跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/08/02 07:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李昕昊
研究生(外文):Hsin-Hao Lee
論文名稱:氧化鎂摻雜鈮酸鋰倍頻元件之研製
論文名稱(外文):Fabrication of MgO:LiNbO3 Second Harmonic Generation Devices
指導教授:王耀德王耀德引用關係王子建
指導教授(外文):Yao-Te WangTzyy-Jiann Wang
口試委員:陳學禮邱奕鵬
口試委員(外文):Hsuen-Li ChenYih-Peng Chiou
口試日期:2012-07-31
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:光電工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:96
中文關鍵詞:氧化鎂摻雜鈮酸鋰準相位匹配極化反轉退火式質子交換波導脊形結構二倍頻元件
外文關鍵詞:MgO-doped lithium niobatequasi-phase-matcheddomain inversionannealed proton-exchangedridge waveguidessecond harmonic generation devices
相關次數:
  • 被引用被引用:0
  • 點閱點閱:96
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究在摻雜5%氧化鎂的鈮酸鋰+Z面上進行週期性極化反轉,設計製作可轉換波長1064nm雷射光的二倍頻轉換元件。先製作退火式質子交換波導於+Z面,然後在極化反轉電極結構的設計上,使用週期漸變、扇形分佈的光阻條狀圖樣,上面覆蓋鉭膜的方式,結合使用液態電極,藉由外加高電壓在電極上,在各個區域提供均勻高電場,來對晶體表面作週期性極化反轉。在反轉區域長度為11mm時,當輸入波長為1064nm的TM極化雷射光下,成功產生二倍頻的綠光。實驗結果顯示,利用厚光阻配合鉭膜的電極結構,可改善側壁不均勻及反轉區域工作週期太小的問題。
論文中藉由切割的方式製作光場侷限性佳的脊形結構,此一製作方法具有高深寬比脊形結構、減少製作時間、降低製作成本、具有平整側壁等特點。實驗結果顯示,切割刀片的鑽石顆粒尺寸、切割時刀片的轉速、以及刀片的移動速度等參數,皆是影響脊形結構品質的關鍵。未來將高深寬比脊形結構與週期性極化反轉結構作結合,將能製作高效能、體積輕小的非線性光學元件,並能與其他積體光學元件進行整合,構成輕、薄、短、小的多功能光積體電路。


In this work, a periodically poled device on the +Z-cut lithium niobate with 5% MgO doped is presented. The wavelength conversion is induced by designing the second harmonic generation device. First, we fabricate the annealed proton-exchanged waveguide on the +Z-cut. Next, the polarization reversal electrode of gradient fan-shaped used in photoresist strip pattern to cover with a Ta film. Then using liquid electrode to offer uniform charge to carry out domain inversion in the +Z-cut. We will generate green light of 532nm by the input wavelength of 1064nm of the interactive length is 11mm. In the result, used in photoresist strip pattern to cover with a Ta film can improve the sidewall uniform and increasing the duty cycle.
Besides, a ridge structure is fabricated by precise diamond blade dicing. The method is much cheaper and simpler than traditional ridge structure techniques. Using precise diamond blade dicing including: the sidewall of the ridge structure is much smooth and reducing propagation loss. In the result, the quality of ridge structure include cutting blade of the diamond particle size, the speed of the cutting blade and movement speed of the blade. In the feature, the ridge structure of high aspect ratio combined with periodical poling can fabricate the high efficiency and small size of nonlinear optical devices.


