跳到主要內容

臺灣博碩士論文加值系統

(3.235.185.78) 您好!臺灣時間:2021/07/30 00:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李國豪
研究生(外文):Kuo-Hao Lee
論文名稱:磁光表面電漿共振檢測元件之研究
論文名稱(外文):Study of Magneto-Optic Surface Plasmon Resonance Sensing Devices
指導教授:王子建
口試委員:邱奕鵬陳學禮
口試日期:2012-07-31
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:光電工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:71
中文關鍵詞:衰逝全反射表面電漿共振磁光效應磁光調變
外文關鍵詞:surface plasmon resonanceattenuated-total-reflectionmagneto-optical
相關次數:
  • 被引用被引用:0
  • 點閱點閱:112
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究四種檢測薄膜結構之磁光表面電漿共振的檢測特性,分析磁光膜層/金膜的結構、厚度比、總厚度等參數,對於檢測特性之影響,並建立實驗量測裝置,進行磁光調變的表面電漿共振檢測之量測。
所設計的檢測系統使用衰逝全反射架構,以金膜作為表面電漿激發層,藉由施加磁場於鐵磁性材料層引發磁光效應,結合表面電漿共振原理與磁光調變技術對待測溶液進行檢測。在模擬計算上,使用4×4轉移矩陣法進行計算,藉由改變各膜層位置及厚度比例,找尋最佳化的檢測膜層結構組成,以提升磁光調變表面電漿共振元件之檢測功能。計算結果顯示,由於作為磁光膜層的鐵或鈷薄膜,雖具有較強的磁光效應,但因其具有較大的複數折射率虛部,對於光的吸收也較大,在提昇檢測靈敏度時,磁光膜層與金膜的相對厚度的設計是很重要的,除此之外,由於耦合進入薄膜的衰逝場的範圍有限,如何使足夠的衰逝場與鐵磁性材料作用產生磁光效應,且能有效激發足夠的表面電漿波,金膜與磁光膜層的厚度以及其相對位置關係,將會對檢測靈敏度有很大的影響。
在檢測實驗中,以外加交流磁場作連續的磁光調變,可有效抑制雜訊,提升訊號雜訊比,精確量測磁光表面電漿共振所造成的反射率變動量。相較於傳統的表面電漿共振感測裝置,所研究的磁光調變感測裝置具有主動調變檢測訊號的功能,可有效提昇靈敏度兩倍,對於未來檢測低濃度生化分子的研究,將會帶來很大的幫助。

This thesis studied the sensing properties with four different thin-film structure. The influence of sensing properties with magneto-optic (MO) layer/gold film structure, thickness ratio, and total thickness is discussed. Finally, the measurement setup of MO modulated surface plasmon resonance (SPR) sensing is established.
In this study, we present a MO modulated SPR sensing system in the attenuated-total-reflection (ATR) configuration, which can be used to measure the concentration of analyte. The samples composed of a sensing region with Au film and a magneto-optically active layer with ferromagnetic materials are thermally evaporated on a glass. In simulation, the 4×4 Transfer Matrix Method is used. This calculation will find optimal structure parameters, the effect of MO layer/gold position and thickness ratio are discussed. Simulation results show that sensitivity can be enhanced by optimizing the structure parameters. In this application, the result of magneto-optical (MO) enhancement signal is extremely depending on the thickness of the ferromagnetic material. Transition metals such as Fe and Co exhibit the larger image part of complex refractive index (k), so that their absorption coefficients are higher than those of Au. Therefore, the choice of ferromagnetic material thickness is extremely significant. In addition, the position of ferromagnetic material must be adjusted in order to balance optical absorption and a high degree of MO activity. The thickness and position of films is changed to optimize the sensing property.
During the sensing measurement, the alternate magnetic field as field-modulated and lock-in technique as MO signal record that can be determined by relation between the reflection intensity and refractive index change is used. In comparison with the conventional SPR sensing, that is based on changes in the optical properties at the sensing surface in passive, the MOSPR can be modulated actively by external field to improve sensing sensitivity. Finally, the sensitivity of MOSPR sensor is double enhanced compared to conventional SPR.


