跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/08/03 20:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:江旻學
研究生(外文):Min-Hsueh Chiang
論文名稱:銀/多層石墨烯對P型氮化鎵歐姆接觸特性之研究
論文名稱(外文):Study of Ag/multi-layer graphene ohmic contacts to p-type GaN
指導教授:陳隆建陳隆建引用關係
指導教授(外文):Lung-Chien Chen
口試委員:林瑞明藍文厚
口試委員(外文):Ray-Ming LinWen-How Lan
口試日期:2012-07-05
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:光電工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:99
中文關鍵詞:多層石墨烯射頻反應式磁控濺鍍法P型氮化鎵特徵接觸電阻
外文關鍵詞:Multi-layer grapheneRF reactive magnetron sputteringP-GaNSpecific contact resistance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:245
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究以射頻反應式磁控濺鍍法分別在玻璃及藍寶石基板上成長多層石墨烯(multi-layer graphene)。藉由改變濺鍍參數,如射頻功率、氬氣流量及濺鍍時間,探討濺鍍參數對於多層石墨烯薄膜特性的影響。對於薄膜特性之分析,利用SEM、XRD及拉曼光譜分別探討表面結構分析、元素成分和分子結構,也利用四點探針量測片電阻值,並分別探討不同溫度熱退火其差異性。結果發現,在真空下,退火溫度達800℃時,其片電阻值2.2KΩ/□,為最佳參數。多層石墨烯特性量測之後,繼續使用磁控濺鍍法,將銀、鎳薄膜及多層石墨烯依序沉積在p-GaN層上,並使用傳輸線模型(Transmission Line Model,TLM)探討與p-GaN之間的歐姆接觸特性。實驗結果顯示,Ag/Ni/graphene/p-GaN在真空環境下經過700℃退火10分鐘,有最低特徵電阻值,約1.03×10-3Ω-cm2。


In this dissertation investigates the growth of multi-layer graphene on glass and sapphire by RF reactive magnetron sputtering. By changing deposition condition to analyze the characteristics of multi-layer graphene.
For the analysis of thin films, surface structure,elements composition and of multi-layer graphene were characterized by SEM, XRD and Raman spectroscopy measurements.Sheet resistances of multi-layer graphene were measured by 4-Point Probe ,and changing the temperature of annealing to obtain the different performances of multi-layer graphene. We can get the best sheet resistances was 2.2KΩ/□ by annealing at the temperature of 800℃ for 10 min in vacuum.
After analysis of this film,deposition of Ag/Ni/multi-layer graphene by RF reactive magnetron sputtering on p-GaN films to fabricated transmission line model (TLM),and resaerch ohmic contact between multi-layer graphene and p-GaN. The result showed that the lowest specific contact resistance obtained about 1.03×10-4 Ω-cm2 by annealing at the temperature of 700℃ for 10 min in vacuum.


摘 要 i
ABSTRACT ii
誌 謝 iv
目 錄 v
表目錄 viii
圖 目 錄 ix
第一章 緒論 1
1.1研究動機 1
1.2研究方法與論文架構 3
第二章 理論基礎與文獻回顧 4
2.1石墨烯(graphene)材料 4
2.1.1石墨烯簡介 4
2.1.2石墨烯之結構與特性 4
2.1.3石墨烯製備技術文獻回顧 5
2.1.3.1 撕裂石墨法(exfoliating graphite) [28] 6
2.1.3.2 化學還原氧化石墨烯(reduced grapheme oxide, rGO) 6
2.1.3.3 超高真空退火單晶(0001)碳化矽(SiC) 8
2.1.3.4熱裂解化學氣相高溫成長(thermal chemical vapor deposition) 8
2.1.4石墨烯的應用 10
2.2濺鍍(Sputter)原理 [49] 11