中文摘要 i
英文摘要 ii
致謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 研究動機 1
1.2 非線性材料之選擇與比較 2
1.3 鈮酸鋰區域極化反轉方法 鈮酸鋰晶體特性 7
1.4 週期性極化反轉之文獻回顧 10
1.5 論文概述 14
第二章 二倍頻理論與相位匹配 15
2.1 非線性光學簡介 15
2.2 光學二倍頻理論 18
2.3 相位匹配原理 22
2.3.1 角度相位匹配 23
2.3.2 溫度相位匹配 26
2.4 準相位匹配原理 27
2.5 週期性極化結構 32
第三章 極化反轉結構製作 35
3.1 極化反轉原理 35
3.2 金屬電極之選擇 38
3.3 液態電極製具設計 39
3.4電壓極化反轉實驗架設 42
第四章 倍頻元件製程 44
4.1 鈮酸鋰光波導製程 44
4.1.1 晶片切割 44
4.1.2 晶片清洗 45
4.1.3 黃光微影製程 46
4.1.4 金屬薄膜鍍膜 49
4.1.5 晶片研磨拋光 51
4.2 鈮酸鋰光波導簡介 51
4.2.1 質子交換式光波導 51
4.2.2 金屬擴散式光波導 53
4.3 脊形結構製程 54
4.3.1 傳統脊形結構 55
4.3.2 新式脊形結構 57
4.4 倍頻元件製程步驟 59
第五章 倍頻元件製作與量測結果 63
5.1 極化反轉現象 63
5.2 利用切割方式製作脊形結構 72
5.3 二倍頻綠光量測 77
第六章 結論與未來展望 80
參考文獻 81
中英文名詞對照表 88
附錄:發表於2011年台灣真空學會研討會之論文 91


[1]S. E. Miller, ”Integrated Optics : An Introduction,” Bell. Syst. Tech. J., vol. 48, pp. 2059-2069, 1969.
[2]A. Yariv, and P. Yeh, Optical Waves in Crystals, pp.518, 1983.
[3]J. A. Armstrong, N. Blombergen, J. Ducuing, and P. S. Pershan, “Interaction between light waves in a nonlinear dielectric,” Phys. Rev., vol. 127, pp. 1918-1939, 1962.
[4]M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Tech. Lett., vol. 11, no. 6, pp. 653-655, 1999.
[5]Y. Q. Lu, M. Xiao, and G. J. Salamo, “Wide-bandwidth high frequency electro-optic modulator based on periodically poled LiNbO3,” Appl. Phys. Lett., vol. 78, pp. 1035-1037, 2008.
[6]林宜慶, 高電壓致鈮酸鋰小週期區域反轉與動力學研究, 碩士論文, 國立台灣大學光電工程所, 台北, 1999.
[7]M. Asobe, O. Tadanaga, T. Yanagawa, H. Itoh, and H. Suzuki, “Reducing photorefractive effect in periodically poled ZnO and MgO-doped LiNbO3 wavelength converters,” Appl. Phys. Lett., vol. 78, pp. 3163-3165, 2001.
[8]T. Volk, M. Wohlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. fischer, and R. Bower, “LiNbO3 with the damage-resistant impurity indium,” Appl. Phys. Lett., vol. 60, pp. 217-225, 1995.
[9]L. H. Peng, Y. C. Zhang, and Y. C. Lin, “Zinc oxide doping effects in polarization switching of lithium niobate,” Appl. Phys. Lett., vol. 78, pp. 4-6, 2001.
[10]D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett., vol. 44, pp. 847-849, 1984.
[11]K. Niwa, Y. Furukawa, S. Takekawa, and K. Kitamura, “Growth and characterization of MgO doped near stoichiometric LiNbO3 crystals as a new nonlinear optical material,” J. Crystal Growth, vol. 208, pp. 493-500, 2000.
[12]H. Y. Shen, H. Xu, Z. D. Zeng, W. X. Lin, R. F. Wu, and G. F. Xu, “Measurement of refractive indices and thermal refractive-index coefficients of LiNbO3 crystal doped with 5 mol. % MgO,” Appl. Opt., vol. 31, pp. 6695-6697, 1992.
[13]E. J. Lim, M. M. Fejer, R. L. Byer, and W. J. Kozlovsky, “Blue light generation by frequency doubling in periodically poled lithium niobate channel waveguide,” Electron. Lett., vol. 25, pp. 731-732, 1989.
[14]J. R. Carruthers, G. E. Peteson, and M. Grasso, “Nonstoichiometry and crystal growth of lithium niobate,” J. Appl. Phys., vol. 42, pp. 1846-1851, 1971.
