跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/15 08:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:何政育
研究生(外文):Jheng-Yu He
論文名稱:提昇鈮酸鋰微碟形元件共振特性之研究
論文名稱(外文):Enhancement of Resonant Properties of LiNbO3 Microdisk Devices
指導教授:王子建
口試委員:牛寰彭隆瀚王維新
口試日期:2012-07-27
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:光電工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:61
中文關鍵詞:鈮酸鋰微碟形共振腔離子佈植錐形光纖
外文關鍵詞:lithium niobatemicro diskresonatorion implantationfiber taper
相關次數:
  • 被引用被引用:9
  • 點閱點閱:185
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研製具有縱向高折射率對比、高品質因子之鈮酸鋰微碟形元件,並量測分析其共振特性。在元件製作上,使用離子佈植與濕式蝕刻在鈮酸鋰-z面上製作出具有底切結構之微碟形元件,此結構具有橫向與縱向高折射率對比,使光場能完全侷限在共振腔中,降低光傳播時所造成的散射與輻射損失。實驗中使用表面熱流處理製程,以接近物質熔點的高溫使材料表面具流動性,藉由表面張力而達到自然修飾表面結構之目的,如此可減少由於蝕刻過程所造成的粗糙表面與不平整圖樣邊緣,降低元件表面的散射損耗,提昇元件的共振特性。微碟形元件的量測使用錐形光纖耦合法進行光耦合,極細的錐形可使得光纖中的傳輸光場具有延伸至自由空間程度較大的衰逝場,提昇耦合的效率。實驗中使用錐形光纖分別對未熱流與熱流3小時之直徑20μm微碟形元件進行耦合傳輸頻譜量測,未熱流之微碟形元件的FSR約為15.9nm、品質因子為4565;而熱流3小時之微碟形元件的FSR約為15.6nm、品質因子為18601。實驗結果顯示,所製作的鈮酸鋰微碟形元件具有高達104的品質因子,未來可進一步結合鈮酸鋰優良的電光與非線性光學效應,製作高效能的鈮酸鋰微碟形共振元件。

In this work, we fabricated LiNbO3 microdisk devices, which have high refractive index and quality factor, we also measure and analyze the characteristic of resonance. The –z face under-cut structure is fabricated by using ion implantation and wet etching techniques to achieve, its horizontal and vertical high index contrast, making it a more effective limititation of the light field in the resonator, reducing the scatter and radiation loss when light transmission. In the experiment, we can enhance the resonantor’s characteristic and lower the scatter loss of the device by use the surface thermal reflow process, approaching the melting temperature of the lithium niobate, making the surface more smoothly. In this way, we can reduce the roughness surface and irregularity pattern boundary, which is cause by wet etching. The thin region of the fiber taper is, the strong the evanescent field extend, which can elevate the coupling efficiency. By using the strong evanescent field in the tapered region we can couple it to micro disk. In the thesis, coupling to micro disk with 20μm diameter, thermal reflow non-thermal reflow and three hours separately, in non-thermal reflow we can get the FSR about 15.9nm, quality factor 4565,in thermal reflow three hours we can get FSR about 15.6nm, quality factor 18601.As shown the result, our lithium niobate micro disk have quality factor high as 104. In the future we will combine the electro-optic and nonlinear optic effect, fabricating high effective lithium niobate micro disk resonance device.

中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1積體光學簡介 1
1.2鈮酸鋰晶體特性 2
1.3微碟形共振腔 4
1.4論文內容簡介 8
第二章 理論分析 10
2.1微碟形共振腔模態理論分析 10
2.1.1幾何光學理論 10
2.1.2波動光學理論 12
2.1.3共振模態分析 15
2.2本質品質因子與外部品質因子 16
2.3耦合因子 18
第三章 微碟形元件製程 20
3.1鈮酸鋰元件製程 20
3.1.1薄膜沉積 20
3.1.2微影製程 21
3.1.3高溫熱處理 22
3.1.4離子佈植 23
3.1.5濕式蝕刻 25
3.2鈮酸鋰底切蝕刻製作原理 26
3.3鈮酸鋰微碟形元件製程步驟 27
3.4表面熱流處理 30
第四章 微碟形元件特性量測 33
4.1微碟形元件量測技術 33
4.2錐形光纖製作 35
4.3量測架設與量測步驟 37
第五章 結果與討論 40
5.1鈮酸鋰微碟形元件製作 40
5.1.1佈植離子電流對蝕刻速率的影響 40
5.1.2晶格破壞區擴展 42
5.1.3表面熱流處理平滑化製程 43
5.2鈮酸鋰微碟形元件特性量測與分析 46
5.2.1傳輸光譜量測結果分析 46
5.2.2耦合間距分析 49
第六章 結論 52
參考文獻 53
中英文名詞對照表 56
附錄:發表於2011年電子工程技術研討會之論文 58


