跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/25 08:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪培耕
研究生(外文):Pei-Geng Hung
論文名稱:銻掺入對脈衝雷射蒸鍍法成長之氧化錳鋅薄膜特性的影響
論文名稱(外文):Effects of Sb incorporation on the properties of the ZnMnO films synthesized by pulsed laser deposition
指導教授:洪魏寬
口試委員:林泰源黃智賢王耀德
口試日期:2012-07-24
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:光電工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:75
中文關鍵詞:脈衝雷射蒸鍍氧化錳鋅氧化鋅錳摻雜銻摻雜
外文關鍵詞:PLDZnOZnMnOSb doped ZnMnOMn doped ZnO
相關次數:
  • 被引用被引用:0
  • 點閱點閱:81
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究中我們探討緩衝層與銻掺入對脈衝雷射蒸鍍法成長之氧化錳鋅(ZnMnO)薄膜特性的影響。關於緩衝層對ZnMnO影響的部份,由X-ray繞射圖譜顯示,成長ZnO緩衝層會提高ZnMnO薄膜中Mn的溶解度,結晶品質變好。我們分別成長了不同膜厚之緩衝層(0nm,25nm,50nm,75nm,100nm),其中50nm之緩衝層之Mn掺入效率最好。而關於銻的掺入對ZnMnO薄膜影響的部份,由X-ray繞射圖譜與穿透光譜觀察到Sb的掺入導致ZnMnO薄膜中Mn摻雜濃度降低且減緩了ZnMnO薄膜能隙往高能量移動的速度。此外,我們從PL光譜中發現Sb的少量掺入,會使得ZnMnO薄膜(靶材Mn濃度從X=0.01到0.06)室溫下皆可觀測到發光峰值並有效提升發光效率,隨著Mn掺雜濃度的提升,峰值有藍移的現象。

The effects of the ZnO buffer layer and the Sb incorporation on the ZnMnO thin films grown on c-plane sapphire by the pulsed laser deposition were investigated. For the effects of the buffer layer, we found that the substituting Mn concentration and the crystalline quality of the ZnMnO films were strongly correlated with the thickness of the buffer layer. For the effects of the Sb incorporation, the results from x-ray diffraction and optical transmission spectra measurements indicated that the existence of Sb would lower the substituting Mn content. Furthermore, photoluminescence measurements showed that a very small amount of Sb incorporation would enhance the emission efficiency of the ZnMnO films. Band-edge emissions from Zn1-xMnxO films at room temperature were observed for x = 0.01 to 0.06

摘要 I
ABSTRACT III
誌謝 IV
第一章 緒論 1
1.1 前言 1
1.2 研究動機 1
第二章 文獻回顧 2
2.1 氧化鋅之物理及化學特性 2
2.2 氧化鋅的能帶結構 4
2.3 氧化鋅的型態與製備技術 4
2.4 氧化鋅光學特性 6
2.5 氧化錳鋅奈米結構與特性 8
第三章 實驗架構及流程 14
3.1 脈衝雷射蒸鍍系統(PULSED LASER DEPOSITION;PLD) 14
3.1.1 脈衝雷射蒸鍍作用機制 15
3.2 光學鏡片組與雷射光源 16
3.3 真空腔體(VACUUM CHAMBER) 18
3.4 實驗配置與設備 20
3.4.1 基板清洗流程 20
3.4.2 製作靶材 22
3.5 量測儀器原理概述 23
3.5.1 X光繞射分析[3.4][3.5] 23
3.5.2 X光繞射儀(X-ray Diffractometer) 24
3.5.3 光致激發螢光(Photoluminescence)光譜原理[3.4][3.6] 27
3.5.4 光致螢光光譜系統架構 29
3.5.5 穿透光譜 (Transmission spectroscopy) 30
第四章 實驗結果與討論 32
4.1 靶材分析 32
4.2 在氧化鋅緩衝層上成長氧化鋅薄膜 32
4.2.1 X-ray繞射分析 33
4.2.2 PL光譜分析 34
4.3摻雜銻於氧化錳鋅靶材成長氧化錳鋅薄膜 38
4.3.1 X-ray繞射分析 38
4.3.2 Zn1-xMnxO薄膜實際之x值 49
4.3.3 穿透光譜分析 53
4.3.4 PL光譜分析 62
第五章 結論 69
參考文獻 71




[1.1] Sang Hyuck Bae;Sang Yeol Lee;Beom Jun Jin;Seongil Im,Appl.Surf.Sci.
