跳到主要內容

臺灣博碩士論文加值系統

(3.95.131.146) 您好!臺灣時間:2021/07/29 02:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭鈺臻
研究生(外文):Yu-Chen Cheng
論文名稱:藉由混成模態耦合之積體光學極化轉換元件
論文名稱(外文):Integrated Optic Polarization Rotator by Hybrid-Mode Coupling
指導教授:王子建
指導教授(外文):Tzyy-Jiann Wang
口試委員:牛寰彭隆瀚王維新
口試委員(外文):huan niuLung-Han PengWay-Seen Wang
口試日期:2012-07-27
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:光電工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:72
中文關鍵詞:極化轉換斜向沉積技術離子交換波導
外文關鍵詞:Polarization converterObliquely deposited technologyIon-exchanged waveguide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:236
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一新型積體光學極化轉換器,藉由在波導上覆蓋斜向蒸鍍薄膜,激發波導中的混成模態來達成極化的轉換。斜向蒸鍍薄膜具有傾斜的柱狀結構,光學上呈現雙軸非等向性,藉由鍍膜時改變入射原子的沈積角度,可改變光軸角度與三軸折射率。在極化轉換器的模擬分析上,使用3D全向量有限差分光束傳播法進行計算,可得知光場在通過具有斜向柱狀薄膜為披覆層的光波導時,x方向與y方向電場分佈與功率變化的情形,論文中討論在不同折射率的玻璃基板上,斜向柱狀薄膜對於極化轉換效率的影響,並計算所需的薄膜區長度。討論的斜向柱狀薄膜參數包含:薄膜厚度、柱狀角度、非普極化折射率、及非光學等向性。在最佳化元件參數下,在B270玻璃基板上覆有氧化鉭柱狀薄膜的極化轉換元件,當柱狀薄膜厚度為0.4μm、柱狀角為60°時,可得到高達99.0%之極化轉換效率。由於柱狀薄膜易吸收濕氣而改變其光學性質,影響極化轉換的穩定性,論文中提出在柱狀薄膜表面覆蓋SiO2濕氣阻隔層,以提昇極化轉換的穩定度,當SiO2層厚度為0.3μm、柱狀薄膜厚度為0.4μm、柱狀角為45°時,可得到高達98.71%之極化轉換效率。實驗得到的轉換效率不及模擬所得到的最佳值,其原因為所沈積的柱狀薄膜其三軸折射率與模擬值不同所造成,如能進一步對柱狀薄膜厚度、柱狀角度作最佳化的實驗測試,將能有效提昇極化轉換效率。所提出的創新極化轉換器的元件結構,製作上無須繁雜且昂貴的元件製程,且可應用於任何波導結構中,未來具有廣泛實際應用的潛力。

In this work, we present a new integrated optic polarization rotator using anisotropic thin film formed by oblique angle deposition as cladding. Obliquely deposited thin film with tilted columnar structure, showing optically biaxial anisotropic. When the column angle varies with the angle of incident atoms, the optical axis angle and the three-axis refractive index can be changed. In the simulation analysis, characteristics of polarization rotator are investigated by 3D full-vectorial finite-difference beam propagation method, calculating the overlap integral between the propagating field and the guided mode, showing x direction and y direction of the electric field distribution and the power variation. We discuss the different refractive index of glass substrate and obliquely columnar thin films for polarization conversion efficiency and the length of thin film region. The columnar film parameters including: film thickness (t), column angle (θ), extraordinary and ordinary indices (ne and no), and optical anisotropy (Δn). The optimal parameters in B270 glass substrate with the Ta2O5 oblique columnar film of thickness 0.4μm and column angle 60° has a conversion efficiency of 99%. Because of the columnar films easily absorb moisture and change the optical properties of the thin film, affecting the stability of the polarization conversion. We propose the SiO2 moisture barrier coating to enhance the stability of the polarization conversion with the 0.3μm thickness of the SiO2 layer, columnar film thickness of 0.4μm, column angle of 45° has a conversion efficiency of 98.71%. In comparison with the experimental conversion efficiency and the simulation values, there are different between simulation values and three-axis refractive index of columnar films. The polarization conversion efficiency could be enhanced by testing the columnar film thickness and the columnar angle. The innovative structure of the polarization rotator, produced on various waveguide structures to achieve polarization rotation and without expensive and complicated process.