[15]C. S. Lau, P. K. Wei, C. W. Su, and W. S. Warry, “Fabrication of magnesium-oxide-induced lithium out-diffusion waveguides,” IEEE Photon. Tech. Lett., vol. 4, pp. 872-875, 1992.
[16]Y. Y. Zhi, S. N. Zhu, and J. F. Hong, “Domain inversion in LiNbO3 by proton exchange and quick heat treatment,” Appl. Phys. Lett., vol. 65, pp. 558-560, 1994.
[17]H. Ito, C. Takyu and H. Inaba, “Fabrication of periodic domain grating in LiNbO3 by electron beam writing for application of nonlinear optical processes,” Electron. Lett., vol. 27, pp. 1221-1222, 1991.
[18]D. Feng, N. B. Ming, J. F. Hong, Y. S. Zhu, and Y. N. Wang, “Enhancement of second-harmonic generation in LiNbO3 crystal with periodic laminar ferroelectric domains,” Appl. Phys. Lett., vol. 37, pp. 607-609, 1980.
[19]I. Camlibel, “Spontaneous polarization measurements in several ferroelectric oxides using pulsed-field method,” J. Appl. Phys., vol. 40, pp. 1690-1693, 1969.
[20]M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodical poled by applying an external field for efficient blue second harmonic generation,” Appl. Phys. Lett., vol. 62, pp. 435-436, 1993.
[21]L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenbeg, and J. W. Pierce, “Quasi-phase matched optical parametric oscillators in bulk periodically poled LiNbO3 ,” J. Opt. Soc. Am. B., vol. 12, pp. 2102-2116, 1995.
[22]H. Ishizuki, T. Taira, S. Kurimura, J. H. Ro, and M. Cha, “Periodic poling in 3-mm-thick MgO:LiNbO3 crystals,” Jpn. J. Appl. Phys., vol. 42, pp. L108-L110, 2003.
[23]H. Ishizuki, I. Shoji, and T. Taira, “High-energy quasi-phase-matched optical parametric oscillation in a 3-mm-thick periodically poled MgO:LiNbO3 device,” Opt. Lett., vol. 29, pp. 2527-2529, 2004.
[24]H. Ishizuki, and T. Taira, “Fabrication and characterization of 5-mm-thick periodically poled MgO:LiNbO3 device,” CLEO, vol. 3, pp. 2108-2110, 2005.
[25]N Horikawa, T. Tsubouchi, M. Fujimura, and T. Suhara, “Formation of domain-inverted grating in MgO:LiNbO3 by voltage application with insulation layer cladding,” Jpn. J. Appl. Phys., vol. 46, pp. 5178-5180, 2007.
[26]M. Fujimura, and T. Suhara, “Formation of MgO:LiNbO3 domain-inverted gratings by voltage application under UV light irradiation at room temperature,” Advances in OptoElectronics, vol. 2008, article ID 421054, 2008.
[27]M. Fujimura, E. Kitado, T. Inoue, and T. Suhara, “MgO:LiNbO3 waveguide quasi-phase-matched second-harmonic generation devices fabricated by two-step voltage application under UV light,” IEEE Photon. Tech. Lett., vol. 23, pp. 1313-1315, 2011.
[28]L. Gui, H. Hu, M. G. Granda, and W. Sohler, “Local periodic poling of ridges and ridge waveguides on X- and Y-Cut LiNbO3 and its application for second harmonic generation,” Opt. Express, vol. 17, pp. 3923-3928, 2009.
[29]T. Kishimoto, and K. Nakamura, “Periodically poled MgO-doped stoichiometric LiNbO3 wavelength converter with ridge-type annealed proton-exchanged waveguide,” IEEE Photon. Tech. Lett., vol. 23, pp. 161-163, 2011.
[30]B. E. A. Saleh and M. C. Teich, Fundamentals of photonics-second edition, Hoboken and New Jersey: John Wiley & Sons, pp. 884-885, 2007.
[31]P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett., vol. 8, pp. 21-23, 1962.
