跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/01 02:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李經綸
研究生(外文):Ching-Lun Li
論文名稱:具狀態與輸入時延之T-S模糊系統的非二次穩定條件
論文名稱(外文):Non-quadratic Stability Condition for T-S Fuzzy System with State and Input Delays
指導教授:蔡舜宏蔡舜宏引用關係洪永銘
口試委員:陶金旺羅吉昌練光祐
口試日期:2012-07-20
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:自動化科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:62
中文關鍵詞:T-S模糊系統時延系統參數相依的李亞普諾夫函數非二次穩定線性矩陣不等式李導數線積分
外文關鍵詞:T-S fuzzy systemTime-delay systemNon-parallel distributed compensation controllerParameter-dependent Lyapunov functionNon-quadratic stabilityLie derivativeLine integral Lyapunov functionSlack matrix variables
相關次數:
  • 被引用被引用:0
  • 點閱點閱:170
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要可分為兩個部分,首先,利用非平行分散補償控制器來做閉迴路控制,並以參數相依的李亞普諾夫函數(parameter-dependent Lyapunov function)分別對具狀態時延之T-S模糊系統及同時具狀態與輸入時延之T-S模糊系統推導其非二次(non-quadratic)穩定條件,並提出幾個例子來證明所提之條件比一些已存在的方法有更長的延遲時間。
第二部分主要是研究先前定理中歸屬函數對時間微分的相依性問題,採用李導數(Lie derivative)技巧及線積分Lyapunov function,將先前定理的缺點加以改良,提出新的非二次(non-quadratic)穩定條件,並且加入寬鬆矩陣變數使得穩定條件的保守性能進一步的降低,最後再經由數值範例的模擬比較,證明本論文理論的優越性及有效性。


There are two parts in this thesis. Firstly, the non-parallel distributed compensation controller is utilized to stabilize the T-S fuzzy systems with state and input delay. In addition, the non-quadratic stabilization condition for the T-S fuzzy systems with state-delay and T-S fuzzy systems with state and input delay is obtained via the parameter-dependent Lyapunov function. Furthermore, the simulation examples are given to demonstrate the proposed stabilization condition can provide longer delay time.
In the second part, the dependency problem of membership function in the previous theorem is investigated. For improving the shortcomings of previous theorems, the Lie derivative techniques and the line integral Lyapunov function are adopted. Furthermore, a new non-quadratic stability conditions are proposed. Besides, since the slack matrix variables are adopted, the proposed stabilization conditions provide less conservative. Finally, simulation examples are given to illustrate the feasibility and effectiveness of the proposed approach in this paper.


中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 v
圖目錄 vi
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 研究目的 2
1.4 論文架構 3
第二章 T-S模糊模型與李亞普諾夫穩定準則 5
2.1 T-S模糊模型 5
2.2 李亞普諾夫穩定準則 7
第三章 參數相依李亞普夫函數之穩定性分析 8
3.1 狀態時延系統穩定性分析 8
3.1.1 狀態時延T-S模糊系統之架構 8
3.1.2 狀態時延T-S模糊系統之穩定條件 10
3.2 狀態與輸入時延系統穩定性分析 16
3.2.1 狀態與輸入時延T-S模糊系統之架構 16
3.2.2 狀態與輸入時延T-S模糊系統之穩定條件 19
第四章 線積分李亞普夫函數之穩定性分析 25
4.1 線積分李亞普夫函數 25
4.2 狀態時延系統穩定性分析 26
4.2.1 狀態時延T-S模糊系統之架構 26
4.2.2 狀態時延T-S模糊系統之穩定條件 26
4.3 狀態與輸入時延系統穩定性分析 32
4.3.1 狀態與輸入時延T-S模糊系統之架構 32
4.3.2 狀態與輸入時延T-S模糊系統之穩定條件 32
第五章 電腦模擬 39
5.1 範例1 39
5.2 範例2 43
5.3 範例3 47
5.4 範例4 49
5.5 範例5 53
第五章 結論 58
參考文獻 59


[1] V. L. Kharitonov and D. Melchor-Aguilar, “On delay-dependent stability conditions for time-delay systems,” System & Control Letters, vol. 46, 2002, pp. 173-179.
[2] E. Fridman and U. Shaked, “Delay-dependent stability and control: constant and time-varying delays,” International Journal of Control, vol. 76, no. 1, 2003, pp. 48-60.