中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
1.1 積體光學簡介 1
1.2 極化轉換器簡介 2
1.3 文獻回顧 4
1.4 內容概述 9
第二章 新型極化轉換器之元件設計 11
2.1 材料非等向性光學特性 11
2.2 斜向柱狀薄膜光學特性 12
2.3 氧化鉭斜向柱狀薄膜光學特性 14
2.4 新型極化轉換器元件結構 16
2.5 新型極化轉換器元件參數設計 17
第三章 新型極化轉換器之製作與量測 22
3.1 元件製程技術 22
3.2 離子交換波導製作 29
3.3 斜向柱狀薄膜製作 31
3.4 新型極化轉換器製作流程 36
3.5 元件特性量測方法 38
3.5.1 光波導特性量測 38
3.5.2 極化轉換器元件特性量測 40
第四章 使用氧化鉭柱狀薄膜之新型極化轉換器元件特性 41
4.1 使用高折射率基板之特性模擬 41
4.2 使用低折射率基板之特性模擬 43
4.2.1 單軸向異性模型模擬結果 43
4.2.2 雙軸向異性模型模擬結果 46
4.2.3 模擬結果比較 47
4.3 實驗量測結果 49
第五章 具有濕氣阻隔層之新型極化轉換器 50
5.1 元件結構設計 50
5.2 極化轉換器特性模擬 51
5.2.1 單軸向異性模型模擬結果 51
5.2.2 雙軸向異性模型模擬結果 52
5.2.3 模擬結果比較 53
5.3實驗量測結果 54
第六章 結論 57

參考文獻 58
附錄一、發表於2011年國際光電科技研討會論文 64
附錄二、發表於Optics Express論文 67



[1]H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. i. Itabashi, “Polarization rotator based on silicon wire waveguides,” Opt. Express, vol. 16, no. 4, pp.2628-2635, 2008.
[2]C. A. Ramos, S. R. Garcia1, A. O. Monux, I. M. Fernandez, R. Zhang, H. G. Bach, and M. Schell, “Polarization rotator for InP rib waveguide,” Opt. Lett., vol. 37, no. 3, pp.335-337, 2012.
[3]K. Merterns, B. Scholl, and H. J. Schmitt, “Strong polarization conversion in periodically loaded strip waveguides,” IEEE Photon. Tech. Lett., vol. 10, no. 8, pp.1133-1135, 1998.
[4]Z. Huang, R. Scarmozzino, G. Nagy, J. Steel, and R. M. Osgood, “Realization of a compact and single-mode optical passive polarization converter,” IEEE Photon. Tec. Lett., vol. 12, no. 3, pp.317-319, 2000.
[5]C. van Dam, L. H. Spiekman, F. P. G. M. van Ham, F. H. Groen, J. J. G. M. van der Tol, I. Moerman, W. W. Pascher, M. Hamacher, H. Heidrich, C. M. Weinert, and M. K. Smit, “Novel compact polarization converters based on ultra short bends,” IEEE Photon. Tech. Lett., vol. 8, no. 10, pp.1346-1348, 1996.
[6]J. Zhang, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon-waveguide-based mode evolution polarization rotator,” IEEE J. Sel. Top. Quantum Electron., vol. 16, no. 1, pp.53-60, 2010.
[7]D. M. H. Leung, B. M. A. Rahman, and K. T. V. Grattan, “Numerical analysis of asymmetric silicon nanowire waveguide as compact polarization rotator,” IEEE Photon. J., vol. 3, no. 3, pp.381-389, 2011.
[8]M. C. Oh, S. S. Lee, and S. Y. Shin, “Simulation of polarization converter formed by poling-induced polymer waveguides,” IEEE J. Quantum Electron., vol. 31, no. 9, pp.1698-1704, 1995.
[9]A. V. Tsarev, “New compact polarization rotator in anisotropic LiNbO3 graded-index waveguide,” Opt. Express, vol. 16, no. 3, pp.1653-1658, 2008.
[10]T. Lang, F. Bahnmuller, and P. Benech, “New passive polarization converter on glass substrate,” IEEE Photon. Tech. Lett., vol. 10, no. 9, pp.1295-1297, 1998.
[11]T. J. Wang and J. S. Chung, “Wavelength-tunable polarization converter utilizing the strain induced by proton exchange in lithium niobate,” Appl. Phys. B, vol. 80, no. 2, pp.193-198, 2005.
[12]H. Porte, J. P. Goedgebuer, R. Ferriere, and N. Fort, “Integrated TE-TM mode converter on y-cut z-propagating LiNbO3 with an electro-optic phase matching for coherence multiplexing,” IEEE J. Quantum Electron., vol. 25, no. 8, pp.1760-1762, 1989.
[13]L. N. Binh, J. Livingstone, and D. H. Steven, “Tunable acousto-optic TE-TM mode converter on a diffused optical waveguide,” Opt. Lett., vol. 5, no. 3, pp.83-84, 1980.
[14]P. K. Tien, R. J. Martin, and R. Wolfe, R. C. Le craw, and S. L. Blank, “Switching and modulation of light in magneto-optic waveguides of garnet films,” Appl. Phys. Lett., vol. 21, no. 8, pp.394-396, 1972.