[1]R. E. Slusher, A. F. J. Levi, U. Mohideen, S. L. McCall, S. J. Peat-ton and R. A. Logan, “Threshold characteristics of semiconductor microdisk lasers,” Appl. Phys. Lett., vol. 63, pp. 1310-1312, 1993.
[2]W. Fang, D. B. Buchholz, R. C. Bailey, J. T. Hupp, R. P. H. Chang and H. Cao, “Detection of chemical species using ultraviolet microdisk lasers,” Appl. Phys. Lett., vol. 85, pp. 3666-3668, 2004.
[3]A. Morand, K. Phan-Huy, B. Martin, F. Bredillot, D. Amans, P. Benech, J. Verbert, E. Hadji and J. M. Fedeli , “Compact add-and-drop and wavelength filter based on microdisk on SOI substrate,” Proc. of SPIE, vol. 6125, pp. 61250R1-61250R8, 2006.
[4]S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett., vol. 60, pp. 289-291, 1992.
[5]D. K. Armani, T. J. Kippenberg, S. M. Spillane and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature, vol. 421, pp. 925-928, 2003.
[6]T. Carmon, S. Y. T. Wang, E. P. Ostby and K. J. Vahala, “Wavelength-independent coupler from fiber to an on-chip cavity, demonstrated over an 850nm span,” Opt. Express., vol. 15, pp. 7677-7681, 2007.
[7]G. N. Conti, S. Berneschi, F. Cosi, S. Pelli, S. Soria, G. C. Righini, M. Dispenza and A. Secchi, “Planar coupling to high-Q lithium niobate disk resonators,” Opt. Express., vol. 19, pp. 3651-3656, 2011.
[8]C. Y. J. Ying, G. S. Murugan, G. Brambilla, C. L. Sones, J. S. Wilkinson, R. W. Eason, M. N. Zervas and S. Mailis, “LiNbO3 whispering-gallery mode micro-resonator,” Phto. and Opto., 2011.
[9]周劍英, 戴密特, 郝寅雷, 楊建義, 王明華, 江曉清, “圓碟中回音壁模式的耦合條件,” 光子學報, 第38卷, pp. 264-267, 2009.
[10]張志豪, ”砷化銦/砷化鎵微碟共振腔之光學特性研究,” 國立交通大學電子物理系碩士論文, 2009.
[11]A. M. Mintairov, Y. Chu, Y. He, S. Blokhin, A. Nadtochy, M. Maximov, V. Tokranov, S. Oktyabrsky and J. L. Merz, “High-spatial-resolution near-field photoluminescence and imaging of whispering-gallery modes in semiconductor microdisks with embedded quantum dots,” Phys. Rev. B., vol. 77, pp. 195322, 2008.
[12]M. K. Chin, D. Y. Chu, and S. T. Ho, “Estimation of the spontaneous emission factor for microdisk lasers via the approximation of whispering gallery modes,” J. Appl. Phys., vol. 75, pp. 3302-3307, 1994.
[13]M. Kuznetsov and H. A. Haus, “Radiation loss in dielectric waveguide structures by the volume current method,” IEEE J. Quant. Electron., vol. QE-19, pp. 1505-1514, 1983.
[14]F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quant. Electron., vol. 26, pp. 977-986, 1994.
[15]B. E. Little, J. P. Laine and H. A. Haus, “Analytic theory of coupling from tapered fibers and half-blocks into microsphere resonators,” J. of Light. Technol., vol. 17, pp. 704-715, 1999.
[16]S. M. Spillane, T. J. Kippenberg, O. J. Painter and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett., vol. 91, pp. 043902, 2003.
[17]C. Y. J. Ying, C. L. Sones, A. C. Peacock, F. Johann, E. Soergel, R. W. Eason, M. N. Zervas and S. Mailis, “Ultra-smooth lithium niobate photonic micro-structures by surface tension reshaping,” Opt. Express., vol. 18, pp. 11509-11513, 2010.
[18]H.J. Lee and S.-Y. Shin, “Lithium niobate ridge waveguides fabricated by wet etching,” Elec. Lett., vol. 31, pp. 268-269, 1995.
[19]A. Mazzei, S. Go‥tzinger, L.de S. Menezes, V. Sandoghdar and O. Benson, “Optimization of prism coupling to high-Q modes in a microsphere resonator using a near-field probe.” Opt. Comm., vol. 250, pp.428-433, 2005.
[20]K. Sasagawam and M. Tsuchiya, “Highly efficient third Harmonic generation in a periodically poled MgO:LiNbO3 disk resonator,” Appl. Phys. Express., vol. 2, pp.124401, 2009.
[21]N. Dubreuil, J. C. Knight, D. K. Leventhal, V. Sandoghdar, J. Hare, and V. Lef `evre, “Eroded monomode optical fiber for whispering-gallery mode excitation in fused-silica microspheres,” Opt. Lett., vol. 20, 1995, pp. 813-815.
[22]J. P. Laine, B. E. Little, and H. A. Haus, “Etch eroded fiber coupler for whispering gallery mode excitation in high silica microspheres,” IEEE Photon. Technol. Lett., vol. 11, pp. 1429-1430, 1999.
[23]J. C. Knight, G. Cheung, F. Jacques and T. A. Birks, ”Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper.” Opt. Lett.., vol. 22, pp. 1129-1131, 1997.
[24]L. Zhang, L. Liu, Z. Cai, C. Ye, G. Wen, “Fabricating subwavelength fiber tapers using a CO2 laser,” Proc. of SPIE, vol. 5623, pp. 987-994, 2005.
[25]T. J. Wang, Y. H. Tsou, W. C. Chang, H. Niu, “Fabrication of three-dimensional crystalline microstructures by selective ion implantation and chemical etching,” Appl. Phys. A, vol. 102, pp.463-467, 2011.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