跳到主要內容

臺灣博碩士論文加值系統

(3.236.23.193) 您好!臺灣時間:2021/07/24 13:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張凱勝
研究生(外文):Kai-Sheng Zhang
論文名稱:基於平滑粒子流體動力學之群體機器人控制
論文名稱(外文):The Swarm Robots Control Based on Smoothed Particle Hydrodynamics
指導教授:姚立德姚立德引用關係
指導教授(外文):Leehter Yao
口試委員:李俊賢黃有評莊季高蘇順豐
口試日期:2012-07-10
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:自動化科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:106
中文關鍵詞:平滑粒子流體動力學群體機器人群體運動密度控制避障
外文關鍵詞:Smoothed Particle Hydrodynamicswarm robotsswarm motiondensity-based controlcollision avoidance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:168
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,平滑粒子流體動力學方法已成功應用於群體機器人系統中,藉由此方法可避免機器人間碰撞的發生,並且有效地進行群體控制,讓群體機器人以群體運動方式到達要求之目的地;然而當使用平滑粒子流體動力學方法在進行群體運動時,群體機器人之間的密度較容易受到障礙物影響導致密度分佈不穩定而發生群體行為遭破壞之情形。因此,本研究提出了使用基於密度控制演算法於群體機器人系統中,並分析其系統特性,大量模擬及實作於群體機器人在具有障礙物環境中其避障情形及密度分佈情況,最後透過實驗數據證明了群體機器人使用基於密度控制演算法,其系統效能與密度分佈情形優於傳統式的平滑粒子流體動力學方法,並改善平滑粒子流體動力學方法較容易受到環境影響而遭破壞之情形。

In recent years, the Smoothed Particle Hydrodynamic (SPH) method has been successfully applied to swarm robotic systems, furthermore, using the SPH method may avoid collisions between swarm robots and effectively reach the destination via executing swarm motion. However, when execute the swarm motion by using SPH method, the density between swarm robots is very sensitive caused by obstacle and then occur the unstable density distribution and slowly convergence situation. Therefore, this research proposed the density-based control algorithm in swarm robotic systems and analyzed the system performance, and then simulated the collision avoidance and density distribution in the obstacle environment. In simulation results, using the density-based method outperforms the conventional SPH method which improves the system performance in obstacle environment.

摘 要 i
ABSTRACT ii
誌 謝 iii
目 錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 前言 1
1.2 文獻探討 2
1.3 研究動機與目的 3
1.4 論文大綱 4
第二章 群體機器人控制模型 5
2.1 網格法 5
2.1.1 拉格朗日網格 6
2.1.2 歐拉網格 8
2.2 無網格粒子法 10
2.3平滑粒子流體動力學 13
2.3.1平滑函數之核近似 15
2.3.2 粒子近似表示法 21
2.3.3 人工黏性 26
2.3.4 流體壓力 27
2.3.5 平滑粒子流體動力學控制器 28
2.4 密度控制器模型 29
第三章 群體控制方法 33
3.1 人工勢能場建立 34
3.2 限制函數 38
第四章 群體機器人系統架構 44
4.1 嵌入式機器人車體結構 45
4.2 影像處理系統 47
4.3 ZigBee無線通訊系統 50
第五章 數值分析與實驗結果 54
5.1 群體密度控制 56
5.1.1 基於密度控制模型模擬 56
5.1.2基於密度控制模型實作 60
5.2 群體分離避障 76
5.2.1 基於平滑粒子流體動力學模型 77
5.2.2 基於密度控制模型 80
5.2.3 基於密度控制模型實作避障 83
5.3 群體穿越窄橋 88
5.3.1 基於平滑粒子流體動力學模型 88
5.3.2 基於密度控制模型 91
5.3.3 基於密度控制模型實作穿越窄橋 95
第六章 結論與未來展望 99
6.1 結論 99
6.2 未來展望 100
參考文獻 101

[1] M. Kumar, D. Milutionvic and D. P. Garg, “ Role of Stochasticity in Self-Organization of Robotic Swarms,” American Control Conf., pp. 123-128, June 2008.
[2] R. O. Saber, “Flocking for multi-agent dynamic systems: Algorithms and theory,” IEEE Trans. on Automatic Control, vol. 51, no. 3, pp. 401-420, Mar. 2006.
[3] H. Tanner, A. Jadbabaie, and G. J. Pappas, “Flocking in fixed and switching networks,” IEEE Trans. on Automatic Control, vol. 52, no. 5, pp. 863-868, May 2007.