[15]H. Deng, Member, OSA, D. O. Yevick, and P. E. Jessop, “Design rules for slanted-angle polarization rotators,” J. Lightwave Tech., vol. 23, no. 1, pp.432-445, 2005.
[16]H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima and S. I. Itabashi, “Polarization rotator based on silicon wire waveguides,” Opt. Express, vol. 16, no. 4, pp.2628-2635, 2008.
[17]Y. Yue, L. Zhang, M. Song, R. G. Beausoleil, and A. E. Willner, “Higher-order-mode assisted silicon-on-insulator 90 degree polarization rotator,” Opt. Express, vol. 17, no. 23, pp.20694-20699, 2009.
[18]K. Bayat, S. K. Chaudhuri, and S. S. Naeini, “Ultra-compact photonic crystal based polarization rotator,” Opt. Express, vol. 17, no. 9, pp.7145-7158, 2009.
[19]D. Yudistira, D. Janner, S. Benchabane and V. Pruneri, “Integrated acousto-optic polarization converter in a ZX-cut LiNbO3 waveguide superlattice,” Opt. Lett., vol. 34, no. 20, pp.3205-3207, 2009.
[20]J. Zhang, T. Y. Liow, M. Yu, G. Q. Lo, and D. L. Kwong, “Silicon waveguide based TE mode converter,” Opt. Lett., vol. 18, no. 24, 2010, pp.25264-25270.
[21]L. Liu, Y. Ding, K. Yvind, and J. M. Hvam, “Efficient and compact TE–TM polarization converter built on silicon-on-insulator platform with a simple fabrication process,” Opt. Lett., vol. 36, no. 7, pp.1059-1061, 2011.
[22]H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima and S. I. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express, vol. 16, no. 7, pp.4872-4880, 2008.
[23]A. V. Velasco, M. L. Calvo, P. Cheben, A. O. Monux, J. H. Schmid, C. A. Ramos, I. M. Fernandez, J. Lapointe, M. Vachon, S. Janz, and D. X. Xu, “Ultracompact polarization converter with a dual subwavelength trench built in a silicon-on-insulator waveguide,” Opt. Lett., vol. 37, no. 3, pp.365-367, 2012.
[24]Q. H. Wu and I. J. Hodgkinson, “Materials for birefringent coatings,” Supplement to Appl. Opt., pp.8109-8110, 1994.
[25]T. Motohiro and Y. Taga, “Thin film retardation plate by oblique deposition,” Appl. Opt., vol. 28, no. 13, pp.2466-2482, 1989.
[26]A. Zuber, H. J. nchen, and N. Kaiser, “Perpendicular-incidence photometric ellipsometry of biaxial anisotropic thin films,” Appl. Opt., vol. 35, no. 28, pp.5553-5556, 1996.
[27]I. J. Hodgkinson, S. Cloughley, Q. H. Wu, and S. Kassam, “Anisotropic scatter patterns and anomalous birefringence of obliquely deposited cerium oxide films,” Appl. Opt., vol. 35, no. 28, pp.5563-5568, 1996.
[28]I. J. Hodgkinson, Q. H. Wu, M. Arnold, L. D. Silva, G. Beydaghyan, K. Kaminska, and K. Robbie, “Biaxial thin-film coated-plate polarizing beam splitters,” Appl. Opt., vol. 45, no. 7, pp.1563-1568, 2006.
[29]Y. Zou, J. J. Kim, Y. J. Park, J. B. Kim, Y. D. Kim and C. K. Hwangbo, “ Polarization conversion of anisotropic SiO2 columnar thin films prepared by using oblique angle deposition,” J. Korean Phys. Soc., vol. 58, no. 4, pp. 1026-1030, 2011.
[30]I. J. Hodgkinson, Q.H. Wu, and N.L. Moise, “Anisotropic antireflection coatings: use as a laser intracavity polarization-direction selector,” Opt. Laser Tech., vol. 31, pp. 295-298, 1999.
[31]N. G. Wakefield, J. B. Sorge, M. T. Taschuk, L. W. Bezuidenhout, M. J. Brett, and J. C. Sit, “Control of the principal refractive indices in biaxial metal oxide films,” J. Opt. Soc. Am. A, vol. 28, no. 9, pp.1830-1840, 2011.
[32]S. V. Kesapragada, P. R. Sotherland, and D. Gall, “Ta nanotubes grown by glancing angle deposition,” J. Vac. Sci. Tech. B, vol. 6, pp.678-681, 2008.
[33]S. V. Kesapragada, P. Victor, O. Nalamasu, and D. Gall, “Nanospring pressure sensors grown by glancing angle deposition,” American Chemical Soc., vol. 6, pp.854-857, 2006.