154-155(2000)458-461.
[1.2] B. J. Jin, S. H. Bae, S.Y.Lee and S. Im, Mater. Sci. Eng. B71 (2000)301-305.
[1.3] D.C.Look, Mater. Sci. Eng B 80 (2001)383.
[1.4] D.M. Bagnall, Y.F. Chen, Z. Zhu,T. Yao, S. Koyama, M.Y. Shen, T. Goto, Appl.
Phys. Lett. 70(1997)2230.
[1.5] M.H. Huang, S. Mao, H. Yan, Y.Y. Wu, H. Kind, E. Webber, R. Russo, P.D.
Yang, Science 292 (2001) 1897.
[2.1] Hadis Morkoc﹐ and Umit Ozgur. Zinc Oxide Fundamentals, Materials and Device Technology. Wiley-vch, 2007, pp13.
[2.2] U. Ozgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doan, V. Avrutin, S. J. Cho, H. Morkoc. J. Appl. Phys.98, 041301(2005).
[2.3] B. Meyer and Dominik Marx, Physical Review B, 67, 035403, 2003.
[2.4] D.G Thomas. J. Phys. Chem. So;ids 15, 86(1960).
[2.5] K. Shindo, A. Mortia, H. Kaminura. J. Phys. Soc. Jpn. 20, 2054(1965).
[2.6] W. R. L. Lambrecht, A. V. Rodina, S. Limpijumnong, B. Segall, B. K. Meyer. Phys. Rev. B 65, 075207(2002).
[2.7] A.Kobayashi, O.F. Sankey, S. M. Vola, J. D. Dow. Phys. Rev. B 28, 935(1983)
[2.8] U. Rossler. Phys, Rev. 184, 733(1969).
[2.9] B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Chriten , A. Holfmann, M. Straβburg, M. Dworzak, U. Haboeck, A. V. Rodina. Phys. Stat. Sol. (b)241, 231(2004).
[2.10] K. Iwata, P. Fons, S. Yamada, H. Shibata, K. Matsubara, K. Nakahara, H. Takasu, S. Niki. Phys. Stat. Sol.(b) 229,887(2002).
[2.11] B. K. Ryu, T. S. Lee, J. A Lubguban. A. B. Corman, H. W. White, J. H. Leem, M. S. Han, Y. S. Park, C. j. Youn, W. J. Kim. Appl. Phys. Lett. 88, 052013(2006).
[2.12] R. Triboulet, J. Perriere. Prog. Cryst. Growth Charact. Mater. 47, 65(2003)
[2.13] K. Tamura, A. Ohtomo, K. Saikusa, Y. Osaka, T. Makino, Y. Segawa, M. Sumiya, S. Fuke, H. Koinuma, M. Kawasaki. J. Cryst Growth 241-215, 59(2000).
[2.14] Hiroyuki Kato, Michihiro Sano, Kazuhiro Miyamoto, Takafumi Yao. J. Cryst Growth 237-238, 538(2002).
[2.15] T. E. Murphy, S. Walavalkar, J. D. Phillips. Appl. Phys. Lett. 85, 6338 (2004).
[2.16] Jih-Jen.Wu, Sai-Chang. Liu, Adv. Mater., 14, 215 (2002).
[2.17] B. D. Yao, Y. F. Chan, and N. Wang, Appl. Phys. Lett., 81, 757 (2002).
[2.18] W. I. Park, D. H. Kim, Appl. Phys. Lett., 81, 22 (2002).
[2.19] X. P. Gao, et al, Chem Commum, 1428-1429 (2004).
[2.20] T. Nagase, T. Ooie, Y. Nakatsuka, J. Appl. Phys. Part 2, 39, (7B),
L713-L715 (2002).
[2.21] S. A. Studenikin, N. Golego, J. Appl. Phys., 84, 2287-2293 (1998).
[2.22] Yan Jian-Feng, et al, J. Crystal Growth, 208, 206 (2005).
[2.23] Y. Li, et al, Appl. Phys. Lett., 76, 2001 (2000).
[2.24] N. Huby, S. Ferrari, E. Guziewicz, M. Godlewski, V. Osinniy. Appl. Phys. Lett. 92, 023502 (2008).
[2.25] M. Scharrer, X. Wu, A. Yamilov, H. Cao, R. P. H. Chang. Appl. Phys. Lett. 86, 151113 (2005).
[2.26] Sang-Woo Kim, Shizuo Fujita, Shigeo Fujita. Appl. Phys. Lett. 81, 5036 (2002).