[4] W. X. Feng, K. Wang, X. F. Ye and S. X. Guo, “Novel Algorithms for Coordination of Underwater Swarm Robotics,” IEEE International Conf. on Mechatronics and Automation, pp. 654 - 659, June 2006.
[5] S. Momen, B. P. Amavasai and N. H. Siddique, “Mixed Species Flocking for Heterogeneous Robotic Swarms,” IEEE International Conf. on Computer as a Tool, pp. 2329-2336, Sep. 2007.
[6] H. J. Lee and K. B. Sim, “Distributed Moving Algorithm of Swarm Robots to Enclose an Invader,” IEEE International Conf. on Automation and Systems, pp. 729-733, Oct. 2008.
[7] D. Wang, N. M. Kwok, G. Fang, X. Jia and F. Li, “Ants based Control of Swarm Robots for Bushfire Fighting,” IEEE International Conf. on Control, Automation and Systems, pp. 523-532, Oct. 2010.
[8] T. Komatsu, T. Ohkubo, K. Kobayashi and K. Watanabe, “A study of RSSI-based formation control algorithm for multiple mobile robots, ” SICE Annual Conf., pp. 1127-1130, Aug. 2010.
[9] F. Arvin, K. Samsudin and A. R. Ramli, “A Short-Range Infrared Communication for Swarm Mobile Robots,” IEEE International Conf. on Signal Processing Systems, pp.454-458, May 2009.
[10] S. Hara and T. Ishimoto, “A least squares-based heading direction estimation for a robot swarm with only ranging capability,” IEEE International Workshop on Robotic and Sensors Environments, pp.1-5, Nov. 2009.
[11] C. C. Lin, P. Y. Hsiao and K. C. Chen, “A Motion Planning of Swarm Robots Using Genetic Algorithm,” IEEE International Conf. on Broadband, Wireless Computing, Communication and Applications, pp.538-543, Nov. 2010.
[12] L. Chaimowicz, N. Michael and V. Kumar, “Controlling Swarms of Robots Using Interpolated Implicit Functions,” IEEE International Conf. on Robotics and Automation, pp.2487-2492, Apr. 2005.
[13] M. Kumar, D. P. Garg and V. Kumar, “Segregation of Heterogeneous Units in a Swarm of Robotic Agents,” IEEE Trans. on Automatic Control, vol. 55, no. 3, pp. 743-748, Mar. 2010.
[14] T. J. Li, G. W. Yuan and F. J. Wang, “Behavior control of multiple robots exploring unknown environment,” 4th IEEE Conf. on Industrial Electronics and Applications, pp. 1877-1882, May 2009.
[15] T. Huntsberger, P. Pirjanian, A. T. Ollennu, H. D. Nayar, H. Aghazarian, A. J. Ganino, M. Garrett, S. S. Joshi and P. S. Schenker, “CAMPOUT: a control architecture for tightly coupled coordination of multirobot systems for planetary surface exploration,” IEEE Trans. on Systems, Man and Cybernetics, Part A: Systems and Humans, vo.33, no. 5, pp. 550-559, Sep. 2003.
[16] W. Kerr and D. Spears, “Robotic simulation of gases for a surveillance task, ” IEEE/RSJ International Conf. on Intelligent Robots and Systems, pp. 2905-2910, Aug. 2005.
[17] R. Sepulchre, D. Paley, and N. E. Leonard, “Stabilization of planar collective motion: All-to-all communication,” IEEE Trans. on Automatic Control, vol. 52, no. 5, pp. 811–824, May 2007.
[18] P. Abichandani, H. Y. Benson and M. Kam, “Multi-vehicle path coordination in support of communication,” IEEE Conf. on Robotics and Automation, pp. 3237-3244, May 2009.
[19] C. H. Fua, S. S. Ge, K. D. Do and K. W. Lim, “Multirobot Formations Based on the Queue-Formation Scheme With Limited Communication,” IEEE Trans. on Robotics, vol. 23, no. 6, pp. 1160-1169, Dec. 2007.
[20] H. Hashimoto, S. Aso, S. Yokota, A. Sasaki, Y. Ohyama and H. Kobayashi, “Cooperative movement of human and swarm robot maintaining stability of swarm,” 17th IEEE International Symposium on Robot and Human Interactive Communication, pp. 249-254, Aug. 2008.
[21] M. M. Zavlanos and G. J. Pappas, “Dynamic assignment in distributed motion planning with local coordination,” IEEE Trans. on Robotics, vol. 24, no. 1, Feb. 2008.