[34]M. T. Taschuk, J. B. Sorge, J. J. Steele, and M. J. Brett, “Ion-beam assisted glancing angle deposition for relative humidity sensors,” IEEE Sensors J., vol. 8, pp.1521-1522, 2008.
[35]M. Suzuki and Y. Taga, “Anisotropy in the optical absorption of Ag-SiO2 thin films with oblique columnar structures,” J. Appl. Phys., vol. 71, pp.2848-2854, 1992.
[36]B. Dick and M. J. Brett, “Periodic magnetic microstructures by glancing angle deposition,” J. Vac. Sci. Tech. A, vol. 18, pp.1838-1844, 2000.
[37]J. P. Singh, F. Tang, T. Karabacak, T. M. Lu, and G. C. Wang, “Enhanced cold field emission from <100> oriented β–W nanoemitters,” J. Vac. Sci. Technol. B, vol. 22, pp.1048-1051, 2004.
[38]C. M. Zhou and D. Gall, “Development of two-level porosity during glancing angle deposition,” J. Appl. Phys., vol. 103, pp.014307, 2008.
[39]I. J. Hodgkinson, Q. H. Wu, and J. Hazel, “Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide,” Appl. Opt., vol. 37, no. 13, pp.2653-2659, 1998.
[40]I. J. Hodgkinson, Q. H. Wu, and S. Collett, “Dispersion equations for vacuum-deposited tilted-columnar biaxial media,” Appl. Opt., vol. 40, no. 4, pp.452-457, 2001.
[41]I. J. Hodgkinson, F. Horowitz, H. A. Macleod, M. Sikkens, and J. J. Wharton, “Measurement of the principal refractive indices of thin films deposited at oblique incidence,” J. Opt. Soc. Am. A, vol. 2, no. 10, pp.1693-1697, 1985.
[42]Y. J. Jen, M. J. Lina, and W. P. Tsai, “Single dielectric columnar thin film as a broadband polarization conversion device,” Proc. of SPIE, vol. 7766, pp.776608-1, 2010.
[43]J. Gospodyn, and J.C. Sit, “Characterization of dielectric columnar thin films by variable angle Mueller matrix and spectroscopic ellipsometry,” Opt. Materials, vol. 29, pp.318–325, 2006.
[44]I. J. Hodgkinson, Q. H. Wu, M. Arnold, L. D. Silva, “Biaxial thin-film coated-plate polarizing beam splitters,” Appl. Opt., vol. 45, no. 7, pp.1563-1568, 2006.
[45]Q. Wang, G. Farrell, and Y. Semenova, “Modeling liquid-crystal devices with the three-dimensional full-vector beam propagation method,” J. Opt. Soc. Am. A, vol. 23, no. 8, pp.2014-2019, 2006.
[46]B. Buchold, C. Glingener, D. Culemann, and E.Voges, “Polarization insensitive ion-exchanged arrayed-waveguide grating multiplexers in glass,” Fiber & Integrated Opt., vol. 17, pp.279-298, 1998.
[47]D.F. Geraghty, D. Provenzano, M.M. Morrell, J. Ingenhoff, B. Drapp, S. Honkanen, A. Yariy, and N. Peyghambarian, “Polarisation-independent Bragg gratings in ion-exchanged glass channel waveguides,” Electron Lett., vol. 36, no. 6, pp.531-532, 2000.
[48]B. R. West, P. Madasamy, N. Peyghambarian, S. Honkanen, “Modeling of ion-exchanged glass waveguide structures,” J. Non-Crystalline Solids, vol. 347, pp.18-26, 2006.
[49]J. J. Steele, M. T. Taschuk, and M. J. Brett, “Nanostructured metal oxide thin films for humidity sensors,” IEEE Sensors J., vol. 8, pp.1422-1429, 2008.
[50]A. I. Buvailo, Y. Xing, J. Hines, N. Dollahon, and E. Borguet, “TiO2/LiCl-based nanostructured thin Film for humidity sensor applications,” ACS Appl. Mater. Interfaces, vol. 3, pp.528-533, 2011.
[51]J. S. Hong, S. M. Kim, and K. H. Kim, “Preparation of SiO2 passivation thin film for improved the organic light-emitting device life time,” JPN. J. Appl. Phys., vol. 50, pp.08KE02, 2011.
[52]K. D. Kim, H. K. Shin, and S. M. Chang, “Thin film passivation characteristics in OLED using in-situ passivation,” Transactions on Electrical and Electronic Materials, vol. 13, pp.93-97, 2012.
[53]E. Finson and J. Felts, “Transparent SiO2 barrier coatings: conversion and production status,” Annual Tech. Conf. Proc., CA, 139-143, 1994.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top