[2.27] Jong-Soo Lee, Kwangsue Park, Myung-IL Kang, IL-Woo Park, Soo-Won Kim, Woon Kap Cho, Hyon Soo Han, Sangsig Kim. J. Cryst Growth 254, 423(2003).
[2.28] P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He and H.-J. Choi. Adv Funct Mate. 12, 323(2002).
[2.29] Clement Yuen, Siu F. Yu, Xiao W. Sun, Chun X. Xu, Eunice S. P. Leong, Shu P. Lau and Chung K. Chen. Jpn. J. Appl. Phys. 43 (2004).
[2.30] Z. W. Pan, Z. R. Dai, Z. L. Wang. Science 291,1947(2001).
[2.31] T. Makino1, C. H. Chia1, Nguen T. Tuan1, H. D. Sun1, Y. Segawa1, M. Kawasaki2, A. Ohtomo2, K. Tamura2, and H. Koinuma. Appl. Phys. Lett. 77, 975 (2000).
[2.32] Z. L. Wang. J. Phays. : Condens. Mater. 16, R829(2004).
[2.33] Aleksandra B. Djurisˇic, Yu Hang Leung, small, 2, No.8-9, 944-961 (2006).
[2.34] B. K. Meyer, H. Alves, D. M. Hofmann, W. Kreigseis, D. Forster,F. Bertram, J. Christen, A. Hoffmann, M. Strassburg, M. Dworzak,U. Haboeck, A. V. Rodina, Phys. Stat. Sol. B, 241,231 (2004).
[2.35] A. Teke, S. Dog˘an, X. Gu, H. MorkoA, B. Nemeth, J.Nause, H. O. Everitt, Phys. Rev. B, 70, 195207 (2004).
[2.36] J. Gutowski, N. Presser, I. Broser, Phys. Rev. B, 38, 9746 (1988)
[2.37] B. K. Meyer, H. Alves, D. M. Hofmann, W. Kreigseis, D. Forster,F. Bertram, J. Christen, A. Hoffmann, M. Strassburg, M. Dworzak,U. Haboeck, A. V. Rodina, Phys. Stat. Sol. B, 241,231 (2004)
[2.38] M. Strassburg, A. Rodina, M. Dworzak, U. Haboeck, I. L. Krestnikov,A.
Hoffmann, O. Gelhausen, M. R. Phillips, H. R. Alves,A. Zeuner, D. M. Hofmann, B. K. Meyer, Phys. Stat. Sol. B, 241, 607 (2004)
[2.39] L. Wang, N. C. Giles, J. Appl. Phys., 94, 973 (2003)
[2.40] H.C. Hsu, W.F. Hsieh, Solid State Commun., 131, 371 (2004)
[2.41] X. Liu, X. Wu, H. Cao, R. P. H. Chang, J. Appl. Phys., 95,3141 (2004).
[2.42] R. C. Wang, C. P. Liu, J. L. Huang, S. J. Chen, Appl. Phys. Lett., 88, 023111
(2006).
[2.43] J. S. Jie, G. Z. Wang, X. H. Han, Q. X. Yu, Y. Liao, G. P. Li, J. G.Hou, Chem.
Phys. Lett., 387, 466 (2004).
[2.44] Yong Xu and Martin A.A. Schoonen, American Mineralogist,
85:543–556(2000).
[2.45] A.K.M. Farid UI Islam, R. Islam, K.A. Khan, Renewable Energy 30,2289-2302
(2005).
[2.46] T. Fukumura, Zhengwu Jin, A. Ohtomo, H. Koinuma, and M. Kawasaki, Appl.
Phys. Lett. 75, 3366 (1999)
[2.47] A. Tiwari, C. Jin, A. Kvit, D. Kumar, J. F. Muth, J. Narayan, Solid State
Communications 121, 371(2002).
[2.48] M. Nakayama, H. Tanaka, K. Masuko, T. Fukushima, A. Ashida, N. Fujimura,
Appl. Phys. Lett. 88, 241908 (2006).
[2.49] S. W. Jung, S.-J. An, Gyu-Chul Yi, C. U. Jung, Sung-Ik Lee, Sunglae Cho,
Appl. Phys. Lett. 80, 4561 (2002).
[2.50] V. Avrutin, N. Izyumskaya, U. Ozgur, A.El-Shaer, H. Lee, W. Schoch, F. Reuss,
V.G. Beshenkov, A.N. Pustovit, A. Che Mofor, A. Bakin, H. Morkoc, and A.
