跳到主要內容

臺灣博碩士論文加值系統

(3.237.38.244) 您好!臺灣時間:2021/07/24 17:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:田青禾
研究生(外文):Ching-Ho Tien
論文名稱:氧化鋅系薄膜之光電特性及其應用在光二極體及氮化鎵系發光二極體之研究
論文名稱(外文):Optoelectronic properties of ZnO-based film and its application on photodiodes and GaN-based light-emitting diodes
指導教授:陳隆建陳隆建引用關係
口試委員:蕭宏彬蔡家龍何文章吳孟奇中西洋一郎
口試日期:2012-07-11
學位類別:博士
校院名稱:國立臺北科技大學
系所名稱:光電工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:172
中文關鍵詞:氧化鋅錳氧化鋅光二極體發光二極體磁光倍增效應自旋極化注入液相化學氣相沉積法
外文關鍵詞:ZnOMnZnOphotodiodesLEDmagneto-optical multiplication effectspin-polarized injectionsolution chemical vapor deposition
相關次數:
  • 被引用被引用:2
  • 點閱點閱:227
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究係利用液相化學氣相沉積法成長氧化鋅系薄膜,即為氧化鋅(ZnO)薄膜與摻錳氧化鋅(MnZnO)薄膜,並分別應用在光二極體(photodiodes)及氮化鎵系發光二極體(GaN-based LEDs),探討其磁光倍增效應、自旋極化注入特性與光離化效應,本研究分為三部分作探討。
第一部分,主要探討ZnO薄膜和MnZnO薄膜之光電特性,並在有無外加磁場下,分析其氧化鋅系薄膜之磁光效應的影響。
第二部分,為了增強光二極體在紫外/藍光區域間的響應度,本研究製作p-ZnO/超薄SiO2/n-Si之異質結構光偵測二極體。當元件放置在一強磁場下時,光電流會增加約一個階次,且光電流與磁場大小呈指數線性關係,此現象稱為磁光倍增效應。此外光響應度的增加係由於量子化磁場的光離化所造成,使得光響應度的帶尾(tail)發生藍位移的現象,主要歸因於Landau分裂的產生。
第三部分,本研究係以稀磁性半導體MnZnO薄膜,作為氮化鎵系發光二極體之自旋注入層。外加0.5 T磁場下,MnZnO/GaN-based LEDs在注入電流分別為20 mA及100 mA時,光輸出功率提升約60 %與50 %。且分析其自旋極化電流在總電流、EL光譜的圓形極化率及PL光譜的極化率所佔比例,分別為2.77、2.9、3.6 %相互符合接近,證實MnZnO薄膜之自旋極化注入與光離化效應能有效提升GaN-based LEDs的發光亮度。

ZnO-based films (ZnO and MnZnO) were deposited by solution chemical vapor deposition (SCVD) and its application photodiodes and GaN-based light-emitting diodes (LEDs), respectively. This study discusses the effects of magneto-optical multiplication, spin-polarized injection and photo-ionization. This study divided into three parts to be explored.
Firstly, this study discusses the optoelectronic properties of ZnO and MnZnO films with and without in the presence of a magnetic field. This study also examines the magneto-optical effect of ZnO-based films.
Secondly, we presents p-ZnO/SiO2 ultrathin interlayer/n-Si heterostructure ultraviolet (UV) photodiodes with a in a strong magnetic field. Placing a photodiode in a strong magnetic field increased the total current under illumination by approximately one order of magnitude, mainly because the magnetic field induced a photocurrent by magneto-optical multiplication effects. The absorption tail of the responsivity exhibitive a blue shift in the field is observed. This shift is attributed to the magneto-optic absorption associated with the Landau splitting.
Thirdly, this study discusses the MnZnO films as a spin-injection layer formed on the surface of GaN-based LEDs. In a magnetic field, the optical output power of GaN-based LEDs is increased by about 60% and 50% at injection currents of 20 and 100 mA, respectively. Spin-polarized injection from MnZnO film and photo-ionization in GaN-based LED can efficiently improve the optical output power of a GaN-based LED. The spin-polarized current-to-total current ratio at forward bias of 3.4 V is 2.77%. This result is consistent with the EL polarization is 2.9% and PL polarization is 3.6% at a forward current of 20 mA in a 0.5 T magnetic field.

中文摘要 i
英文摘要 ii
誌謝 iv
目錄 vi
表目錄 ix
圖目錄 x
第一章 緒論 1
1.1 前言 1
1.2 研究方法 3
1.3論文架構 3
第二章 研究理論基礎與發展背景 5
2.1 自旋電子學的簡介 5
2.2 稀磁性半導體簡介 6
2.3 P-N異質接面的光二極體之理論基礎 9
2.3.1 基本原理 10
2.3.2 暗電流產生機制 12
2.3.2.1 擴散電流 13
2.3.2.2 生成-復合電流 14
2.3.2.3 表面漏電流 14
2.3.2.4 穿隧電流 15
2.3.3 量子效率 15
2.3.4 光響應度 17
2.4 發光二極體之理論基礎 18
2.4.1 基本原理 18
2.4.2 發光效率 19
2.5 藍道能階 21
2.6 液相化學氣相沉積法 22
2.6.1 液相化學氣相沉積法原理 23
2.6.2 液相化學氣相沉積法成長機制 23
第三章 氧化鋅系薄膜 25
3.1 前言 25
3.2 氧化鋅系薄膜文獻回顧 26
3.2.1 氧化鋅的結構與特性 26
3.2.2 過渡金屬元素在ZnO之文獻回顧 28
3.2.3 過渡金屬元素在ZnO中的溶解度 29
3.3 研究動機 29
3.4 氧化鋅系薄膜實驗步驟 30
3.4.1 氧化鋅系薄膜沉積步驟 30
3.5 量測儀器的架設 31
3.5.1 量測儀器介紹 31
3.6 氧化鋅系薄膜之結果與討論 32
3.6.1 氧化鋅系薄膜之AFM影像的分析 32
3.6.2 氧化鋅系薄膜之XRD繞射的分析 33
3.6.3 氧化鋅系薄膜之拉曼光譜的分析 34
3.6.4 氧化鋅系薄膜之光特性的分析 35
3.6.5 氧化鋅系薄膜之光激螢光光譜的分析 37
第四章 氧化鋅/極薄二氧化矽/矽異質結構之光二極體 39
4.1 前言 39
4.2 氧化鋅系光二極體文獻回顧 40
4.3 研究動機 42
4.4 ZnO/ultrathin SiO2/Si異質結構元件實驗步驟 43
4.4.1 在n-Si基板上製作極薄二氧化矽層 44
4.4.2 氧化鋅薄膜沉積步驟 44