中文摘要 i
英文摘要 iii
誌謝 iv
目錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 章節介紹 10
第二章 表面電漿共振理論及檢測技術 11
2.1 表面電漿共振簡介 11
2.2 金屬與電磁波之作用 11
2.3 表面電漿波之激發 14
2.4 光學激發表面電漿波 18
2.5 磁光科爾效應 20
2.6 表面電漿共振量測方法 22
2.7 磁光表面電漿共振檢測技術 23
2.8 鎖相放大器原理 25
第三章 檢測膜層結構設計與模擬分析 28
3.1 檢測元件結構 28
3.2 理論模擬運算方法 29
3.2.1 4×4轉移矩陣法 29
3.2.2 模擬參數與檢測靈敏度表示 32
3.3 Co/Au雙膜層設計與檢測特性 33
3.4 Au/Co/Au三膜層設計與檢測特性 36
3.5 Fe/Au雙膜層設計與檢測特性 39
3.6 Au/Fe/Au三膜層設計與檢測特性 40
3.7 比較與討論 44
第四章 磁光表面電漿共振檢測裝置 47
4.1 檢測晶片製作 47
4.2 電磁鐵製作與交流磁場量測 48
4.3 甘油水溶液調配 50
4.4 磁光表面電漿共振檢測系統量測架構 51
第五章 磁光表面電漿共振檢測結果與討論 54
5.1 磁光表面電漿共振檢測器之強度檢測 54
5.2 不同甘油水濃度之強度檢測 56
第六章 結論 61
參考文獻 63
中英文名詞對照表 68