Waag, Superlattice and Microstructures 39, 291-298 (2006).
[2.51] M. Mollar, M. Tortosa, R. Casasus, and B. Mari, Microelectronics Journal, 40,
276-279 (2009).
[2.52] T. Dietl, H. Ohno et al., Science 287, 1019(2000).
[3.1] 邱士峰,氧化鋅與氧化美新奈米結構成長及特性研究,國立臺北科技大學光
電工程研究所碩士論文,九七年七月
[3.2] 黃泳發,利用脈衝雷射濺鍍氧化鋅薄膜之製成與特性研究,碩士論文,交通
大學光電工程研究所,新竹,(2001)
[3.4] 汪建民主編,材料分析,新竹,中國材料學會,九十四年三月
[3.5] 許樹恩、吳泰伯,X光繞射原理與材料結構分析,新竹,中國材料學會, 九
十三年九月
[3.6] 郭憲政,氧化鋅奈米結構之光致激發螢光光譜之研究,碩士論文,清華大學
物理研究所,新竹,(2003).
[4.1] C.Suryanarayana and M.G.Norton: X-Ray Diffraction: A Practical Approach ,p.125 (Plenum Press, New York,1998)
[4.2] Gen-Hua Ji, Zheng-Bin Gu, Ming-Hui Lu, Di Wu,Shan-Tao Zhang,
Yong-Yuan Zhu, Shi-Ning Zhu and Yan-Feng Chen J. Phys.: Condens.
Matter 20 425207 (2008)
[4.3] V K Sharma and G D Varma J. Phys.: Condens. Matter 21 296001 (2009)
[4.4] Zheng-Wu Jin, Y.-Z. Yoo, T. Sekiguchi, T. Chikyow, H. Ofuchi, H. Fujioka, M.
Oshima, and H. Koinuma, Appl. Phys. Lett. 83, 39 (2003).
[4.5] Kwang Joo Kim and Young Ran Park, J. Appl. Phys. 94, 867 (2003)
[4.6] S. Venkataprasad Bhat and F.L. Deepak, Solid state Commun. 135, 345(2005).
[4.7] Rashid, A.R.A.; Menon, P.S, IEE Proc. Doi: 10.1109/SMELEC.2010.5549430.
(2010).
[4.8] Rozana, A.R.A. Menon, P.S. Saari, S. ICP. 107(2010).
[4.9] S. Senthilkumaar, K. Rajendran, S. Banerjee, T.K. Chini and V. Sengodan,
Materials science in semiconductor processing. 11, 6-12(2008)
[4.10] R. Viswanatha, S. Sapra, S. Sen Gupta, B. Satpati, P. V. Satyam, B. N. Dev,
and D. D. Sarma, J. Phys. Chem. B 108, 6303 (2004).
[4.11] U.N. Maiti, P.K. Ghosh, S. Nandy, K.K. Chattopadhyay, Physica B. 387 ,
103-108 (2007).
[4.12] K. Samanta, S. Dussan, R. S. Katiyar, and P. Bhattacharya, Appl. Phys. Lett. 90,
261903 (2007).
[4.13] T. Mizokawa, T. Nambu, A. Fujimori, T. Fukumura, and M. Kawasaki, Phys.
Rev. B 65, 085209 (2002).
[4.14] P.J. Dean, J. Lumin. 23, 17 (1981)
[4.15] Z.W. Jin, M. Murakami, T. Fukumura, Y. Matsumoto, A. Ohtomo, M.Kawasaki,
and H. Koinuma, J. Cryst. Growth 214/215, 55 (2000).
[4.16] M. Liu, A.H. Kitai, P. Mascher, J. Lumin 54,35(1992).
[4.17] Hung-Ji Lin, Der-Yuh Lin, Jenq-Shinn Wu, Chu-Shou Yang, Wu-Ching Chou,
Wei-Hsuan Lo, and Jyh-Shyang Wang, Jpn. J. Appl. Phys. 48, 04C122 (2009).
[4.18] F. X. Xiu, Z. Yang, L. J. Mandalapu, D. T. Zhao, and J. L. Liu Appl. ;
doi: 10.1063/1.2146208 Phys. Lett. 87, 252102 (2005)
[4.19] C. T. Lee, Y. H. Lin, L. W. Lai, and L. R. Lou, “Mechanism Investigation of
p-i-n ZnO-based light-emitting diodes,” IEEE Photon. Technol. Lett., vol.
22, no. 1, pp. 30-32, Jan. (2010)



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