-Ajili, S.C. Bayliss, “ A study of the optical, electrical and structural properties of reactively sputtered InOx and ITOx thin films,” Thin solid Films 305, 116-123, 1997.
[23]S. K. Choi and J. I. Lee “Effect of film density on electrical properties of indium tin oxide films deposited by dc magnetron reactive sputtering,” J. Vac. Sci. Technol. A, Vol. 19, 2043-2047, 2001.
[24]W. De Bosscher, H. Delrue, J. VanHolsbeke, S. Matthews, and A. Blondeel “Rotating Cylindrical ITO Targets for Large Area Coating,” 2005 Society of Vacuum Coaters , 48th Annual Technical Conference Proceedings, 111-115, 2005.
[25]W.-M. Gnehr, U. Hartung, T. Kopte “Pulsed Plasmas for Reactive Deposition of ITO Layers,” 2005 Society of Vacuum Coaters, 48th Annual Technical Conference Proceedings, 312-316, 2005.
[26]M. Bender, J. Trube, J. Stollenwerk, “Deposition of transparent and conducting indium tin oxide films by the r.f.-superimposed DC sputtering technology,” Thin solid films 354 , 100-105, 1999.
[27]D. R. Gibson, I. T. Brinkley, G. H. Hall, E. M. Waddell and J. M. Walls, “Properties of indium tin oxide deposited using reactive closed field magnetron sputtering,” 2006 Society of Vacuum Coaters, 49th Annual Technical Conference proceedings, 2006.
[28]A. Salehi, “The effects of deposition rate and substrate temperature of ITO thin films on electrical and optical properties,” Thin Solid Films 324, 214–218, 1998.
[29]G. Mei-Zhen, J. R, X.De-Sheng, F. W, “Thickness Dependence of Resistivity and Optical Reflectance of ITO Films,” Chinese Phys. Lett. 25, 1380-1383, 2008.
[30]E. Yadin, V. Kozlov, and E. Machevskis, “Recent Developments in the Deposition of ITO and AR Coatings,” 2003 Society of Vacuum Coaters ,46th Annual Technical Conference Proceedings, 185-189, 2003
[31]V. Craciun, D. Craciun, X. Wang, T. J. Anderson, R. K. Singh “ Transparent and
conducting indium tin oxide thin films grown by pulsed laser deposition at low temperatures,” Journal of Optoelectronics and Advanced Materials Vol. 5, No. 2, 401-408, 2003.
[32]A. Amaral, P. Brogueira, C. Nunes de Carvalho, G.Lavareda, “Influence of the initial layers on the optical and electrical properties of ITO films,” Optical Materials 17, 291-294, 2001.
[33]J. Shewchun, R. Singh, and M. A. Green, “Theory of metal-insulator semiconductor solar cells,” J. Appl. Phys., vol. 48, p. 765, 1977.
[34]G. P. Srivastava, P. K. Bhatnagar, and S. R. Dharinal, “Theory of
metal-oxide-semiconductor,” Solid-State Electron., vol. 22, p. 581, 1979.
[35]M. Y. Doghish and F. D. Ho, “A comprehensive analytical model for
metal-insulator-semiconductor (MIS) devices: A solar cell application,” IEEE Trans. Electron Devices, vol. 40, p. 1446, Aug. 1993.
[36]H. Nagayama, H. Honda, and H. Kawahara, J. Electrochem. Soc. 135,2013 ~1988.
[37]C. F. Yeh, C. L. Chen, and G. H. Lin, J. Electrochem. Soc., 141, 3177 ~1994.
[38]C. F. Yeh, S. S. Lin, and C. L. Fan, IEEE Electron Device Lett., 16, 473 ~1995.
[39]Y.-P. Shen and J.-G. Hwu, “Metal-oxide-semiconductor solar cells with
silicon dioxide prepared by liquid-phase deposition method,” IEEE
Photon. Technol. Lett., vol. 8, p. 420, 1996.
[40]Martin A. Green, “Solar Cells Operating Principles, Technology & System Application,” 1982, pp. 4-96.
[41]蔡進譯, “超高效率太陽能電池, ” 物理雙月刊, 二十七卷五期, 2005.
[42]W. Shockley and H. J. Queisser, “Detailed balance limit on efficiency of p-n junction solar cells” phys, vol. 32, 1991, pp. 510-519.