[22] A. Jadbabaie, J. Lin and A. S. Morse, “Coordination of groups of mobile autonomous agents using nearest neighbor rules,” IEEE Trans. on Automatic Control, vol. 48, no. 6, pp. 988-1001, June 2003.
[23] R. Cassinis, G. Bianco, A. Cavagnini and P. Ransenigo, “Strategies for navigation of robot swarms to be used in landmines detection,” Third European Workshop on Advanced Mobile Robots, pp.211-218, 1999.
[24] L. C. A Pimenta, A. R. Fonseca, G. A. S. Pereira, R. C. Mesquita , E. J. Silva, W. M. Caminhas and M. F. M. Campos, “Robot navigation based on electrostatic field computation,” IEEE Trans. on Magnetics, vol. 42, no. 4, pp. 1459-1462, Apr. 2006.
[25] L. C. A. Pimenta, A. R. Fonseca, G. A. S. Pereira, R. C. Mesquita, E. J. Silva, W. M. Caminhas and M. F. M. Campos, “On Computing Complex Navigation Functions,” IEEE International Conf. on Robotics and Automation, pp. 3452-3457, Apr. 2005.
[26] H. Xu, H. Guan, A. Liang and X. Yan, “A Multi-robot Pattern Formation Algorithm Based on Distributed Swarm Intelligence,” Second International Conf. on Computer Engineering and Applications, pp. 71-75, Mar. 2010.
[27] D. R. Parhi, J. K. Pothal and M. K. Singh, “Navigation of multiple mobile robots using swarm intelligence,” World Congress on Nature & Biologically Inspired Computing, pp.1145-1149, Dec. 2009.
[28] L. Wang, Q. Zhang and N. Wan, “Simulation Study on Searching for Food by Cooperation of Multi-Robots with Swarm Intelligence,” IEEE International Conf. on Automation and Logistics, pp. 2296-2300, Aug. 2007.
[29] J. Zhou, G. Z. Dai, D. Q. He, J. Ma and X. Y. Cai, “Swarm Intelligence: Ant-Based Robot Path Planning,” Fifth International Conf. on Information Assurance and Security, pp.459-463, Aug. 2009.
[30] Y. Cen, C. Song, N. Xie and L. Wang, “Path planning method for mobile robot based on ant colony optimization algorithm,” 3rd IEEE Conf. on Industrial Electronics and Applications, pp. 298-301, June 2008.
[31] N. Michael, M. M. Zavlanos, V. Kumar and G. J. Pappas, “Distributed multi-robot task assignment and formation control,” IEEE International Conf. on Robotics and Automation, pp. 128-133, May 2008.
[32] S. P. Hou, C. C. Cheah and J. J. E. Slotine, “Dynamic region following formation control for a swarm of robots,” IEEE International Conf. on Robotics and Automation, pp. 1929-1934, May 2009.
[33] S. Liu, D. Sun and C. Zhu, “Motion planning of multiple mobile robots with formation requirement,” IEEE International Conf. on Information and Automation, pp.71-76. June 2010.
[34] L. E. Barnes, M. A. Fields and K. P. Valavanis, “Swarm Formation Control Utilizing Elliptical Surfaces and Limiting Functions,” IEEE Trans. on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 39, no. 6, pp. 1434 - 1445, Dec. 2009.
[35] J. R. T. Lawton, R. W. Beard and B. J. Young, “A Decentralized Approach to Formation Maneuvers,” IEEE Trans. on Robotic and Automation, vol. 19, no. 6, pp. 933-941, Dec. 2003.
[36] L. Consolini, F. Morbidi, D. Prattichizzo and M. Tosques, “A Geometric Characterization of Leader-Follower Formation Control,” IEEE Conf. on Robotics and Automation, pp. 2397-2402, Apr. 2007.
[37] I. Skrijanc and G. Klancar, “Cooperative Collision Avoidance between Multiple Robots Based on Bézier Curves,” 29th International Conf. on Information Technology Interfaces, pp. 451-456, June 2007.
[38] Y. S. Chen and J. G. Juang, “Intelligent Obstacle Avoidance Control Strategy for Wheeled Mobile Robot,” ICROS-SICE International Joint Conf., pp.3199-3204, Aug. 2009.
[39] A. Shaw and K. Mohseni, “A Fluid Dynamic Based Coordination of a Wireless Sensor Network of Unmanned Aerial Vehicles: 3-D Simulation and Wireless Communication Characterization,” IEEE J. on Sensors, vol. 11, pp. 722-736, Mar. 2011.