2.2.1反應式濺鍍法(Reactive Sputtering) 12
2.2.2直流式濺鍍法(Direct Current Sputtering) 13
2.2.3射頻濺鍍法(Radio Frequency Sputtering) 13
2.2.4磁控濺鍍法(Magnetron sputtering) 13
2.3傳輸線模型原理(Transmission Line Model, TLM) 14
2.4 歐姆接觸特性理論 15
第三章 實驗方法與步驟 18
3.1實驗架構 18
3.2實驗材料 19
3.3實驗設備 20
3.3.1 射頻反應式磁控濺鍍系統[55] 20
3.3.2快速退火爐 (Rapid thermal anneal)[56] 21
3.3.3 光罩對準儀 (Mask Aligner) 21
3.4實驗流程 23
3.4.1清洗基板 23
3.4.2石墨烯(graphene)沉積步驟 23
3.4.3石墨烯薄膜熱退火處理步驟 23
3.4.4 TLM製程步驟 24
3.4.5反射式LED元件製作 25
3.4.5.1 去酯處理 25
3.4.5.2 去除表面氧化層處理 26
3.4.5.3 製作MESA結構 26
3.4.5.4 歐姆接觸反射式電極製程 27
3.5實驗量測儀器系統與原理 28
3.5.1掃瞄式電子顯微鏡(Scanning Electron Microscope, SEM) [35] 28
3.5.2 四點探針(4-Point Probe) 29
3.5.3 X光繞射儀(X-ray diffractometer)[57] 30
3.5.3.1掠角X繞射原理 32
3.5.3.2 The Debye-Scherrer formula 33
3.5.4 拉曼光譜量測[57] 34
3.5.4.1拉曼散射原理 35
3.5.4.2拉曼光譜儀 36
3.5.4.3拉曼光譜量測步驟 37
3.5.5穿透及反射光譜量測[35] 37
第四章 實驗結果與討論 39
4.1濺鍍參數對多層石墨烯特性之影響 39
4.1.1 SEM截面分析 39
4.1.2穿透率分析 40
4.1.3片電阻分析 40
4.1.4 XRD分析 41
4.2不同熱退火溫度對多層石墨烯特性之影響 41
4.2.1不同沉積時間於熱退火對多層石墨烯特性之分析 42
4.2.1.1 SEM表面分析 42
4.2.1.2片電阻分析 42
4.2.1.3 XRD分析 43
4.2.1.4 拉曼光譜分析 43
4.2.2熱退火於不同射頻功率對多層石墨烯特性之分析 44
4.2.2.1 SEM表面分析 44
4.2.2.2電特性分析 44
4.2.2.3 XRD分析 45
4.2.2.4 拉曼光譜分析 45
4.3 銀/多層石墨烯反射式電極之光特性 46
4.4銀/多層石墨烯反射式電極之電特性 46
4.5氮化鎵LED元件光電特性分析 46
4.5.1 電特性分析 47
4.5.2 光特性分析 47
第五章 結論 48
參考文獻 49


[1] K.Linthicum, T.Gehrke,“Pendeoepitaxy of gallium nitride thin films,” Appl. Phys. Lett., vol. 75,1999, pp. 196.
[2]T. Fujii, Y. Gao, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett., vol. 84, 2004, pp. 855.
[3]M.R.Kramas,“High power truncatedinverted-pyramid (AlxGa1-x)0.5In0.5P/GaP lightemitting diodes exhibiting >50% external quantum efficiency”Appl. Phys. Lett., vol. 75, 1999, pp. 2365-2367.
[4]H.Chul, L .K. Seung,“Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface”J. Appl. Phys.vol 93, 2003, pp.9383.
[5]M. Boroditsky,“Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals”,Appl. Phys. Lett., vol. 78, 1999, pp.1036-1038.
[6]D. R. Lide, “ Handbook of Chemistry and Physics”, 2001,pp.12-130.
[7]李秉璋, 王正和,金屬反射膜材料簡介,工業材料,168期, 2000, pp. 125-130.
[8]D. L. Hibbard, S. P. Jung, “Low resistance high reflectance contacts to p-GaN using oxidized Ni/Au and Al or Ag ”, Appl. Phys. Lett.,2003, vol.83,pp.311.
[9]J. W .Ho and L. J. Lam, “ Ohmic contacts for high power LEDs”, Appl. Phys. Lett., vol.201, 2004, pp.2831-2836.
[10] J.O. Song,“Recent development of patterned structure light-emitting diodes”, Proceedings of SPIE -The International Society for Optical Engineering, 2005,pp.1-8.
[11] Kim S.S., Adv. Mater,vol. 20, 2008 ,pp. 4061.