4.4.3 第一道光罩圖案─製作元件高台結構 44
4.4.4 第二道光罩圖案─製作元件P電極 45
4.4.5 製作元件N電極 46
4.4.6 晶片切割與打線 47
4.5 量測儀器的架設 47
4.5.1 量測儀器介紹 47
4.5.2 外加磁場下的量測 48
4.6 光二極體之結果與討論 49
4.6.1 P-O-N結構之TEM分析 49
4.6.2 P-O-N結構之I-V特性分析 49
4.6.3 外加磁場之I-V特性分析 50
4.6.4 不同照光能量與外加磁場之I-V特性分析 51
4.6.5 光電流與波長之分析 52
4.6.6 外加磁場之量子效率與光響應度的分析 53
4.6.7 P-O-N結構光二極體的傳輸機制 54
第五章 摻錳氧化鋅/氮化鎵系結構之自旋發光二極體 56
5.1 前言 56
5.2 自旋發光二極體文獻回顧 57
5.3 研究動機 60
5.4 MnZnO/GaN-based Spin-LED元件實驗步驟 60
5.4.1 製作GaN-based LED之磊晶層結構 60
5.4.2 製作GaN-based LED之MESA結構 61
5.4.3 製作GaN-based LED之TCL結構 62
5.4.4 製作GaN-based LED之MnZnO結構 63
5.4.5 製作GaN-based LED之金屬電極 64
5.5 量測儀器的架設 65
5.5.1 無外加磁場的量測 65
5.5.2 外加磁場下的量測 66
5.6 自旋發光二極體之結果與討論 67
5.6.1 電流-電壓(I-V)的分析 67
5.6.2 自旋發光二極體的傳輸機制 68
5.6.3 光功率-電流(L-I)的分析 69
5.6.4 電激螢光光譜(EL)的分析 69
5.6.5 光激螢光光譜(PL)的分析 70
5.6.6 時間解析磁化調變光激螢光(TRMMPL)的分析 71
5.6.7 MnZnO/GaN-based Spin-LED發光照片 73
第六章 結論 74
第七章 未來研究方向 77
參考文獻 78
附錄
A 作者著作目錄 170

[1]黃榮俊、許華書,「以3d過渡金屬摻雜氧化物之稀磁性半導體研究」,物理雙月刊,26卷,4期,2004,第599-606頁。
[2]Y. Kato, R. C. Myers, A. C. Gossard and D. D. Awschalom, "Coherent spin manipulation without magnetic fields in strained semiconductors," Nature, vol. 427, no. 6969, 2004, pp. 50-53.
[3]胡裕民,「III-V稀磁性半導體薄膜之研究與發展」,物理雙月刊,26卷,4期,2004,第587-598頁。
[4]S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova and D. M. Treger, "Spintronics: A Spin-Based Electronics Vision for the Future," Science, vol. 294, no. 5546, 2001, pp. 1488-1495.
[5]I. Žutić, J. Fabian and S. D. Sarma, "Spintronics: Fundamentals and applications," Rev. Mod. Phys., vol. 76, no. 2, 2004, pp. 323-410.
[6]黃榮俊,許華書,「鈷:氧化鋅(Co:ZnO)稀磁性半導體室溫鐵磁性機制研究」,成大研發快訊,1卷,2期,2007,第3頁。
[7]V. Dugaev, "Lecture 1. Introduction into physics of spin-dependent phenomena in nanostructures." (cfif.ist.utl.pt/~vdugaev/lectures.htm)
[8]劉學超,施爾畏,張華偉,宋力昕,陳之戰,「ZnO基稀磁半導體薄膜材料研究進展」,無機材料學報,21卷,3期,2006,第513頁。
[9]H. Ohno, "Making Nonmagnetic Semiconductors Ferromagnetic," Science, vol. 281, no. 5379, 1998, pp. 951-956.
[10]H. Munekata, H. Ohno, S. von Molnar, A. Segmuller, L. L. chang and L. Esaki, "Diluted magnetic III-V semiconductors," Phys. Rev. Lett., vol. 63, no. 17, 1989, pp. 1849-1852.
[11]H. Ohno, H. Munekata, T. Penneys S. von Molnar and L. L. chang, "Magnetotransport properties of p-type (In,Mn)As diluted magnetic III-V semiconductors," Phys. Rev. Lett., vol. 68, no. 17, 1992, pp. 2664-266.
[12]H. Ohno, T. Dietl, "Ferromagnetic III–V heterostructures," J. Vac. Sci. Technol. B, vol. 18, no. 4, 2000, pp. 2039-2043.
[13]H. Ohno, "Ferromagnetic III-V heterostructures," J. Vac. Sci. Technol. B, vol. 5, 2no. 4, 2000, pp. 2039-2043.
[14]H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto and Y. Iye, " (Ga,Mn)As: A new diluted magnetic semiconductor based on GaAs," Appl. Phys. Lett., vol. 69, no. 3, 1996, pp. 363-365.
[15]F. Matsukura, H. Ohno, A. Shen and Y. Sugawara, "Transport properties and origin of ferromagnetism in (Ga,Mn)As," Phys. Rev. B, vol. 57, no. 4, 1998, pp. R2037-2040.
[16]T. Dietl, H. Ohno, F. Matsukura, J. Cibert and D. Ferrand, "Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors," Science, vol. 287, no. 5455, 2000, pp. 1019-1022.
[17]胡裕民,「III-V稀磁性半導體薄膜之研究與發展」,物理雙月刊,26期,4卷,2004,第587-598頁。
[18]T. Dietl, H. Ohno, F. Matsukura, "Hole-mediated ferromagnetism in tetrahedrally coordinated semiconductors," Phys. Rev. B. vol. 63, 2001, pp. 195205.
[19]T. Dietl, "Ferromagnetic semiconductors," Semicond. Sci. Technol. vol. 17, no. 4, 2002, pp. 377-392.
[20]S. J. Pearton, C. R. Abernathy, M. E. Overberg, G. T. Thaler, D. P. Norton, N. Theodoropoulou, A. F. Hebard, Y. D. Park, F. Ren, J. Kim and L. A. Boatner, "Wide band gap ferromagnetic semiconductors and oxides," J. Appl. Phys. vol. 93, no. 1, 2003, pp. 1-13.
[21]J. M. D. Coey, M. Venkatesan and C. B. Fitzgerald, "Donor impurity band exchange in dilute ferromagnetic oxides," Nat. Mater., vol. 4, no. 2, 2005, pp. 173-179.
[22]S. O. Kasap, Optoelectronics and Photonics, Principles and Practices, New Jersey: Prentice Hall, 2001, pp. 217-219.