[40] M. R. Pac, A. M. Erkmen and I. Erkmen, “Control of robotic swarm behaviors based on smoothed particle hydrodynamics,” IEEE/RSJ International Conf. on Intelligent Robots and Systems, pp. 4194 - 4200, Nov. 2007.
[41] L. C. A. Pimenta, N. Michael, R. C. Mesquita, G. A. S. Pereira and V. Kumar, “Control of swarms based on Hydrodynamic models,” IEEE/RSJ International Conf. on Robotics and Automation, pp. 1948 - 1953, May 2008.
[42] S. Zhao, S. Ramakrishnan and M. Kumar, “Density-based Control of Multiple Robots,” American Control Conf., pp. 481-486, July. 2011.
[43] L. C. A. Pimenta, M. L. Mendes, R. C. Mesquita and G. A. S. Pereira, “Fluids in Electrostatic Fields: An Analogy for Multirobot Control,” IEEE Trans. on Magnetics, vol. 43, pp. 1765 - 1768, Apr. 2007.
[44] D. Gingras, E. Dupuis, G. Payre and J. D. Lafontaine, “Path planning based on fluid mechanics for mobile robots using unstructured terrain models,” IEEE International Conf. on Robotics and Automation, pp. 1978-1984, May 2010.
[45] G. R. Lin and M. B. Lin, Smoothed Particle Hydrodynamics a meshfree particle method, NEW JERSEY: World Scientific, 2003.
[46] N. E. Leonard, D. A. Paley, F. Lekien, R. Sepulchre, D. M. Fratantoni and R. E. Davis, “Collective Motion, Sensor Networks, and Ocean Sampling,” in Proc. IEEE, vol. 95, no. 1, pp. 48-74, Jan. 2007.
[47] E. Fiorelli, N. Leonard, P. Bhatta, D. Paley, R. Bachmayer and D. Fratantoni, “Multi-AUV control and adaptive sampling in Monterey bay,” IEEE J. on Oceanic Engineering, vol. 31, no. 4, pp. 935-948, Oct. 2006.
[48] L. C. A. Pimenta, M. L. Mendes, R. C. Mesquita and G. A. S. Pereira, “Fluids in electrostatic fields: An analogy for multirobot control,” IEEE Trans. on Magn, vol. 43, no. 4, pp. 1765-1768, Apr. 2007
[49] M. R. Pac, A. M. Erkmen and I. Erkmen, “Scalable Self-Deployment of Mobile Sensor Networks: A Fluid Dynamics Approach,” IEEE/RSJ International Conf. on Intelligent Robots and Systems, pp. 1446-1451, Oct. 2006.
[50] R. A. Gupta, A. A. Masoud and M. Y. Chow, “A Delay-Tolerant Potential-Field-Based Network Implementation of an Integrated Navigation System,” IEEE Trans. on Industrial Electronics, vol. 57, no. 2, pp. 769-783, Feb. 2010.
[51] A. A. Masoud, “A harmonic potential field approach for navigating a rigid, nonholonomic robot in a cluttered environment,” IEEE International Conf. on Robotics and Automation, pp.3993-3999, May 2009.
[52] V. Gopikrishna and M. Huber, “A temporal potential function approach for path planning in dynamic environments,” IEEE International Conf. on Systems, Man and Cybernetics, pp. 3605-3611, Oct. 2009.
[53] A. A. Masoud, “Decentralized Self-Organizing Potential Field-Based Control for Individually Motivated Mobile Agents in a Cluttered Environment: A Vector-Harmonic Potential Field Approach,” IEEE Trans. on Systems, Man and Cybernetics, vol. 37, no. 3, pp. 372-390, May 2007.
[54] R. Daily and D. M. Bevly, “Harmonic potential field path planning for high speed vehicles,” American Control Conf., pp.4609-4614, June 2008.
[55] A. A. Masoud, “Managing the dynamics of a potential field-guided robot in a cluttered environment,” IEEE International Workshop on Advanced Motion Control, pp. 272-277, Mar. 2006.
[56] K. P. Valavanis, “Mobile robot navigation in 2-D dynamic environments using an electrostatic potential field,” IEEE Trans. on Systems, Man and Cybernetics, Part A: Systems and Humans, vol. 30, no. 2, pp. 187-196, Mar. 2000.
[57] S. P. Hou and C. C. Cheah, “Multiplicative potential energy function for swarm control,” IEEE/RSJ International Conf. on Intelligent Robots and Systems, pp.4363-4368, Oct. 2009.
[58] M. A. Hsieh and V. Kumar, “Pattern generation with multiple robots,” IEEE International Conf. on Robotics and Automation, pp. 2442-2447, May 2006.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top