跳到主要內容

臺灣博碩士論文加值系統

(3.235.227.117) 您好!臺灣時間:2021/08/01 23:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭俊廷
研究生(外文):Chun-Ting Kuo
論文名稱:以模糊為基礎之二足機器人之即時步態規劃分析
論文名稱(外文):A Fuzzy-Based Real-Time Gait Planning Analysis for Biped Robot
指導教授:蔡舜宏蔡舜宏引用關係
指導教授(外文):Shun-Hung Tsai
口試委員:陳大道鄭志強蕭俊祥
口試委員(外文):Ta-Tau ChenChih-Chiang ChengJin-Siang Shaw
口試日期:2012-07-20
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:自動化科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:60
中文關鍵詞:步態控制穩定行走模糊控制器雙足機器人
外文關鍵詞:Gait planningStable walkingFuzzy Controllerbiped robot
相關次數:
  • 被引用被引用:1
  • 點閱點閱:161
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文針對機器人行走步態,提出一個以模糊為基底的步態控制方法。首先,根據人類行走之軌跡進行分析,建立機器人的行走步態。接著以D-H順向運動學及jacobian反運動學,架構整個機器人運動學系統及計算出機器人各關節馬達之轉動角度作為機器人行走的基本步態。
除上述所提之機器人行走基本步態,本論文針對雙足機器人提出一模糊控制器。其目的為使雙足機器人能達到即時自動校正步態的功能。最後透過模擬與實驗來證實本論文所提出之方法能有效的提高機器人的行走效率。

In this thesis, a fuzzy-based real-time gait planning control method is proposed for the walking gait of the biped robot. Firstly, by the trajectory of human walking, a robot walking gait trajectory can be constructed. Besides, by utilizing the D-H transformation matrix, the biped robot forward kinematics and the inverse kinematics, the kinematics of the biped robot can be obtained and the rotation angles, which are the biped robot walking gait, can be calculated.
In addition to the biped robot walking gait, a fuzzy controller for biped robot is proposed in this thesis. The fuzzy controller can real-time correct the walking gait automatically. Finally, the simulation and experimental results show that the proposed control method can improve the efficiency of the biped robot gait.

中文摘要 i
英文摘要 ii
誌 謝 iii
目 錄 iv
表目錄 v
圖目錄 vi
第一章 緒論 1
1.1 前言 1
1.2 研究背景與動機 1
1.3 研究目的 4
1.4 論文架構 5
第二章 機器人之硬體架構 7
2.1 前言 7
2.2 硬體架構 7
2.3 主控制板 8
2.4 制動器 10
2.5 感測器 13
第三章 機器人運動學模型 18
3.1 前言 18
3.2 雙足機器人步態軌跡分析與規劃 18
3.4 逆向運動學 34
3.5 運動學模型之架構 38
第四章 模糊步態校正與人機介面 40
4.1 前言 40
4.2 卡爾曼濾波 40
4.3 模糊校正 45
4.3 人機介面 50
第五章 實驗結果與結論 53
5.1 實驗結果 53
5.2 結論與未來展望 53
參考文獻 57