[23]S.M. Sze and K. K. Ng, Physics of Semiconductor Devices 3th Edition, New York: John Wiley & Sons, 2006, pp. 671-679.
[24]潘俊男,紫外光增強行氧化鋅-矽結構之全光譜光檢測二極體的研製,碩士論文,國立臺北科技大學光電工程研究所,台北,2007。
[25]B. G. Streetman and S. Banerjee, Solid State Electronic Devices 5th Edition, New Jersey: Prentice Hall, 1999, pp.171-177.
[26]J. Singh, Semiconductor Optoelectronics Physics and Technology, New York: McGraw-Hill, 1995, pp.286.
[27]G. Dearnaley, J. H. Freeman and R. S. Nelson, Stephen, Ion-Implantation, New York: North-Holland, 1973, pp.561.
[28]S. R. Forrest, Performance of InxGa1-xAsyP1-y photodiodes with dark current limited by diffusion, generation recombination, and tunneling, IEEE J. Quantum Electron., vol. QE-17, no. 2, 1981, pp. 217-226.
[29]K. K. Ng, Complete Guide to Semiconductor Devices International Edition, New York: John Wiley & Sons, 2002, pp. 431-435.
[30]S. R. Forrest, M. DiDomenico, Jr., R. G. Smith and H. J. Stocker, “Evidence for tunneling in reverse‐biased III‐V photodetector diodes”, Appl. Phys. Lett., vol. 36, no. 7, 1980, pp. 580-582.
[31]S. R. Forrest, R. F. Leheny, R. E. Nahory and M. A. Pollack, “In0.53Ga0.47As photodiodes with dark current limited by generation‐recombination and tunneling”, Appl. Phys. Lett., vol. 37, no. 3, 1980, pp. 322-325.
[32]B. G. Streetman and S. Banerjee, Solid State Electronic Devices 5th Edition, New Jersey: Prentice Hall, 1999, pp. 487-489.
[33]H. Melchior, Laser Handbook, edited by F. T. Arecchi and E. O. Schultz-Dubois, North-Holland, Amsterdam, Vol. 1, 1972, pp. 725-835.
[34]陳隆建,發光二極體之原理與製程 第三版,台北:全華圖書,2010。
[35]E. F. Schubert, Light-Emitting Diodes 2nd Edition, New York: Cambridge Univ. Press, 2006, pp.86-87.
[36]I. Schnitzer, E. Yablonovitch, C. Caneau, and T. J. Gmitter, A. Scherer, “30% external quantum efficiency from surface textured, thin‐film light‐emitting diodes”, Appl. Phys. Lett., vol. 63, no. 16, 1993, pp. 2174-2176.
[37]Y. J. Lee, H. C. Kuo, T. C. Lu, and S. C. Wang, “High light-extraction GaN-based vertical LEDs with double diffuse surfaces”, IEEE J. Quantum. Electron., vol. 42, no. 12, 2006, pp. 1196-1201.
[38]K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, T. Jyouichi, Y. Imada, M. Kato, and T. Taguchi, "High output power InGaN ultraviolet light-emitting diodes fabricated on patterned substrates using metalorganic vapor phase epitaxy," phys. stat. sol. (a), vol. 188, no.1, 2001, pp. 121-125.
[39]J. I. Pankove, Optical Processes in Semiconductors, New Jersey: Prentice Hall, 1971.
[40]U. Merkt, M. Horst, T. Evelbauer, J. P. Kotthaus, "Cyclotron and spin resonance in electron inversion layers on InSb," Phys. Rev. B, vol. 34, no. 10, 1986, pp. 7234-7245.
[41]H. Kroemer, Quantum Mechanic for Engineering: Materials Science and Applied Physics, New Jersey: Prentice Hall, 1994.
[42]G. L. Messing, S.C. Zhang and G. V. Jayanthi, "Ceramic powder synthesis by spray pyrolysis," J. Am. Ceram. Soc., vol. 76, no. 11, 1993, pp. 2707-2726.
[43]G. V. Jayanthi, S. C. Zhang and G. L. Messing, "Modeling of Solid Particle Formation During Solution Aerosol Thermolysis," Aerosol Sci. Technol., vol. 19, no.4, 1993, pp. 478-490.
[44]A. V. Singh, R. M. Mehra, N. Buthrath, A. Wakahara and A. Yoshida, "Highly conductive and transparent aluminum-doped zinc oxide thin films prepared by pulsed laser deposition in oxygen ambient," J. Appl. Phys., vol. 90, no. 11, 2001, pp. 5661-5665.
[45]X. H. Zhang, S. J. Chua, A. M. Yong, H. Y. Yang, S. P. Lau, S. F. Yu, X. W. Sun, L. Miao, M. Tanemura and S. Tanemura, "Exciton radiative lifetime in ZnO nanorods fabricated by vapor phase transport method," Appl. Phys. Lett., vol. 90, no. 1, 2007, pp. 013107.
[46]Y. Danhara, T. Hirai, Y. Harada and N. Ohno, "Exciton luminescence of ZnO fine particles," Phys. Stat. Sol. (c), vol. 3, no. 10, 2006, pp. 3565-3569.
[47]J. H. Lim, C. K. Kang, K. K. Kim, I. K. Park, D. K. Hwang and S. J. Park, "UV electroluminescence emission from ZnO light-emitting diodes grown by high-temperature radiofrequency sputtering," Adv. Materials, vol. 18, 2006, pp. 2720-2724.
[48]Z. P. Wei, Y. M. Lu, D. Z. Shen, Z. Z. Zhang, B. Yao, B. H. Li, J. Y. Zhang, D. X. Zhao, X. W. Fan, Z. K. Tang, "Room temperature p-n ZnO blue-violet light-emitting diodes," Appl. Phys. Lett., vol. 90, no. 4, 2007, pp. 042113.
[49]E. S. P. Leong, S. F. Yu and S. P. Lau, "Directional edge-emitting UV random laser diodes," Appl. Phys. Lett., vol. 89, no. 22, 2006, pp. 221109.
[50]C. W. Lee, H. Choi, M. K. Oh, D. J. Ahn, J. Kim, J. M. Kim, F. Ren and S. J. Pearton, "ZnO-based cyclodextrin sensor using immobilized polydiacetylene vesicles," Electrochem. Solid-State Lett., vol. 10, no. 1, 2007, pp. J1-J3.
[51]J. J. Lu, T. C. Lin, S. Y. Tsai, T. S. Mo and K. J. Gan, "Structural, magnetic and transport properties of Ni-doped ZnO films," J. Magn. Magn. Mater., vol. 323, no. 6, 2011, pp. 829-832.