附錄:發表於2012年國際光電科技研討會之論文 69


[1] L. J. Davis III and M. Deutsch, “Surface plasmon based thermo-optic and temperature sensor for microfluidic thermometry,” Rev. Sci. Instrum., vol. 81, p. 114905, 2010.
[2] T.-J. Wang, C.-C. Cheng, and S.-C. Yang, “Surface plasmon resonance biosensing by electro-optically modulated attenuated total reflection,” Appl. Phys. B, vol. 103, pp. 701-706, 2011.
[3]Z. Wang, Z. Zheng, K. Wang, Y. Su, L. Liu, L. Song, Y. Bian, R. Hou, S. Li, and J. Zhu, “Sensitive voltage interrogation method using electro-optically tunable SPR sensors,” Opt. Express, vol. 19, pp. 26651-26659, 2011.
[4] J. Guo Z. Zhu and W. Deng, “Small-angle measurement based on surface-plasmon resonance and the use of magneto-optical modulation,” Appl. Opt., vol. 38, pp. 6550-6555, 1999.
[5]B. Sepulveda A. Calle L. M. Lechuga, and G. Armelles, “Highly sensitive detection of biomolecules with the magneto-optic surface-plasmon-resonance sensor,” Opt. Lett., vol. 31, pp. 1085-1087, 2006.
[6] D. Regatos, D. Farina, A. Calle, A. Cebollada, B. Sepulveda, G. Armelles, and L. M. Lechuga, “Au/Fe/Au multilayer transducers for magneto-optic surface plasmon resonance sensing,” J. Appl. Phys., vol. 108, p. 054502, 2010.
[7]D. Regatos, B. Sepulveda, D. Farina, L. G. Carrascosa, and L. M. Lechuga, “ Suitable combination of noble/ferromagnetic metal multilayers for enhanced magneto-plasmonic biosensing,” Opt. Express, vol. 19, pp. 8336-8346, 2011.
[8] C. Clavero, K. Yang, J. R. Skuza, and R. A. Lukaszew, “Magnetic-field modulation of surface plasmon polaritons on gratings,” Opt. Lett., vol. 35, pp. 1557-1559, 2010.
[9] S. Patskovsky, M. Maisonneuve, M. Meunier, and A. V. Kabashin, “Mechanical modulation method for ultrasensitive phase measurements in photonics biosensing,” Opt. Express, vol. 16, pp. 21305-21314, 2008.
[10] Y. Shin, H. M. Kim, Y. Jung, and B. H. Chung, “A new palm-sized surface plasmon resonance (SPR) biosensor based on modulation of a light source by a rotating mirror,” Sens. Actuators B Chem. vol. 150, pp.1-6, 2010.
[11]P. P. Markowicz, W. C. Law, A. Baev, P. N. Prasad, S. Patskovsky, and A. Kabashin, “Phase-sensitive time-modulated surface plasmon resonance polarimetry for wide dynamic range biosensing,” Opt. Express, vol. 15, pp. 1745-1754, 2007.
[12]A. V. Kabashin, S. Patskovsky, and A. N. Grigorenko, “Phase and amplitude sensitivities in surface plasmon resonance bio and chemical sensing,” Opt. Express, vol. 17, pp. 21191-21204, 2009.
[13]洪健雄,何拓利,周榮華,陳寬任,「電漿子學原理與應用」,真空科技,第二十五卷,第一期,第9-23頁,2012。
[14]邱國斌,蔡定平,「金屬表面電漿簡介」,物理雙月刊,第二十八卷,第二期,第472-485頁,2006。
[15]E. Kretschmann and H. Raether, “Radiative decay on nonradiative surface plasmons excited by light,” Z. Naturforsch., vol. A23, pp. 2135-2136, 1968.
[16]R. Kashyap and G. Nemova1, “Surface plasmon resonance-based fiber and planar waveguide sensors,” J. Sens., vol. 2009, p. 645162, 2009.
[17]R. Reinisch, M. Neviere, G. Tayeb, E. Popov, “Symmetry relations for reflection and transmission coefficients of magneto-optic systems,” Opt. Commun., vol. 205, pp. 59-70, 2002.
[18]蘇書玄,李彥龍,蔡志申,「表面磁光科爾效應系統與Co/Ir(111)之磁性研究」,東海科學,第六卷,第1-15頁,2004。
[19]N. Bonod, R. Reinisch, E. Popov, and M. Nevie`re, “Optimization of surface-plasmon-enhanced magneto-optical effects,” Opt. Soc. Am. B, vol. 21, pp. 791-798, 2004.
[20]B. Chadwick, and M. Gal, “An optical temperature sensor using surface plasmons,” Jpn. J. Appl. Phys., vol. 32, pp. 2716-2717, 1993.
[21]J. Melendez, R. Carr, D. Barthelomew, H. Taneja, S. Yee, C. Jung, and C. Furlong, “Development of a surface plasmon resonance sensor for commercial applications,” Sens. Actuators B, vol. 39, pp. 375-379, 1997.
[22]K.S. Johnston, S.R. Karlson, C. Jung, and S.S. Yee, “New analytical technique for characterization of thin films using surface plasmon resonance,” Mater. Chem. Phys., vol. 42, pp. 242-246, 1995.
[23]S.G. Nelson, K.S. Johnston, and S.S. Yee, “High sensitivity surface plasmon resonance sensor based on phase detection,” Sens. Actuators B, vol. 35, pp. 187-191, 1996.
[24]C.M. Wu, Z.C. Jian, and S.F. Joe, “High-sensitivity sensor based on surface plasmon resonance and heterodyne interferometry,” Sens. Actuators B, vol. 92, pp. 133-136, 2003.
[25]A.V. Kabashin and P.I. Nikitin, “Surface plasmon resonance interferometer for bio- and chemical-sensors,” J. Opt. Comm., vol. 150, pp. 5-8, 1998.
[26]M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: approaching their limits?,” Opt. Express, vol. 17, pp.16505-16517, 2009.
[27]http://www.thinksrs.com/downloads/man.htm
[28]P. Yeh, “Optics of anisotropic layered media : A new 4×4 matrix algebra,” Surf. Sci., vol. 96, pp. 41-53, 1980.
[29]M. Schubert, “Polarization-dependent optical parameters of arbitrarily anisotropic homogeneous layered systems,” Phys. Rev. B Condens. Matter , vol. 53, pp. 4265-4274, 1996.
[30]M. J. Weber, Handbook of Optical Materials, California: CRC, p. 334, 2003.
[31]J. H. Weaver, C. Krafka, D. W. Lynch, and E. E. Kock, Physics Data: Optical Properties of Metals, Karlsruhe :Fachinformationszentrum, p.45, 1981.
[32]P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B, vol. 6, pp. 4370-4379, 1972.
[33]P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B, vol. 9, pp. 5056-5070, 1974.
[34]K. R. Heim and M. R. Scheinfein, “An alternative approach for magneto-optic calculations involving layered media,” J. Magn. Magn. Mater., vol.154, pp. 141-152, 1996.
[35]G. S. Krinchik and V. A. Artemev, “Experimental investigation of the electron structure of nickel by the magneto-optical method,” Sov. Phys. JEPT, vol. 26, pp. 22-25, 1965.
[36]G. S. Krinchik and V. A. Artemev, “Magneto-optical properties of Ni, Co and Fe in the ultraviolet visible, and infrared parts of the spectrum,” Sov. Phys. JEPT, vol. 26, pp. 1080-1085, 1968.
[37]C. Hermann, V. A. Kosobukin, G. Lampel, J. Peretti, V. I. Safarov, and P. Bertrand, “Suface-enhanced magneto-optics in metallic multilayer films,” Phys. Rev. B, vol. 64, p. 235422, 2001.
[38]L.G.C. Melo, A.D. Santos, L.M. Alvarez-Prado, Y. Souche, “Optimization of the TMOKE response using the ATR configuration,” J. Magn. Magn. Mater., vol. 310, pp. e947-e949, 2007.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top