[3] W. H. Chen, Z. H. Guan and X. Lu, “Delay-dependent output feedback stabilization of Markovian jump system with time-delay,” IEE Proceedings Control Theroy and Applications, vol. 151, no. 8, 2004, pp. 561-566.
[4] M. Jamshidi and A. Bahill, “Book reviews-control time-delay systems,” IEEE Control Systems Magazine, vol. 2, no. 2, 1982, pp. 21-22.
[5] H. K. Kyeong and M. J. Youn, “A simple and robust digital current control technique of a pm synchronous motor using time delay control approach,” IEEE Transactions on Power Electronics, vol. 16, no. 1, 2001, pp. 72-82.
[6] T. Liu, X. He, D. Y. Gu and W. D. Zhang, “Analytical decoupling control design for dynamic plants with time delay and double integrators,” IEE Proceedings-Control Theory and Applications, vol. 151, no. 6, 2004, pp. 745-753.
[7] K. G. Shin and C. Xianzhong, “Computing time delay and its effects on real-time control systems,” IEEE Transactions on Control Systems Technology, vol. 3, no. 2, 1995, pp. 218-224.
[8] R. Mahboobi Esfanjani and S. K. Y. Nikravesh, “Stabilising predictive control of non-linear time-delay systems using control lyapunov-krasovskii functionals,” IET Control Theory & Applications, vol. 3, no. 10, 2009, 1395-1400.
[9] P. H. Chang and J. W. Lee, “A model reference observer for time-delay control and its application to robot trajectory control,” IEEE Transactions on Control Systems Technology, vol. 4, no. 1, 1996, pp. 2-10.
[10] G. R. Cho, P. H. Chang; S. H. Park and M. Jin, “Robust tracking under nonlinear friction using time-delay control with internal model,” IEEE Transactions on Control Systems Technology, vol. 17, no. 6, 2009, pp. 1406-1414.
[11] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and control,” IEEE Trans. Syst., Man, Cybern., vol. SMC-15, 1985, pp. 116–132.
[12] J. SaIcedo and M. Martinez, “BIBO stabilisation of Takagi-Sugeno fuzzy systems under persistent perturbations using fuzzy output-feedback controllers,” IEEE Trans. Control Theory & Application, vol. 2, no. 6, 2008, pp. 513–523.
[13] F. H. Hsiao, C. W. Chen, Y. W. Liang, S. D. Xu, and W. L. Chiang, “T-S fuzzy controllers for nonlinear interconnected systems with multiple time,” IEEE Trans. on Circuits and Syst., vol. 152, no. 9, 2005, pp. 1883–1893.
[14] W. J. Chang, and W. Chang, “Discrete fuzzy control of time-delay affine Takagi-Sugeno fuzzy models with constraint,” IEE Proceedings Control Theory and Applications, vol. 153, no. 6, 2006, pp. 745–752.
[15] W. J. Wang, and W. W. Lin, “Decentralized PDC for large-scale T-S fuzzy systems,” IEEE Trans. on Fuzzy Syst., vol. 13, no. 6, 2005, pp. 779–786.
[16] T. H. Li and S. H. Tsai, “T–S fuzzy bilinear model and fuzzy controller design for a class of nonlinear systems,” IEEE Transactions on Fuzzy Systems, vol. 15, no. 3, 2007, pp. 494-506.
[17] S. H. Tsai and T. H. Li, “Robust fuzzy control of a class of fuzzy bilinear systems with time delay,” Chaos, Solitons & Fractals, vol. 39, no. 5, 2009, pp. 2028-2040
[18] T. H. Li, S. H. Tsai, J. Z. Lee, M. Y. Hsiao, and C. H. Chao, “Robust fuzzy control for a class of uncertain,” IEEE Transactions on Fuzzy Systems, vol. 38, no. 2, 2008, pp. 510-517
[19] K. Tanaka, T. Ikeda, and H. O. Wang, “Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs,” IEEE Trans. on Fuzzy Systems, vol. 6, no. 2, 1998, pp. 250-265.
[20] E. Kim, and H. Lee, “New Approaches to relaxed quadratic stability condition of fuzzy control systems,” IEEE Trans. on Fuzzy Systems, vol. 8, no. 5, 2000, pp. 523–534.
[21] L. Xiaodong, and Z. Qingling, “New approaches to controller designs based on fuzzy observers for T-S fuzzy systems via LMI,” Automatica, vol. 39, Issue 9, 2003, pp. 1571-1582.