[52]M. Sharma and R. M. Mehra, "Effect of thickness on structural, electrical, optical and magnetic properties of Co and Al doped ZnO films deposited by sol-gel route," Appl. Surf. Sci., vol. 255, no. 1-1, 2008, pp. 2527-2532.
[53]R. Fiederling, M. Keim, G. Reuscher, W. Ossau, G. Schmidt, A.Waag and L. W. Molenkamp, "Injection and detection of a spin-polarized current in a light-emitting diode," Nature, vol. 402, 1999, pp. 787-790.
[54]I. A. Buyanova, W. M. Chen, M. P. Ivill, R. Pate, D. P. Norton, S. J. Pearton, J. W. Dong, A. Osinsky, B. Hertog, A. M. Dabiran and P. P. Chow, "Optical characterization of ZnMnO-based dilute magnetic semiconductor structures," J. Vac. Sci. Technol. B, vol. 24, no. 1, 2006, pp. 259-262.
[55]L. C. Chen, C. H. Tien, Y. M. Luo and C. S. Mu, "Photoluminescence and spin relaxation of MnZnO/GaN-based light-emitting diodes," Thin Solid Films, vol. 519, no. 8, 2011, pp. 2516-2519.
[56]L. C. Chen, C. H. Tien and Y. Y. Hsu, "Optoelectronic properties of the p-MnZnO/n-Si structure photodiodes in a strong magnetic field," Jpn. J. Appl. Phys., vol. 49, no. 6, 2010, pp. 063002.
[57]H. B. Wang, H. Wang, C. Zhang, F. J. Yang, C. P. Yang, H. S. Gu, M. J. Zhou and Q. Li, Y. Jiang, "Effect of annealing on the magnetic properties of solution synthesized Zn1-xMnxO nanorods," Mater. Chem. Phys., vol. 113, no. 2-3, 2009, pp. 884-888.
[58]H. K. Yoshida, K. Sato, T. Fukushima, M. Toyoda, H. Kizaki, V. A. Dinh and P. H. Dederichs, "Computational nano-materials design for high- TC ferromagnetism in wide-gap magnetic semiconductors," J. Magn. Magn. Mater., vol. 310, no. 2, 2007, pp. 2070-2077.
[59]M. Peiteado, A. C. Caballero and D. Makovec, "Diffusion and reactivity of ZnO MnOx system," J. Solid State Chem., vol. 180, no. 9, 2007, pp. 2459-2464.
[60]D. C. Kundaliya, S. B. Ogale, S. E. Lofland, S. Dhar, C. J. Meeting, S. R. Shinde, Z. Ma, B. Varughese, K. V. Ramanujachary, L. S. Riba and T. Venkatesan, "On the origin of high-temperature ferromagnetism in the low-temperature-processed Mn–Zn–O system," Nat. Mater., vol. 3, 2004, pp. 709-714.
[61]A. Quesada, M.A. Garca, P. Crespo and A. Hernando, "Materials for spintronic: Room temperature ferromagnetism in Zn–Mn–O interfaces," J. Magn. Magn. Mater., vol. 304, no. 1, 2006, pp. 75-78.
[62]H. Chen, S. L. Gu, W. Liu, S. M. Zhu and Y. D. Zheng, "Influence of unintentional doped carbon on growth and properties of N-doped ZnO films," J. Appl. Phys., vol. 104, no. 11, 2008, pp. 113511.
[63]E. Chikoidze, M. Modreanu, V. Sallet, O. Gorochov and P. Galtier, "Electrical properties of chlorine-doped ZnO thin films grown by MOCVD," Phys. Status Solidi A, vol. 205, no. 7, 2008, pp. 1575-1579.
[64]X. Wang, Y. M. Lu, D. Z. Shen, Z. Z. Zhang, B. H. Li, B. Yao, J. Y. Zhang, D. X. Zhao and X. W. Fan, "Growth and photoluminescence for undoped and N-doped ZnO grown on 6H-SiC substrate," J. Luminescence, vol. 122-123, 2007, pp. 165-167.
[65]S. M. Park, T. Ikegami and K. Ebihara, "Effects of substrate temperature on the properties of Ga-doped ZnO by pulsed laser deposition," Thin Solid Films, vol. 518, no. 1, 2006, pp. 90-94.
[66]S. H. Chen, C. F. Yu, Y. S. Lin, W. J. Xie, T. W. Hsu and D. P. Tsai, "Nanoscale surface electrical properties of aluminum zinc oxide thin films investigated by scanning probe microscopy," J. Appl. Phys., vol. 104, no. 11, 2008, pp. 114314.
[67]S. Tanaka, A. Makiya, Z. Kato and K. Uematsu, "c-axis oriented ZnO formed in a rotating magnetic field with various rotation speeds," J. Eur. Ceram. Soc., vol. 29, no. 5, 2009, pp. 955-959.
[68]T. S. Suzuki, T. Uchikoshi and Y. Sakka, "Control of texture in alumina by colloidal processing in a strong magnetic field," Sci. Technol. Adv. Mater., vol. 7, no. 4, 2006, pp. 356-364.
[69]D. A. Molodov and P. J. Konijnenberg, "Grainboundary and grainstructurecontrol through application of ahighmagneticfield," Scripta Mater. vol. 54, no. 6, 2006, pp. 977-981.
[70]G. Grosso and G. P. Parravicini, Solid State Physics, Cambridge: Cambridge University Press, 2000.
[71]S. J. Pearton, D. P. Norton, K. IP, Y. W. Heo and T. Steiner, "Recent progress in processing and properties of ZnO," Super lattices and Microstructure, vol. 34, no. 1-2, 2003, pp. 3-32.
[72]Y. Noel, M. Llunell, R. Orlando, P. D''Arco and R. Dovesi, "Performance of various Hamiltonians in the study of the piezoelectric properties of crystalline compounds: The case of BeO and ZnO," Phys. Rev. B, vol. 66, no. 21, 2002, pp. 214107-214114.
[73]A. V. Singh, R. M. Mehra, N. Buthrath, A. Wakahara and A. Yoshida, "Highly conductive and transparent aluminum-doped zinc oxide thin films prepared by pulsed laser deposition in oxygen ambient," J. Appl. Phys., vol. 90, no. 11, 2001, pp. 5661-5665.
[74]G. A. Hirata, J. McKittrick, J. Siqueiros, O. A. Lopez, T. Cheeks, O. Contreras and J. Y. Yi, "High transmittance-low resistivity ZnO:Ga films deposited by laser ablation," J. Vac. Sci. Technol. A, vol. 14, no. 3, 1996, pp. 791-794.