[12] Wang X, Nano Lett,vol 8,2007,pp. 323.
[13]J.H.Katharria,“Work-function-tuned multilayer graphene as current spreading electrode in blue light-emitting diodes”,Applied Physics Letters, vol.100,2012, pp2- 9.
[14]L.Xuesong,C.Weiwei,“Large Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils, Science,vol 324, 2009, pp.1312.
[15]P.R.Wallace, “ The band theory of graphite”, Phy.R.,vol.71,1947,pp.622-634.
[16]R. E.Peierls, “Quelques proprietes typiques des corpses solides”,Ann. I. H. Poincare 5, 1935,pp.177–222.
[17]L. D.Landau, “Zur Theorie der phasenumwandlungen II. Phys. Z. Sowjetunion 11”, 1937,pp.26–35.
[18]K. S. Novoselov, S. V. Morozov, “ Electric field in atomically thin carbon films”, Science,vol 306,2004,pp.666.
[19]J.C. Charlier,J. Zhu, “Advanced Topics in the Synthesis, Structure, Properties and Applications. Electron and Phonon Properties of Graphene: Their Relationship with Carbon Nanotubes” ,Carbon Nanotubes, 2008.
[20] K. S. Novoselov, A.K Geim, “Detection of individual gas molecules adsorbed on graphene”, Nature Materials,vol 6, 2007,pp.652-655.
[21] K. S. Novoselov, S. V. Morozov, “ Electric field in atomically thin carbon films”, Science,vol 306,2004,pp.666.
[22] A. Alexander, G.Suchismita,“ Superior Thermal Conductivity of Single-Layer Graphene”, Nano Lett, vol. 8, 2008, pp. 902-907.
[23] K. S.Kim, Y.Zhao, “ Large-scale pattern growth of graphene films for stretchable transparent electrodes” ,Nature , vol.457,2009,pp.706.
[24]K.I. Bolotin, K.J. Sikes,“Ultrahigh electron mobility in suspended graphene”, Solid State Communications, vol.146,2008, pp.351-355.
[25]A. H. Castro Neto, K. S. Novoselov, “ The electronic properties of graphene”, Reviews of Modern Physics,vol 81,2009, pp.109.
[26]F.Schedin,“Detection of individual gas molecules adsorbed on graphene” , Nature Materials, vol 6,2007, pp.652-655.
[27] Sunmin Ryu, Young-Jun Yu , Nano Letter,vol 10,2010.
[28] K. S. Novoselov, A. K. Geim,“Electric field in atomically thin carbon films ”, Science,vol 306,2004,pp. 666.
[29]Y. Zhang, J.P.Small, “Fabrication and electric field dependent transport measurements of mesoscopic graphite devices”, Appl. P. L.,vol 86,2005,pp. 073104-3.
[30] B. C. Brodie, Philos. Trans. R. Soc. London,vol 149,1859,pp. 249 .
[31]W.S.Hummer,“Preparation of graphitic oxide”,J.A.Che.Socs,vol8,1958.pp.1339.
[32] Y. Xu, J. Am. Chem. Soc., vol 130,2008,pp. 5856.
[33] S. Stankovich, “Graphene-based composite materials ”,Nature, vol 442,2006,pp. 282.
[34] G. Eda, Nature Nanotech, vol 3,2008,pp. 210 .
[35] Vincent C. Tung, Yang Yang, “High-throughput solution processing of large-scale graphene”,nature nanotechnology ,vol4, 2009,pp. 25-29.
[36] C. Y. Su, ACS Nano, vol 4, 2010,pp.5285.
[37] C. Berger, Z. Song, Electronic confinement and coherence in patterned epitaxial graphene, Science,vol 312,2006,pp. 1191.
[38] K. V. Emtsev, A. Bostwick, “Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide”, Nat. Mater,vol 8, 2009,pp.203.
[39]P.R.Somani,S.P.Somani, “Planer nano-graphenes from camphor by CVD ” ,Chem. Phys. Lett.,vol 430,2006,pp. 56.
[40]A. N. Obraztsov, E. A. Obraztsova, “ Raman scattering characterization of CVD graphite films” , Carbon,vol 45, 2007,pp.2017.