[32]錢士雄,王恭明,非線性光學-原理與進展,上海:復旦大學出版社,65頁,2001年。
[33]趙聖之,非線性光學,山東:山東大學出版社,89-93頁,2007年。
[34]葉佩弦,非線性光學物理,北京:北京大學出版社,125-128頁,2007年。
[35]姚建詮,徐德剛,全固態雷射與非線性光學頻率轉換技術,北京:科學出版社,68-71頁,2007年。
[36]W. R. Bosenberg, J. I. Alexander, L. E. Myers, and R. W. Wallace, “2.5-W, continuous-wave, 629-nm solid-state laser source,” Opt. Lett., vol. 23, pp 207-209, 1998.
[37]P. E. Powers, T. J. Kulp, and S. E.Bisson, “Continuous tuning of a continuous-wave periodically poled lithium niobate optical parametric oscillator by use of a fan-out grating design,” Opt. Lett., vol. 23, pp 159-161, 1998.
[38]C. Weiss, G. Torosyan, J. P. Meyn, R. Wallenstein and R. Beigang, “Tuning characteristics of narrowband THz radiation generated via optical rectification in periodically poled lithium niobate,” Opt. Express, vol. 8, pp. 497-502, 2001.
[39]G. D. Miller, Periodically poled lithium niobate: modeling, fabrication, and nonlinear-optical performance, Ph.D. Thesis, University of Stanford, State of California, U. S. A., 1998.
[40]G. D. Miller, R. G. Batchko, M. M. Fejer and R. L. Byer, “Visible quasi-phase-matched harmonic generation by electric-field-poled lithium niobate,” SPIE Proceedings, vol. 2700, pp. 34-45, 1996.
[41]V. Y. Shur and E. L. Rumyantsev, “Domain kinetics in the formation of a periodic domain structure in lithium niobate,” Phys. Solid State, vol. 41, pp. 1681-1687, 1999.
[42]K. Mizuuchi, A. Morikawa, T. Sugita and K. Yamamoto, “Electric-field poling in MgO-doped LiNbO3,” J. Appl. Phys. Lett., vol. 96, pp. 6585-6590, 2004.
[43]Y. Chen, W. Yan, J. Guo, S. Chen and G. Zhang, “Effect of Mg concentration on the domain reversal of Mg-doped LiNbO3,” Appl. Phys. Lett., vol. 87, pp. 2129041-2129043, 2005.
[44]H. Ishizuki, “Periodical poling characteristics of congruent MgO:LiNbO3 crystals at elevated temperature,” Appl. Phys. Lett., vol. 82, pp. 4062-4064, 2003.
[45]H. Ishizuki and T. Taira, “High-energy quasi-phase-matched optical parametric oscillation in a periodically poled MgO:LiNbO3 device with a 5 mm × 5 mm aperture,” Opt. Lett., vol. 30, pp 2918-2920, 2005.
[46]T. Inoue and T. Suhara, “Electrooptic bragg deflection modulator using periodically poled MgO:LiNbO3,” IEEE Photon. Tech. Lett., vol. 23, pp. 1252-1254, 2011.
[47]K. Mizuuchi, T. Sugita and K. Yamamoto, “Efficient 340-nm light generation by a ridge-type waveguide in a first-order periodically poled MgO:LiNbO3,” Opt. Lett., vol. 28, pp 1344-1346, 2003.
[48]H. Furuya, A. Morikawa, K. Mizuuchi and K. Yamamoto, “High-beam-quality continuous wave 3 W green-light generation in bulk periodically poled MgO:LiNbO3,” Jpn. J. Appl. Phys., vol. 45, pp. 6704-6707, 2006.
[49]R. G. Batchko, M. M. Fejer and R. L. Byer, “Continuous- wave quasi-phase-matched generation of 60 mW at 465 nm by single-pass frequency doubling of a laser diode in backswitch-poled lithium niobate,” Opt. Lett., vol. 24, pp 1293-1295, 1999.