[75]V. Sittinger, F. Ruske , W. Werner, B. Szyszka, B. Rech, J. Hupkes, G. Schpe and H. Stiebig, "ZnO:Al films deposited by in-line reactive AC magnetron sputtering for a-Si:H thin film solar cells," Thin Solid Films, vol. 496, no. 1, 2006, pp. 16-25.
[76]B. Rech, T. Repmann, M. N. van den Donker, M. Berginski, T. Kilper, J. Hupkes, S. Calnan, H. Stiebig and S. Wieder, "Challenges in microcrystalline silicon based solar cell technology," Thin Solid Films, vol. 511-512, 2006, pp. 548-555.
[77]W. Y. Liang and A. D. Yoffe, "Transmission Spectra of ZnO Single Crystals," Phys. Rev. Lett., vol. 20, no. 2, 1968, pp. 59-62.
[78]B. Lin, Z. Fu and Y. Jia, "Green luminescent center in undoped zinc oxide films deposited on silicon substrates," Appl. Phys. Lett., vol. 79, no. 7, 2001, 943-945.
[79]B. Lin, Z. Fu, Y. Jia and G. Liao, "Defect photoluminescence of undoping ZnO films and its dependence on annealing condition," J. Electrochem. Soc., vol. 148, no. 3, 2001, pp. G110-G113.
[80]P. Viswanathamurthi, N. Bhattarai, H. Y. Kim, D. R. Lee, "The photoluminescence properties of zinc oxide nanofibres prepared by electrospinning," Nanotechnology, 15(3), 2004, pp. 320-323.
[81]F. Liu, P. J. Cao, H. R. Zhang, C. M. Shen, Z. Wang, J. Q. Li, H. J. Gao, "Well-aligned zinc oxide nanorods and nanowires prepared without catalyst," J. Cryst. Growth, vol. 274, no. 1-2, 2005, pp. 126-131.
[82]A. Umar, S. H. Kim, Y.-S. Lee, K. S. Nahm, Y. B. Hahn, "Catalyst-free large-quantity synthesis of ZnO nanorods by a vapor–solid growth mechanism: Structural and optical properties," J. Cryst. Growth, vol. 282, no. 1-2, 2005, pp. 131-136.
[83]X. T. Zhang, Y. C. Liu, Z. Z. Zhi, J. Y. Zhang, Y. M. Lu, D. Z. Shen, W. Xu, X. W. Fan, X. G. Kong, "Temperature dependence of excitonic luminescence from nanocrystalline ZnO films," J. Luminescence, vol. 99, no. 2, 2002, pp. 149-154.
[84]H. L. Hartnagel, A. K. Jain and C. Jagadish, Semiconducting Transparent Thin Films Ch3, United Kingdom: Taylor & Francis, 1995, pp.214.
[85]G. Gordillo and C. Calderon, "Properties of ZnO thin films prepared by reactive evaporation," Solar Energy Materials & Solar Cells, vol. 69, no. 3, 2001, pp. 251-260.
[86]Y. Igasaki and H. Saito, "The effects of zinc diffusion on the electrical and optical properties of ZnO:Al films prepared by r.f. reactive sputtering," Thin Solid Films, vol. 199, no. 2, 1991, pp. 223-230.
[87]M. Joseph, H. Tabata, T. Kawai, "p-Type Electrical Conduction in ZnO Thin Films by Ga and N Codoping," Jpn. J. Appl. Phys., vol. 238, no. 11A, 1999, pp. L1205-L1207.
[88]M. Joseph, H. Tabata, T. Kawai, "Ferroelectric behavior of Li-doped ZnO thin films on Si(100) by pulsed laser deposition," Appl. Phys. Lett., vol. 74, no. 17, 1999, pp. 2534-2536.
[89]T. Fukumura, Z. Jin, M. Kawasaki, T. Shono, T. Hasegawa, S. Koshihara and H. Koinuma, "Magnetic properties of Mn-doped ZnO," Appl. Phys. Lett., vol. 78, no. 7, 2001, pp. 958-960.
[90]S. W. Jung, S. J. An, G. C. Yi, C. U. Jung, S. I. Lee and S. Cho, Ferromagnetic properties of Zn1-xMnxO epitaxial thin films," Appl. Phys., Lett. vol. 80, no. 24, 2002, pp. 4561-4563.
[91]Y. M. Kim, M. Yoon, I. W. Park, Y. J. Park and J. H. Lyou, "Synthesis and magnetic properties of Zn1-xMnxO films prepared by the sol-gel method," Solid State Commun., vol. 129, no. 3, 2004, pp. 175-78.
[92]P. Sharma, A. Gupta, K. V. Rao, F. J. Owens, R. Sharma, R. Ahuja, J. M. O. Guillen, B. Johansson and G. A. Gehring, "Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO," Nat. Mater., vol. 2, 2003, pp. 673-677.
[93]H. J. Blythe, R. M. Ibrahim, G. A. Gehring, J. R. Neal and A. M. Fox, "Mechanical alloying: a route to room-temperature Ferromagnetism in bulk Zn1-xMnxO," J. Magn. Magn. Mater., vol. 283, no. 1, 2004, pp. 117-127 .
[94]K. Ueda, H. Tabata and T. Kawai, "Magnetic and electric properties of transition-metal-doped ZnO films," Appl. Phys. Lett., vol. 79, no. 7, 2001, pp. 988-990.
[95]W. Prellier, A. Fouchet, B. Mercey, Ch. Simon and B. Raveau, "Laser ablation of Co:ZnO films deposited from Zn and Co metal targets on (0001) Al2O3 substrates," Appl. Phys. Lett., vol. 82, no. 20, 2003, pp. 3490-3492.
[96]H. J. Lee, S. Y. Jeong, C. R. Cho and C. H. Park, "Study of diluted magnetic semiconductor: Co-doped ZnO," Appl. Phys. Lett., vol. 81, no. 21, 2002, pp. 4020-4022.
[97]C. H. Bates, W. B. White and R. Roy, "The solubility of transition metal oxides in zinc oxide and the reflectance spectra of Mn2+ and Fe2+ in tetrahedral fields," J. Inorg. Nucl. Chem., vol. 28, no. 2, 1966, pp. 397-405.
[98]J. H. Park, M. G. Kim, H. M. Jang, S. Ryu and Y. M. Kim, "Co-metal clustering as the origin of ferromagnetism in Co-doped ZnO thin films," Appl. Phys. Lett. vol. 84, no. 8, 2004, pp. 1338-1340.
[99]Z. Jin, T. Fukumura, M. Kawasaki, K. Ando, H. Saito, T. Sekiguchi, Y. Z. Yoo, M. Murakami, Y. Matsumoto, T. Hasegawa and H. Koinuma, "High throughput fabrication of transition-metal-doped epitaxial ZnO thin films: A series of oxide-diluted magnetic semiconductors and their properties," Appl. Phys. Lett., vol. 78, no. 24, 2001, pp. 3824-3826.