[41]Q.Yu, J. Lian, “Graphene segregated on Ni surfaces and transferred to insulators ”, Appl. Phys. Lett.vol 93, 2008,pp.103-113.
[42] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus and J. Kong, “Layer Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition” , Nano Lett,vol 9,2009,pp.30.
[43] K. S. Kim, Y. Zhao, “Large-scale pattern growth of graphene films for stretchable transparent electrodes”, Nature, vol 457, 2009,pp.706-710.
[44] X. Li, W. Cai, “Large-area synthesis of high-quality and uniform graphene films on copper foils”, Science,vol 324,2009, pp.1312.
[45]B. J. Kim, M. A. Mastro,“ Transparent conductive graphene electrode in GaN-based ultra-violet light emitting diodes”, Opt. Express, vol 18,2010, pp.23030-23034.
[46]K Chung, C. H. Li and G. C. Yi, “Transferable GaN Layers Grown on ZnO-Coated Graphene Layers for Optoelectronic Devices”, Science, vol.330,2010 pp.655-657 .
[47] J. M. Lee, J. W. Choung, “Vertical Pillar-Superlattice Array and Graphene Hybrid Light Emitting Diodes”, Nano Lett.,vol 10, 2010,pp.2783-2788.
[48] G. Jo, M. Choe, “ Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes”,Nanotechnology,vol.21, 2010,pp175201.
[49]周育正,使用Ag金屬力子輔助式蝕刻技術製作具有為米孔洞結構砷化鎵混合型光伏元件之研究,碩士論文,國立臺北科技大學光電系,2010。
[50]Hong Xiao, Introduction to Semiconductor Manufacturing Technology, Prentice-Hall, Inc.(2000).
[51]翁睿哲,以射頻磁控濺鍍氮化鉭薄膜製程條件對顯微結構及電性影響研究,碩士論文,國立成功大學材料科學與工程學系,2001。
[52] N. Danson, I. Safi , “Techniques for the sputtering of optimum indium-tin oxide films on to room-temperature substrates”, Surface and Coatings Technology,vol 99,1998, pp.147-160.
[53] Dieter K. Schroder,Semiconductor Material and Device Characterization”, Wiley 1998.
[54] Gregory S. Marlow, Solid State Elec.,vol 25,1982,pp.91.
[55]陳志明,氧化鋅摻雜氧化銦對P型氮化鎵歐姆接觸特性之研究,碩士論文,國立臺北科技大學光電工程系,2005。
[56]李宜璇,利用熱氧法製作IZO/Cu2O異質接面太陽能電池及其特性之研究,碩士論文,國立臺北科技大學光電工程系,2011。
[57]許雅瑛,p-MnZnO/n-Si結構光偵測二極體於強磁場下之光電特性的研究,碩士論文,國立臺北科技大學光電工程系,2009。
[58] M. Benedicte, B. Olivier, J. of Crystal Growth,vol 269,2004,pp.15-21 .
[59]A. Yamamoto, M. Tsujino, J. of Crystal Growth, vol 137,1994,pp.415.
[60] J. Yang, Y. Zhou , “Synthesis, characterization and optical property of graphene oxide films”, Appl. Surf. Sci.,vol 258 2012, pp.5056– 5060.
[61]王宏文,淺談表面聲波感應器,工業材料--精密陶瓷專輯89 期,民國95 年
[62]周锋,万欣,傅迎庆, 氧化石墨还原法制备石墨烯及其吸附性, Journal of Shenzhen university science and engineering ,vol. 28, 2011.
[63]Seung Hun Huh, “Thermal Reduction of Graphene Oxide”, Nanotechnology Convergence Lab Institute of Ceramic Engineering and Technology (KICET),2008.
[64] T.Zhou, F. Chen, “A simple and efficient method to prepare graphene by reduction of graphite oxide with sodium hydrosulfite”, Nanotechnology,vol. 22, 2011, pp.045704
[65]Tuinstra F,“Raman spectrum of graphite”,J.Che. Phy.,vol 53,1970,pp1126-1130 .
[66] Stankovich S, Dikin D A, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide”, Carbon ,vol 45,2007,pp1558
[67] G. Jo, M.Choe, “Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes”, Nanotechnology,vol 21,2010 pp.175201.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top