跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/08/06 01:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:盧鎮遠
研究生(外文):Jen-Yuan Lu
論文名稱:高折射率對比光波導結構之製作與改良
論文名稱(外文):Fabrication and Improvement of High-Index-Contrast Waveguide Structures
指導教授:王子建
口試委員:張勤煜張世軍陳瑞鑫
口試日期:2012-07-30
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:光電工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:60
中文關鍵詞:光波導氧化鈦玻璃鈮酸鋰
外文關鍵詞:Optical waveguidetitanium dioxideglasslithium niobate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:152
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究製作兩種高折射率對比光波導,藉由製程技術,改善氧化鈦光波導與鈮酸鋰脊形光波導的傳輸損耗。氧化鈦薄膜具有高折射率、高介電常數、化學性質穩定、硬度高、耐磨性佳、及在可見光與近紅外光區不吸收等特點。濺鍍氧化鈦薄膜時,通入5%的氧氣流量,製作厚度74nm、寬度3~12μm的氧化鈦光波導,在波長632.8nm下,可傳導TE模態;濺鍍氧化鈦薄膜時,通入3%的氧氣流量,製作厚度210nm的氧化鈦光波導,在波長1550nm下,當寬度大於6μm時,可同時傳導TE與TM模態。
當物質接近熔點時,會使物體表面具流動性,可用修飾基板表面,降低表面的粗糙度,以減少光波在波導中傳播時的散射損失。本論文探討在高溫1120℃下,在鈮酸鋰脊形結構上進行熱流1hr、3hr及5hr,並與未熱流之鈮酸鋰作比較。實驗結果顯示,熱流1hr的鈮酸鋰光波導比未熱流的鈮酸鋰光波導之TE與TM極化光傳播損失分別減少了0.23dB/cm和2.23dB/cm,這對於降低鈮酸鋰光波導的傳輸損失將有很大的助益,未來可將此製程的方法應用在其他元件製作上。


The present paper researched two kinds of high refractive index contrast waveguide. Titanium dioxide waveguide and lithium niobate ridge waveguide improve the transmission loss by process technology. Titanium dioxide thin film have high refractive index, high dielectric constant, chemical stability, high hardness, hard-wearing, and the film does not absorb in the visible and near infrared region. Titanium dioxide films prepared by magnetron sputtering in flow of 5% oxygen gas to product of the thickness of 74nm, width of 3~12μm titanium dioxide waveguide. Under the wavelength of 632.8nm, can be conduction the TE mode. Titanium dioxide films prepared by magnetron sputtering in flow of 3% oxygen gas to product of the thickness of 210nm. Under the wavelength of 1550nm, can be conduct both the TE and TM modes when the width is greater than 6μm.
When the material close to the melting point, can make the surface liquidity, and the modified surface roughness can be used in order to reduce the scattering losses in the waveguide transmission. The present paper investigated the high temperature 1120℃, the ridge structure of lithium niobate thermal-flow 1hr, 3hr, and 5hr, and not heat the lithium niobate for comparison. The experimental results proved thermal-flow 1hr than not thermal-flow lithium niobate optical waveguide propagation loss were reduced 0.23dB/cm and 2.23dB/cm of TE polarization and TM polarization. There will be a great help for reducing the transmission loss of the lithium niobate waveguides. Study process method could use to other components.


中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論  1
1.1積體光學簡介  1
1.2光波導材料  4
1.2.1氧化鈦結構與特性  4
1.2.2鈮酸鋰結構與特性  5
1.3文獻回顧  8
1.4研究動機  13
1.5內容簡介  14
第二章 光波導特性與量測方法  15
2.1光波導導光條件  15
2.2光波導粗糙度影響  17
2.3光波導損耗量測方法  18
第三章 光波導製程與量測架設  20
3.1元件製程簡介  20
3.1.1晶片清洗  20
3.1.2黃光微影  22
3.1.3端面研磨拋光  25
3.2氧化鈦光波導製程  26
3.3鈮酸鋰光波導製程  30
3.4光波導量測架設  36
第四章 結果與討論  38
4.1氧化鈦光波導特性量測  38
4.1.1模態場分佈  38
4.1.2傳輸損耗  43
4.2鈮酸鋰光波導特性量測  43
4.2.1模態場分佈  44
4.2.2傳輸損耗  47
第五章 結論  50
參考文獻                   51
中英文名詞對照表          54
附錄:發表於2012年電子工程技術研討會之論文  57