[100]I. Akyuz, S. Kose, F. Atay, V. Bilgin, "The optical, structural and morphological properties of ultrasonically sprayed ZnO:Mn films," Semicon. Sci. Technol., vol. 21, no. 12, 2006, pp. 1620-1626.
[101]E. Liu, P. Xiao, J. S. Chen, B. C. Lim, L. Li, "Ni doped ZnO thin films for diluted magnetic semiconductor materials," Current Appl. Phys., vol. 8, no. 3-4, 2008, pp. 408-411.
[102]P. Singh, A. Kaushal, D. Kaur, "Mn-doped ZnO nanocrystalline thin films prepared by ultrasonic spray pyrolysis," J. Alloys Comp., vol. 471(1-2), 2009, pp. 11-15.
[103]S. Senthilkumaar, K. Rajendran, S. Banerjee, T. K. Chini, V. Sengodan, "Influence of Mn doping on the microstructure and optical property of ZnO," Mat. Sci. Semicon. Process., vol. 11(1), pp. 2008, 6-12.
[104]J. Elanchezhiyan, K. P. Bhuvana, N. Gopalakrishnan, T. Balasubramanian, "Investigation on Mn doped ZnO thin films grown by RF magnetron sputtering," Mat. Lett., vol. 62(19), 2008, pp. 3379-3381.
[105]N. O. Dantas, L. Damigo, F. Qu, J. F. R. Cunha, R. S. Silva, K. L. Miranda, E. C. Vilela, P. P. C. Sartoratto, P. C. Morais, "Raman investigation of ZnO and Zn1-xMnxO nanocrystals synthesized by precipitation method," J. Noncrystal. Solids, vol. 354(42-44), 2008, pp. 4827-4829.
[106]R. Cusco, E. Alarcon-Llado, E. J. Ibanez, L. Artns, J. Jimenez, B. G. Wang, M. J. Callahan, "Temperature dependence of Raman scattering in ZnO," Phys. Rev. B, vol. 75(16), 2007, pp. 165202.
[107]M. Schumm, M. Koerdel, S. Muller, H. Zutz, C. Ronning, J. Stehr, D. M. Hofmann, J. Geurts, "Structural impact of Mn implantation on ZnO," New J. Phys., vol. 10, 2008, pp. 043004.
[108]H. B. Ruana, L. Fanga, G. P. Qin, F. Wua, T. Y. Yang, W. J. Li and C.Y. Kong, "Raman scattering and electrical properties of Zn1-xMnxO films," J. Alloy Compound., vol. 531, 2012, pp. 77-81.
[109]D. Kasinathan, J. Kuneš, K. Koepernik, C. V. Diaconu, R. L. Martin, I. D. Prodan, G. E. Scuseria, N. Spaldin, L. Petit, T. C. Schulthess, W. E. Pickett, "Mott transition of MnO under pressure: A comparison of correlated band theories," Phys. Rev. B, vol. 74(19), 2006, pp. 195110.
[110]D. W. Boukhvalov, M. Al-Saqer, E. Z. Kurmaev, A. Moewes, V. R. Galakhov, L. D. Finkelstein, S. Chiuzbăian, M. Neumann, V. V. Dobrovitski, M. I. Katanelson, A. I. Lichtenstein, B. N. Harmon, K. Endo, J. M. North, N. S. Dalal, "Electronic structure of a Mn12 molecular magnet: Theory and experiment," Phys. Rev. B, vol. 75(1), 2007, pp. 014419.
[111]R. B. Bylsma, W. M. Becker, J. Kossut, U. Debska, D. Yoder-Short, "Dependence of energy gap on x and T in Zn1-xMnxSe: The role of exchange interaction," Phys. Rev. B, vol. 33(12), 1986, pp. 8207-8215.
[112]M. Sawicki, T. Dietl, J. Kossut, J. Igalson, T. Wojtowicz, W. Plesiewicz, "Influence of s-d exchange interaction on the conductivity of Cd1-xMnxSe:In in the weakly localized regime," Phys. Rev. Lett., vol. 56(5), 1986, pp. 508-511.
[113]J. R. Neal, A. J. Behan, R. M. Ibrahim, H. J. Blythe, M. Ziese, A. M. Fox, G. A. Gehring, "Room-Temperature Magneto-Optics of Ferromagnetic Transition-Metal-Doped ZnO Thin Films," Phys. Rev. Lett., vol. 96(19), 2006, pp. 197208.
[114]L. Guo, Y. L. Ji, H. Xu, P. Simon, Z. Wu, "Regularly Shaped, Single-Crystalline ZnO Nanorods with Wurtzite Structure," J. Am. Chem. Soc., vol. 124(50), 2002, pp. 14864-14865.
[115]L. Z. Pei, H. S. Zhao, W. Tan, H. Y. Yu, Y. W. Chen, Q. F. Zhang, "Single crystalline ZnO nanorods grown by a simple hydrothermal process," Mater. Charact., vol. 60(9), 2009, pp. 1063-1067.
[116]C. Cheng, G. Xu, H. Zhang, Y. Luo, Y. Li, "Solution synthesis, optical and magnetic properties of Zn1-xCoxO nanowires," Mater. Lett., vol. 62(21-22), 2008, pp. 3733-3735.
[117]B. Guo, Z. R. Qiu, J. Y. Lin, H. X. Jiang, K. S. Wong, "Deep bandtail states picosecond intensity-dependent carrier dynamics of GaN epilayer under high excitation," Appl. Phys. B, vol. 80(4-5), 2005, pp. 521-526.
[118]A. V. Andrianov, S. V. Novikov, T. Li, I. S. Zhuravlev, I. Harrison, E. C. Larkins, C. T. Foxon, "Study of photoluminescence from self-formed GaAs nanocrystallites in As-doped GaN grown by molecular beam epitaxy," Semicon. Sci. Technol., vol. 18(11), 2003, pp. 997-1000.
[119]Y. A. Goldberg, "Semiconductor near-ultraviolet photoelectronic," Semicond. Sci. Technol. vol. 14, no. 7, 1999, pp. R41-R60.
[120]L. R. Koller, Ultraviolet Radiation, New York: John Wiley & Sons, 1965.
[121]E. Monroy, F. Calle, E. Munoz, F. Omnes, " III-Nitride based UV photodetectors, In: E. T. Yu, M.O. Manasreh(Eds.), III-V Nitride Semiconductors: Applications and Devices," Gorden and Breach Science Publishers, New York, 2000.