[1]http://en.wikipedia.org/wiki/Three_Laws_of_Robotics
[2]http://en.wikipedia.org/wiki/BigDog
[3]http://hplusmagazine.com/2010/01/15/valley-dogbots-war/
[4]Y. Sakagami, R. Watanabe, C. Aoyama, S. Matsunaga, N. Higaki; K. Fujimura, “The intelligent asimo: system overview and integration”, IEEE/RSJ International Conference on Intelligent Robots and Systems, Japan, vol. 3, 2002, pp. 2478-2483.
[5]http://en.wikipedia.org/wiki/HRP-4C
[6]http://cilab.csie.ncu.edu.tw/mt/tabo/archives/2007/05/zmp_ece_zero_mo_1.html
[7]K. Erbatur, O.Kurt, “Natural ZMP trajectories for biped robot reference generation”, IEEE Transactions on Industrial Electronics, Istanbul, vol. 56, Issue 3, pp. 835-845.
[8]B. J. Lee, D. Stonier, Y. D. Kim, J. K. Yoo, J. H. Kim, “Modifiable walking pattern of a humanoid robot by using allowable ZMP variation”, IEEE Transactions on Robotics, Daejeon, vol, Issue 4, 2008, pp. 917-925.
[9]J. Or, “A hybrid CPG–ZMP controller for the real-time balance of a simulated flexible spine humanoid robot”, IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, South Korea, vol. 39, Issue 5, 2009, pp.547-561.
[10]B. Ugurlu, A. Kawamura, “ZMP-based online jumping pattern generation for a one-legged robot”, IEEE Transactions on Industrial Electronics, Japan, vol. 57, Issue 5, 2010, pp. 1701-1709.
[11]S. Kajita, T. Nagasaki, K. Kaneko, H. Hirukawa, “ZMP-based biped running control”, IEEE Robotics & Automation Magazine, vol. 14, Issue 2, 2007, pp. 63-72.
[12]T. Sato, S. Sakaino, E. Ohashi, K. Ohnishi, “Walking trajectory planning on stairs using virtual slope for biped robots”, IEEE Transactions on Industrial Electronics, Japan, vol. 58, Issue 4, 2011, pp. 1385-1396.
[13]http://en.wikipedia.org/wiki/File:Asimo.jpg
[14]http://www.gizmodiva.com/other_stuff/dance_of_the_hrp4c_cybernetic_human_is_a_hit_in_japan.php
[15]http://www.jamaipanese.com/hrp-3-promet-mk-ii-the-robots-coming-out-of-japan-just-got-tougher/
[16]Y.S. Xia, G. Feng , J. Wang, “A primal-dual neural network for online resolving constrained kinematic redundancy in robot motion control”, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, China, vol. 35, Issue 1, 2005, pp. 54-64.
[17]P. Gaudiano, E. Zalama, J. L. Coronado, “An unsupervised neural network for low-level control of a wheeled mobile robot: noise resistance, stability, and hardware implementation”, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, Boston, vol. 26, Issue 3, 1996, pp. 485-496.
[18]S. X. Yang, M. Q. -H. Meng, “Real-time collision-free motion planning of a mobile robot using a neural dynamics-based approach”, IEEE Transactions on Neural Networks, Canada, vol. 14, Issue 6, 2003, pp. 1541-1552.
[19]Y. H. Kim, F. L. Lewis, “Neural network output feedback control of robot manipulators”, IEEE Transactions on Robotics and Automation, TX, vol. 15, Issue 2, 1999, pp.301-309.
[20]S. Jung, T. C. Hsia, “Robust neural force control scheme under uncertainties in robot dynamics and unknown environment”, IEEE Transactions on Industrial Electronics, Taejon, vol. 47, Issue 2, 2000, pp. 403-412.
[21]J. P. Ferreira, M. M. Crisostomo, A. P. Coimbra, ”SVR versus neural-fuzzy network controllers for the sagittal balance of a biped robot”, IEEE Transactions on Neural Networks, Portugal, vol. 20, Issue 12, 2009, pp. 1885-1897.
[22]H. R. Beom, H. S. Cho, “A sensor-based navigation for a mobile robot using fuzzy logic and reinforcement learning”, IEEE Transactions on Systems, Man and Cybernetics, Taejon, vol. 25, Issue 3, 1995, pp. 464-477.
[23]X. Chen, K. Watanabe, K. Kiguchi, K. Izumi, “An ART-based fuzzy controller for the adaptive navigation of a quadruped robot”, IEEE/ASME Transactions on Mechatronics, Wuhan, vol. 7, Issue 3, 2002, pp. 318-328.
[24]H. Seraji, A. Howard, “Behavior-based robot navigation on challenging terrain: A fuzzy logic approach”, IEEE Transactions on Robotics and Automation, CA, vol. 18, Issue 3, 2002, pp.308-321.
[25]V. G. Moudgal, W. A. Kwong, K. M. Passino, S. Yurkovich, “Fuzzy learning control for a flexible-link robot”, IEEE Transactions on Fuzzy Systems, OH, vol. 3, Issue 2, 1995, pp. 199-210.