[43]T. Tideje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “ Limit efficiency of silicon solar cells,” IEEE Trans. Electron Dev. , vol. ED31, 1984, pp. 711-716.
[44]P. Campbell and M. A green, “ The limiting efficiency of the silicon solar cells under concentrated sunlight,” IEEE Trans. Electron Devices, vol. ED-33, 1986, pp. 234-239.
[45]Van Dyk E. E. and Meyer E. L. “Analysis of the effect of parasitic resistances on the performance of photovoltaic modles,” Renew Energy, vol. 29, 2004, pp. 333.
[46]GL. Araujo and E. Sanchel, “A new method for experimental determination of the series resistance of a solar cell,” IEEE Trans. Electron Devices, vol. ED-29, Mar. 1982, pp. 1511-1513.
[47]Hong Xiao, “Introduction to Semiconductor Manufacturing Technology,” Prentice-Hall, 2000.
[48]Z. M. Jarzebski, phys.” Preparation and physical properties of transparent conducting oxide films,” Stat. sol. (a) 71, 13(1982).
[49]M. Quaas, C. Eggsl, and H. Wulff, “Structural studies of ITO thin films the Rietveld method,” Thin Solid Films, vol. 332, 1998, pp. 277-281.
[50]N. Danson, and I. Safi, “Techniques for the sputtering of optimum indium-tin oxide films on to room-temperature substrates,” Surface and Coatings Technology, vol. 99, 1998, pp. 147-160.
[51]T. Minami, and H. Sonohara, “Physics of very thin ITO conducting films with high transparency prepared by DC magnetron sputtering,” Thin solid films, vol. 270, 1995, pp. 37- 42.
[52]O. Hasegawa and R. Namazu, “Zn diffusion into GaAs by a two-temperature method,” Appl. Phys. Lett., vol. 36(3), 1980, pp. 203-205.
[53]N. Arnold, R. Schmitt, and K. Heime, “Diffusion in III-V semiconductors from spin-on film sources,” J. Phys. D: Appl. Phys., vol. 17, 1984, pp. 443-474.
[54]H. Albrecht and Ch. Lauterbach, “Diffusion from SiO2: Zn spin-on films into n-In0.53Ga0.47As,” Japan. J. Appl. Phys., vol.25, 1986, pp. L589-L591.
[55]S. T. Teh and D. G. S. Chuah, “Diffusion Profile of Spin-on Dopant Silicon Substrate,” Solar Energy Materials, vol. 19, 1989, pp. 237-247.
[56]R. S. Videira, R. M. Gamboa, J. Maia Alves, J. M. Serra, A. M. Vallera, “Photodefined etching of nq layers diffused on p-type silicon substrates,” Applied Surface Science, vol. 138-139, 1999, pp. 29-34.
[57]J. A. Becker, “Silicon Wafer Processing by Application of Spun-on Doped and Undoped Silica Layers,” Solid-Stole Electronics, vol. 17, 1974, pp. 87-94.
[58]連水養, “量產型單晶太陽電池製作”, 國立雲林科技大學, 2006, 碩士論文.
[59]D. Mathiot, A. Lachiq, A. Slaoui, S. NoeE l, J.C. Muller, C. Dubois, “Phosphorus diffusion from a spin-on doped glass (SOD) source during rapid thermal annealing,” Materials Science in Semiconductor Processing, vol. 1, 1998, pp. 231-236.
[60] I. Elfallal, R. D. Rilkington, A. E. Hill. “Formation of a statistical thermodynamic model for the electron concentration in heavily doped metal oxide semiconductors applied to the tin-doped indium oxide system,” Thin solid films , vol. 223, 303-310, 1993.
[61]Y. Han, D. Kim, J. Cho, Y. Beag, S. Koh “Study of the substrate treatment effect on initial growth of indium tin-oxide films on polymer substrate using in situ conductance measurement,” Thin solid Films, Vol. 496, 58-63, 2006.
[62]G. Mei-Zhen, J. R, X.De-Sheng, F. W , “Thickness Dependence of Resistivity and Optical Reflectance of ITO Films,” Chinese Phys. Lett. 25, 1380-1383, 2008.
[63]S. M Sze, “Physics of semiconductor devices : physics and technology,” Wiley, 1985.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top