[122]E. Monroy, F. Calle, J. L. Pau, E. Munoza, F. Omnes. B. Beaumont and P. Gibart, "AlGaN-based UV photodetectors," J. Cryst. Growth, vol. 230, no. 3-4, 2001, pp. 537-543.
[123]F. Monroy, F. Omnes, F. Calle. "Wide-bandgap semiconductor ultraviolet photodetectors," Semicond. Sci. Tech., vol. 18, no. 4, 2003, pp. R33-R51.
[124]L. S. Yeh, M. L. Lee, J. K. Sheu, M. G. Chen, C. J. Kao, G. C. Chi, S. J. Chang, Y. K. Su, "Visible-blind GaN p-i-n photodiodes with an Al0.12Ga0.88N/GaN superlattice structure," Solid-State Electron., vol. 47, no. 5, 2003, pp. 873-878.
[125]Y. K. Su, S. J. Chang, Y. Z. Chiou, T. Y.Tsai, J. Gong, Y. C. Lin, S. H. Liu, C. S. Chang, "Nitride-based multiquantum well p-n junction photodiodes," Solid-State Electron., vol. 47, no. 5, 2003, pp. 879-883.
[126]C. Pernot, A. Hirano, M. Iwaya, T. Detchprohm, H. Amano and I. Akasaki, "Solar-Blind UV Photodetectors Based on GaN/AlGaN p-i-n Photodiodes," Jpn. J. Appl. Phys., vol. 39, no. 5A, 2000, pp. L387-L389.
[127]M. Razeghi and A. Rogalski, "Semiconductor ultraviolet detectors," J. Appl. Phys., vol. 79, no. 10, 1996, pp. 7433-7473.
[128]E. Monroy, M. Hamilton, D. Walker, P. Kung, F. J. Sanchez and M. Razeghi, "High-quality visible-blind AlGaN p-i-n photodiodes," Appl. Phys. Lett., vol. 74, no. 8, 1999, pp. 1171-1173.
[129]W. Yang, T. Nohova, S. Krishnankutty, R. Torreano, S. McPherson and H. Marsh, "Back-illuminated GaN/AlGaN heterojunction photodiodes with high quantum efficiency and low noise," Appl. Phys. Lett., vol. 73, no. 8, 1998, pp. 1086-1088.
[130]J. M. Van Hove, R. Hickman, J. J. Klaassen, and P. P. Chow, "Ultraviolet-sensitive, visible-blind GaN photodiodes fabricated by molecular beam epitaxy," Appl. Phys. Lett., vol. 70, no. 17, 1997, pp. 2282-2284.
[131]H. Fabricius, T. Skettrup, and P. Bisgaard, "Ultraviolet detectors in thin sputtered ZnO films," Appl. Opt., vol. 25, no. 16, 1986, pp. 2764-2767.
[132]S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu, and H. Shen, "ZnO Schottky ultraviolet photodetectors," J. Cryst. Growth, vol. 225, no. 2-4, 2001, pp. 110-113.
[133]H. Zhou, G. Fang, L. Yuan, C. Wang, X. Yang, H. Huang, C. Zhou and X. Zhao, "Deep ultraviolet and near infrared photodiode based on n-ZnO/p-silicon nanowire heterojunction fabricated at low temperature," Appl. Phys. Lett. vol., 94, no. 1, 2009, pp. 013503.
[134]H. D. Um, S. A. Moiz, K. T. Park, J. Y. Jung, S. W. Jee, C. H. Ahn, D. C. Kim, H. K. Cho, D. W. Kim and J.-H. Lee, "Highly selective spectral response with enhanced responsivity of n-ZnO/p-Si radial heterojunction nanowire photodiodes," Appl. Phys. Lett., vol. 98, no. 3, 2011, pp. 033102.
[135]B. C. Hsu, C. W. Liu, W. T. Liu and C. H. Lin, "A PMOS tunneling photodetector," IEEE Trans. Electron Devices, vol. 48, no. 8, 2001, pp. 1747-1749.
[136]W. F. Mohamad, A. A. Hajar and A. N. Saleh, "Effects of oxide layers and metals on photoelectric and optical properties of Schottky barrier photodetector," Renew. Energy, vol. 31, no. 10, 2006, pp. 1493-1503.
[137]T. M. Wang, C. H. Chang and J. G. Hwu, "Enhancement of temperature sensitivity for metal-oxide-semiconductor (MOS) tunneling temperature sensors by utilizing hafnium oxide (HfO2) film added on silicon dioxide (SiO2)," IEEE Sens. J., vol. 6, no. 6, 2006, pp. 1468-1472.
[138]F. H. Ruddell, J. H. Montgomery, H. S. Gamble and D. Denvir, "Germanium MOS technology for infra-red detectors," Nucl. Instrum. Meth. A, vol. 573, no. 1-2, 2007, pp. 65-67.
[139]N. Kaliwoh, J. Y. Zhang and I. W. Boyd, "Ultrathin silicon dioxide films grown by photo-oxidation of silicon using 172 nm excimer lamps," Appl. Surf. Sci., vol. 168, no. 14, 2000, pp. 288-291.
[140]S. Morita, A. Shinozaki, Y. Morita, K. Nishimura, T. Okazaki, S. Urabe, M. Morita, "Tunneling current through ultrathin silicon dioxide films under light exposure," Jpn. J. Appl. Phys., vol. 43, no. 11B, 2004, pp. 7857-7860.
[141]I. S. Jeong, J. H. Kim and S. Im, "Ultraviolet-enhanced photodiode employing n-ZnO/p-Si structure," Appl. Phys. Lett. vol. 83, no. 14, 2003, pp. 2946-2948.
[142]L. C. Chen, C. N. Pan. "Photoresponsivity enhancement of ZnO/Si photodiodes through use of an ultrathin oxide interlayer," Eur. Phys. J. Appl. Phys., vol. 44, no. 1, 2008, pp. 43-46.
[143] J. M. Bian, X. M. Li, X. D. Gao, W. D. Yu and L. D. Chen, "Deposition and electrical properties of N-In codoped p-type ZnO films by ultrasonic spray pyrolysis," Appl. Phys. Lett., vol. 84, no. 4, 2004, pp. 541-543.
[144]L. L. Chen, Z. Z. Ye, J. G. Lu and P. K. Chu, "Control and improvement of p-type conductivity in indium and nitrogen codoped ZnO thin films," Appl. Phys. Lett., vol. 89, no. 25, 2006, pp. 252113.
[145]X. G. Zheng, Q. Sh. Li, J. P. Zhao, D. Chen, B. Zhao, Y. J. Yang and L. C. Zhang, "Photoconductive ultraviolet detectors based on ZnO films," Appl. Sur. Sci., vol. 253, no. 4, 2006, pp. 2264-2267.