[1] S. E. Miller, “Integrated Optics: An Introduction,” Bell Syst. Tech. J., vol. 48, no. 7, pp. 2059-2068, 1969.
[2] 劉保羅,積體光學,台北市:行政院國科會光電小組,第30-31頁,1990。
[3] O. Carp, C. L. Huisman, A. Reller, “Photoinduced reactivity of titanium dioxide,” Prog Solid State Ch, vol. 32, no. 1-2, pp. 33-177, 2004.
[4] J. K. Burdett, T. Hughbank, G. J. Miller, J. W. Richardson and J. V. Smith, “Structural-electronic relationships in inorganic solids: Powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295K,” J. Am. Chem. Soc, vol. 109, no. 12, pp. 3639-3646, 1987.
[5] A. A. Ballman, “Growth of piezoelectric and ferroelectric materials by the Czochralski. technique,” J. Am. Ceram. Soc, vol. 48, pp. 112, 1965.
[6] R. L. Byer, J. F. Young and R. S. Feigelson, “Growth of high-quality LiNbO3 crystals from the congruent melt,” J. Appl. Phys., vol. 41, no. 6, pp. 2320-2325, 1965.
[7] N. Niizeki, T. Yamada and H. Toyoda, “Growth ridge, etched, hillhocks, and crystal structure of lithium niobate,” Jap. J. Appl. Phys., vol. 6, pp. 318, 1967.
[8] O. Zywitzki, T. Modes, P. Frach, D. Gloss, “Effect of structure and morphology on photocatalytic properties of TiO2 layers,” Thin Solid Films, vol. 515, no.20-21, pp. 7732-7739, 2007.
[9] H. Toku, R.S. Pessoa, H.S. Maciel, M. Massi, U.A. Mengui, “The effect of oxygen concentration on the low temperature deposition of TiO2 thin films,” Surface & Coatings Technology, vol. 202, no. 10, pp. 2126-2131, 2008.
[10] C Yang, H Fan , Y Xi, J Chen, Z Li, “Effects of depositing temperatures on structure and optical properties of TiO2 film deposited by ion beam assisted electron beam evaporation,” Appl. Surf. Sci, vol. 254 , pp. 2685-2689, 2008.
[11] T. Alasaarela, T. Saastamoinen, J. Hiltunen, A. Saynatjoki, A. Tervonen, P. Stenberg, M. Kuittinen, and S. Honkanen, “Atomic layer deposited titanium dioxide and its application in resonant waveguide grating,” Appl. Opt., vol. 49, no. 22, pp. 4321-4325, 2010.
[12] M Furuhashi, M Fujiwara, T Ohshiro, M Tsutsui, K Matsubara, M Taniguchi, S Takeuchi, and T Kawai, “Development of microfabricated TiO2 channel waveguides,” AIP Advances, vol. 1, pp. 032102-1-032102-5, 2011.
[13] H. Hu, R. Ricken, W. Sohler, “Low-loss ridge waveguides on lithium niobate fabricated by local,” Appl. Phys. B, vol. 98, no. 4, pp. 677-679, 2010.
[14] Charlie Y. J. Ying, Collin L. Sones, Anna C. Peacock, Florian Johann, Elisabeth Soergel, Robert W. Eason, Mikhail N. Zervas, and Salellaris Maills, “Ultra-smooth lithium niobate photonic micro-structures by surface tension reshaping,” Opt. Express, vol. 18, no. 11, pp. 11508-11513, 2010.
[15] P. Karasinski, C. Tyszkiewicz, R. Rogozinski, J. Jaglarz, “Optical rib waveguides based on sol-gel derived silica-titania films,” Thin Solid Films, vol. 519, no. 16, pp. 5544-5551, 2011.
[16] R. Mechiakh, F. Meriche, R. Kremer, R. Bensaha, B. Boudine, A. Boudrioua, “TiO2 thin films prepared by sol-gel method for waveguiding applications: Correlation between the structural and optical properties,” Opt Mater, vol. 30, no. 4, pp. 645-651, 2007.
[17] S. H. Jeong, J. K. Kim, B. S. Kim, S. H. Shim, B. T. Lee, “Characterization of SiO2 and TiO2 films prepared using rf magnetron sputtering and their application to anti-reflection coating,” Vacuum, vol. 76, no. 4, pp. 507-515, 2004.
[18] P. Evans, D. W. Sheel, “Photoactive and antibacterial TiO2 the films on stainless steel,” Surf. Coat. Technol., vol. 201, no. 22-23, pp. 9319-9324, 2007.
[19] C. Lucas, C. Merier, “Elaboration and characterization of a 6FDA/MPDA polyimide-based optical waveguide,” Synthetic Metals, vol. 127, pp. 299-302, 2002.
[20] W. J. Wang, “Loss characteristics of potassium and silver double-ion-exchanged glass waveguide,” J. of Appl. Phys., vol. 74, no. 3, pp. 1529-1533, 1993.
[21] R. Regener and W. Sohler, “Loss in Low-Finesse Ti: LiNbO3 Optical Waveguide Resonators,” Appl Phys B, vol. 36, no. 3, pp. 143-147, 1985.
[22] 羅正忠、張鼎張,半導體製程技術導論,台灣培生教育出版股份有限公司,2007,第175-202頁。
[23] I. P. Kaminow, V. Ramaswamy, R. V. Schhmidt, and E. H. Turner, “Lithium niobate ridge waveguide modulator,” Appl. Phys. Lett., vol. 24, pp. 622-624, 1974.
[24] Y. Ohmachi and J. Noda, “Electro-optic light modulator with branched ridge waveguide,” Appl. Phys. Lett., vol. 27, pp. 544-546, 1975.
[25] C. L. Lee and C. L. Lu, “CF4 plasma etching on LiNbO3,” Appl. Phys. Lett., vol. 35, no. 10, pp. 756-758, 1979.
[26] M. Kawabe, S. Hirata, and S. Namba, “Ridge waveguides and electro-optical switches in LiNbO3 fabricated by ion-bombardment- enhanced etching,” IEEE Trans. Circuits and Systems, vol. 26, pp. 1109-1112, 1979.
[27] J. L. Jackel, R. E. Howard, E. L. Hu, and S. P. Lyman, “Reactive ion etching of LiNbO3,” Appl. Phys. Lett., vol. 38, no. 11, pp. 907-909, 1981.
[28] F. Laurell, J. Webjorn, G. Arvidsson, and J. Holmberg, “Wet etching of proton-exchanged lithium niobate - a novel processing technique,” IEEE J. Lightw. Technol., vol. 10, no. 11, pp. 1606-1609, 1992.
[29] R. V. Schmidt and I. P. Kaminow, “Metal diffusion optical waveguides in LiNbO3,” Appl. Phys. Let., vol. 25, no. 8, pp. 458-460, 1974.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top