[26]S. X. Yang, H. Li, M.Q.-H. Meng, P. X. Liu, “An embedded fuzzy controller for a behavior-based mobile robot with guaranteed performance”, IEEE Transactions on Fuzzy Systems, Canada, vol. 12, Issue 4, 2004, pp. 436-446.
[27]H.A. Malki, D. Misir, D. Feigenspan, G. Chen, ” Fuzzy PID control of a flexible-joint robot arm with uncertainties from time-varying loads”, IEEE Transactions on Control Systems Technology, TX, vol. 5, Issue 3, 1997, pp. 371-378.
[28]T. W. Manikas, K. Ashenayi, R. L. Wainwright, “Genetic algorithms for autonomous robot navigation”, IEEE Instrumentation & Measurement Magazine, Tulsa, vol. 10, Issue 6, 2007, pp. 26-31.
[29]S. S. Ge, T. H. Lee, G. Zhu, “Genetic algorithm tuning of lyapunov-based controllers: an application to a single-link flexible robot system”, IEEE Transactions on Industrial Electronics, Singapore, vol. 43, Issue 5, 1996, pp. 567-574.
[30]Y. Zhan, H. Leung, K. C Kwak, H. Yoon, ” Automated speaker recognition for home service robots using genetic algorithm and dempster–shafer fusion technique”, IEEE Transactions on Instrumentation and Measurement, Canada, vol. 58, Issue 9, 2009, pp. 3058-3068.
[31]C. C. Tsai, H. C Huang, C. K Chan, “Parallel elite genetic algorithm and its application to global path planning for autonomous robot navigation”, IEEE Transactions on Industrial Electronics, Taiwan, vol. 58, Issue 10, 2011, pp. 4813-4821.
[32]Y. Jin, “Decentralized adaptive fuzzy control of robot manipulators”, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, Hangzhou, vol. 28, Issue 1, 1998, pp. 47-57.
[33]K. B Sim, K. S Byun, D. W. Lee, Design of fuzzy controller using schema coevolutionary algorithm, IEEE Transactions on Fuzzy Systems, Korea, vol. 12, Issue 4, 2004, pp. 565-570.
[34]J. -S. R. Jang, “ANFIS: adaptive-network-based fuzzy inference system”, IEEE Transactions on Systems, Man and Cybernetics, CA, vol. 23, Issue 3, 1993, pp. 665-685.
[35]R. J. Wai, P. C. Chen, ” Intelligent tracking control for robot manipulator including actuator dynamics via TSK-type fuzzy neural network”, IEEE Transactions on Fuzzy Systems, Taiwan, vol. 12, Issue 4, 2004, pp. 552-560.
[36]蔡舜宏,范志佳,”針對人型足球機器人之變速步態規劃及色彩分割之研究”,碩士論文,國立臺北科技大學自動化科技研究所,台北,2011。
[37]S. Kajita, O. Matsumoto, M. Saigo,” Real-time 3D walking pattern generation for a biped robot with telescopic legs”, IEEE International Conference on Robotics and Automation, 2001. Proceedings 2001 ICRA, Japan, vol. 3, pp. 2299-2306.
[38]Roboard, http://www.roboard.com/
[39]Robotics, http://www.robotis.com/
[40]www.electronickits.com/robot/BioloidAX-12(english).pdf
[41]www.robotown.org.tw/attachment.php?attachmentid=2162
[42]S. A. Niyogi, E. H. Adelson, “Analyzing and recognizing walking figures in XYT”, 1994 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1994. Proceedings CVPR ''94. , MA, 1994, pp. 469-474.
[43]M. S. Nixon, J. N. Carter, J. M. Nash, P. S. Huang, D. Cunado, “Automatic gait recognition”, IEE Colloquium on Motion Analysis and Tracking (Ref. No. 1999/103), Southampton, 1999, pp. 3/1-3/6.
[44]D. Cunado, M. S. Nixon, J. N. Carter, “Extracting a human gait model for use as a biometric”, IEE Colloquium on Computer Vision for Virtual Human Modelling (Ref. No. 1998/433), Southampton, 1998, pp. 11/1-11/4.
[45]J. H. Yoo, M. S. Nixon, C. J. Harris, “Model-driven statistical analysis of human gait motion”, 2002 International Conference on Image Processing. 2002. Proceedings., UK, vol. 1, 2002, pp. I-285-I-288.
[46]L. Lee, W. E. L. Grimson, “Gait analysis for recognition and classification”, Fifth IEEE International Conference on Automatic Face and Gesture Recognition, 2002. Proceedings., Cambridge, 2002, pp. 148-155.
[47]邱士軒,高炳中,”雙足機器人之步行規劃與平衡控制”,碩士論文,國立臺灣科技大學高分子工程系研究所,台北,2008。
[48]陸冠群,余佳擁,”二足步行機器人的設計製作與軌跡規劃”,碩士論文,大同大學機械工程研究所,台北,2004。
[49]R. E. Kalman, “A new approach to linear filteringand prediction problems”, Trans. ASME, vol. 82, Issue 1, 1960, pp. 35-45.
[50]http://en.wikipedia.org/wiki/Hidden_Markov_model
[51]http://zh.wikipedia.org/wiki/卡爾曼濾波


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