[146]T. H. Moon, M. C. Jeong, W. Lee and J. M. Myoung, "The fabrication and characterization of ZnO UV detector," Appl. Sur. Sci., vol. 240, no. 1-4, 2005, pp. 280-285.
[147]S. J. Young, L. W. Ji, T. H. Fang, S. J. Chang, Y. K. Su and X. L. Du, "ZnO ultraviolet photodiodes with Pd contact electrodes," Acta Materialia, vol. 55, no. 1, 2007, pp. 329-333.
[148]D. C. Oh, T. Suzuki, H. Makino, T. Hanada, H. J. Ko and T. Yao, "Electrical properties of ZnO/GaN heterostructures and photoresponsivity of ZnO layers," Phys. Stat. Sol. (c), vol. 3, no. 4, 2006, pp. 946-951.
[149]M. A. Green, F. d. King and J. Shewchun, "Minority carrier MIS tunnel diodes and their application to electron- and photo-voltaic energy conversion-I. Theory," Solid-State Electron., vol. 17, no. 6, 1974, pp. 551-561.
[150]J. Shewchun, M. A. Green and F. d. King, "Minority carrier MIS tunnel diodes and their application to electron- and photo-voltaic energy conversion-II. Experiment," Solid-State Electron., vol. 17, no. 6, 1974, pp. 563-572.
[151]M. A. Green and J. Shewchun, "Current multiplication in metal-insulator-semiconductor (MIS) tunnel diodes," Solid-State Electron., vol. 17, no. 4, 1974, pp. 349-365.
[152]J. Dutta, P. Roubeau, T. Emeiaud, J. M. Laurent, A. Smith, F. Leblanc and J. Penrrin, "Application of pyrosol deposition process for large-area deposition of fluorine-doped tin dioxide thin films," Thin Solid Films, vol. 239, no. 1, 1994, pp. 150-155.
[153]S. Y. T. Tzeng and Y. Tzeng, "Two-level model and magnetic field effects on the hysteresis in n-GaAs," Phys. Rev. B, vol. 70, no. 8, 2004, pp. 085208.
[154]F. P. Wang, B. Monemar, M. Ahlstrom, "Mechanisms for the optically detected magnetic resonance background signal in epitaxial GaAs," Phys. Rev. B, vol. 39, no. 15, 1989, pp. 11195-11198.
[155]L. C. Chen and M. I. Lu, "Magneto-optical multiplication effects in ZnO/SiO2/Si photodiodes," Scr. Mater., vol. 61, no. 8, 2009, pp. 781-784.
[156]H. Kroemer, Quantum Mechanic for Engineering: Materials Science and Applied Physics, New Jersey: Prentice Hall, 1994.
[157]X. H. Zhang, S. J. Chua, A. M. Yong, H. Y. Yang, S. P. Lau, S. F. Yu, X. W. Sun, L. Miao, M. Tanemura and S. Tanemura, "Exciton radiative lifetime in ZnO nanorods fabricated by vapor phase transport method," Appl. Phys. Lett., vol. 90, no. 1, 2007, pp. 013107.
[158]Y. Danhara, T. Hirai, Y. Harada and N. Ohno, "Exciton luminescence of ZnO fine particles," Phys. Stat. Sol. (c), vol. 3, no. 10, 2006, pp. 3565-3568.
[159]J. H. Lim, C. K. Kang, K. K. Kim, I. K. Park, D. K. Hwang, S. J. Park, "UV electroluminescence emission from ZnO light-emitting diodes grown by high-temperature radiofrequency sputtering," Adv. Mater., vol. 18, no. 20, 2006, pp. 2720-2724.
[160]X. H. Wang, B. Yao, D. Z. Shen, Z. Z. Zhang, B. H. Li, Z. P. Wei, Y. M. Lu, D. X. Zhao, J. Y. Zhang, X. W. Fan, L. X. Guan and C. X. Cong, "Optical properties of p-type ZnO doped by lithium and nitrogen," Solid State Commun., vol. 141, no. 11, 2007, pp. 600-604.
[161]H. Ohno, "Making Nonmagnetic Semiconductors Ferromagnetic," Science, vol. 281, no. 5379, 1998, pp. 951-956.
[162]Y. Ohno and T. Dietl, "Electrical spin injection in a ferromagnetic semiconductor heterostructure," Nature, vol. 402, 1999, pp. 790-792.
[163]M. H. Ham, S. Yoon, Y. Park, L. Bian, M. Ramsteiner and J. M. Myoung, "Electrical spin injection from room-temperature ferromagnetic (Ga, Mn)N in nitride-based spin-polarized light-emitting diodes," J. Phys. Condens. Matter, vol. 18, no. 32, 2006, pp. 7703-7708.
[164]A. Sinsarp, T. Manago, F. Takano and H. Akinaga, "Electrical spin injection from out-of-plane magnetized FePt/MgO tunneling junction into GaAs at room temperature," Jpn. J. Appl. Phys., vol. 46, no. 1, 2007, pp. L4-6.
[165]L. Lombez, P. Renucci, P. F. Braun, H. Carrere, X. Marie, T. Amand, B. Urbaszek, and J. L. Gauffier, P. Gallo, T. Camps, A. Arnoult, and C. Fontaine, C. Deranlot, R. Mattana, H. Jaffres and J. M. George, "Electrical spin injection into p-doped quantum dots through a tunnel barrier," Appl. Phys. Lett., vol. 90, no. 8, 2007, pp. 081111.
[166]V. G. Truong, P.-H. Binh, P. Renucci,M. Tran, Y. Lu, H. Jaffres, J. M. George, C. Deranlot, A. Lemaitre, T. Amand and X. Marie, "High speed pulsed electrical spin injection in spin-light emitting diode," Appl. Phys. Lett., vol. 94, no. 14, 2009, pp. 141109.
[167]Eunsoon Oh, B. W. Lee, T. S. Kim, J. M. Lee, S. J. Oh and J. D. Song, "Optical characterizations of GaAs-based spin light emitting diodes using Fe3O4 spin injectors," Curr. Appl. Phys., vol. 12, no. 5, 2012, pp. 1244-1247.
[168]H. J. Zhu, M. Ramsteiner, H. Kostial, M. Wassermeier, H. P. Schonherr, and K. H. Ploog, “Room-temperature spin injection from Fe into GaAs,” Phys. Rev. Lett., vol. 87, no. 1, 2001, pp. 016601.
[169]T. A. Louis, G. Ripamonti and A. lacaita, “Photoluminescence lifetime microscope spectrometer based on time-correlated single-photon counting with an avalanche diode detector”, Rev. Sci. Instrum. vol. 61, no. 1, 1990, pp. 11.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top