[22] C. H. Fang, Y. S. Liu, S. W. Kau, L. Hong, and C. H. Lee, “A new LMI-based approach to relaxed quadratic stabilization of T–S fuzzy control systems,” IEEE Trans. on Fuzzy Systems, vol. 14, no. 3, 2006, pp. 386-397.
[23] K. Tanaka, H. Ohtake, and H. O. Wang, “A descriptor system approach to fuzzy control system design via fuzzy lyapunov functions,” IEEE Trans. on Fuzzy Systems, vol. 15, no. 3, 2009, pp. 333-341.
[24] B. C. Ding, H. Sun, and P. Yang, “Further studies on LMI-based relaxed stabilization conditions for nonlinear systems in Takagi–Sugeno’s form,” Automatica, vol 42, 2006, pp. 503-508.
[25] T. M. Guerra, and L. Vermeiren, “LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi–Sugeno’s form,” Automatica, vol 40, 2004, pp. 823-829.
[26] H. K. Lam, and F. H. F. Leung, “LMI-based stability and performance conditions for continuous-time nonlinear systems in Takagi–Sugeno’s form,” IEEE Trans. on Systems, vol. 37, no. 5, 2007, pp. 1396-1406.
[27] H. -N. Wu, “Delay-dependent stability analysis and stabilization for discrete-time fuzzy systems with state delay: a fuzzy Lyapunov–Krasovskii functional approach,” IEEE Trans. on Systems, vol. 36, no. 4, 2006, pp. 954-962.
[28] K. Guelton, N. Manamanni and D. Jabri, “H-infinity decentralized static output feedback controller design for large scale Takagi-Sugeno systems,” IEEE International Conference on Systems, Reims, 2010, pp. 1–7.
[29] Y. Sun, Y. Shen and Z. Ji, “Nonquadratic lyapunov function based control law design for discrete fuzzy systems with state and input delays,” American Control Conference, Washington, USA, 2008, pp. 4887–4892.
[30] W. Yan, Y. Sun and Z. Ji, “Nonquadratic Lyapunov function based control law design for time-delay fuzzy systems,” Proceedings of the 27th Chinese Control Conference, Yunnan, China, 2008, pp. 673–677.
[31] C. -H. Lien, and K. -W. Yu, “Robust control for Takagi–Sugeno fuzzys systems with time-varying state and input delays,” Chaos, Solitons and Fractals, vol.35, no. 5, 2008, pp. 1003-1008.
[32] B. -J. Rhee and S. Won, “A new fuzzy Lyapunov function approach for a Takagi–Sugeno fuzzy control system design,” Fuzzy Sets and Systems, vol. 157, no. 9, 2006, pp. 1211–1228.
[33] J. C. Lo and C. M. Zhang, “Relaxation analysis via line integral,” IEEE Fuzzy, Korea, 2009.
[34] L. Li and X. Liu, “New results on delay-dependent robust stability criteria of uncertain fuzzy systems with state and input delays,” Information Sciences, vol. 179, no. 8, 2009, pp. 1134–1148.
[35] H. -N. Wu and H. -X. Li, “New approach to delay-dependent stability analysis and stabilization for continuous-time fuzzy systems with time-varying delay,” IEEE Trans. on Systems, vol. 15, no. 3, 2007, pp. 482-493.
[36] X. P. Guan and C. L. Chen, “Delay-dependent guaranteed cost control for T–S fuzzy systems with time delays,” IEEE Transactions on Fuzzy Systems, vol.12, 2004, pp. 236-249.
[37] B. Chen, X. P. Liu and S. C. Tong, “New delayd-ependent stabilization conditions of T–S systems with constant delay,” Fuzzy Sets and Systems, vol. 158, 2007, pp. 2209–2224.
[38] C. Lin, Q.G. Wang and T. H. Lee, “Delay-dependent LMI conditions for stability and stabilization of T–S fuzzy systems with bounded time-delay,” Fuzzy Sets and Systems, vol.157, 2006, pp. 1229-1247.
[39] F. Liu, M. Wu, Y. He and R. Yokoyama, “New delay-dependent stability criteria for T–S fuzzy systems with time-varying delay,” Fuzzy Sets and Systems, vol. 161, 2010, pp. 2033-2042.
[40] H. J. Lee, J. B. Park, and Y. H. Joo, “Robust control for uncertain Takagi–Sugeno fuzzy systems with time-varying input delay,” ASME J Dyn Syst Meas Control, vol. 127, no. 2, 2005, pp. 302-307.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