[50]S. W. Kwon, Y. S. Song, W. S. Yang, H. M. Lee, W. K. Kim, H. Y. Lee, B. Y. Kim, M. H. Lee and D. Y. Lee, “Influence of annealing temperature on domain shape of periodically poled LiNbO3 for Ti:LN waveguides,” Thin Solid Films, vol. 515, pp. 922-926, 2006.
[51]林耀東, 鉭酸鋰非線性光子晶體雷射與其高溫製程, 碩士論文, 國立台灣大學光電工程所, 台北, 2002.
[52]J. L. Jackel, C. E. Rice and J. J. Veselka, “Proton exchanged for high index waveguides in LiNbO3,” Appl. Phys. Lett., vol. 41, pp. 607-608, 1982.
[53]J. L. Jackel, C. E. Rice and J. J. Veselka, “Composition control in proton exchanged LiNbO3,” Electron. Lett., vol. 19, pp. 387-388, 1983.
[54]A. Y. Yan, “Index instabilities in proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett., vol. 42, pp. 633-635, 1983.
[55]Y. N. Korkishko, V. A. Fedorov, E. A. Baranov, M. V. Proyaeva and T. V. Morozova, “Characterization of α-phase soft proton-exchanged LiNbO3 optical waveguides,” J. Opt. Soc. Am. A, vol. 18, pp. 1186-1191, 2001.
[56]P. G. Suchoski, T. K.Findakly and F. J. Leonberger, “Stable low-loss proton-exchanged LiNbO3 waveguide devices with no electro-optic degradation,” Opt. Lett., vol. 13, pp. 1050-1052, 1988.
[57]M. N. Armenise, “Fabrication techniques of lithium niobate waveguides,” IEEE Proc., vol. 135, pp. 85-91, 1988.
[58]G. J. Griffiths and R. J. Esdaile, “Analysis of titanium diffused planar optical waveguides in lithium niobate,” IEEE. J. Quantum Electron., vol. 20, pp. 149-159, 1984.
[59]I. P. Kaminow and J. R. Carruthers, “Optical waveguiding layer in LiNbO3 and LiTaO3,” Appl. Phys. Lett., vol. 22, pp. 326-328, 1973.
[60]F. Laurell, J. Webjorn, G. Arvidsson and J. Holmberg, “Wet etching of proton-exchanged lithium niobate – a novel processing technique,” J. Lightwave Technol., vol. 10, pp. 1606-1609, 1992.
[61]C. L. Sones, S. Mailis, W. S. Brocklesby, R. W. Eason and J. R. Owen, “Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations,” J. Mater Chem., vol. 12, pp. 295-298, 2002.
[62]H. Hu, R. Ricken, W. Sohler and R. B. Wehrspohn, “Lithium niobate ridge waveguides fabricated by wet etching,” IEEE Photon. Tech. Lett., vol. 19, pp. 417-419, 2007.
[63]T. J. Wang, C. F. Huang, W. S. Wang and P. K. Wei, “A novel wet-etching method using electric-field-assisted proton exchange in LiNbO3,” J. Lightwave Technol., vol. 22, pp. 1764-1771, 2004.
[64]T. J. Wang, Y. H. Tsou and Y. C. Chang, “Direct wet etching in z-cut lithium niobate,” OPT, pp.153, 2008.
[65]W. S. Yang, H. Y. Lee, W. K. Kim and D. H. Yoon, “Asymmetry ridge structure fabrication and reactive ion etching of LiNbO3,” Opt. Mater., vol. 27, pp. 1642-1646, 2005.
[66]S. Shinada, T. Kawanishi, T. Sakamoto and M. Izutsu, “An optical grating filter dry-etched on a LiNbO3 substrate,” IEICE Electron. Expr., vol. 3, pp. 347-352, 2006.
[67]H. Hui, R. Ricken and W. Sohler, “Etching of lithium niobate: from ridge waveguides to photonic crystal structures,” Proc. ECIO Eindhoven, Netherlands, pp. 75-78, 2008.
[68]N. Courjal, B. Guichardaz, G. Ulliac, J. Y. Rauch, B. Sadani, H. H. Lu and M. P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D Appl. Phys., vol. 44, pp. 305101, 2011.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top