跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/27 11:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林信宏
研究生(外文):Shin-Hung Lin
論文名稱:應用模糊貝氏網路模型於GSM網路基地台控制器故障之分析
論文名稱(外文):Applying Fuzzy Bayesian Networks to BSC Failure Analysis in GSM Networks
指導教授:陳文輝陳文輝引用關係
指導教授(外文):Wen-Hui Chen
口試委員:呂俊良許志旭
口試委員(外文):Jun-Liang LuChin-Hsu Hsu
口試日期:2012-06-26
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:自動化科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:55
中文關鍵詞:告警處理貝氏網路故障分析模糊邏輯全球行動通訊網路
外文關鍵詞:Alarm processingBayesian networksFault analysisFuzzy logicGSM networks
相關次數:
  • 被引用被引用:0
  • 點閱點閱:165
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
全球行動通訊系統可分為基地台子系統與交換核心子系統兩大部份。由於基地台子系統其元件眾多導致告警量極為龐大,因此當網路障礙發生時要快速判斷出故障點是非常之困難。對系統監控人員而言,除了保持網路能穩定且順暢的運作之外,更重要的是當障礙發生時,如何將告警去蕪存菁,並快速找出故障點。
本文採用模糊貝氏網路模型進行基地台控制器故障之分析,並將其應用於無線網路端之告警監控。經歸納分析專家經驗結合此模型過濾告警後,依重要告警推論出可能之故障點並即時回報給監控人員。經過多次的模擬實驗,得到的數據結果符合人為故障診斷的紀錄結果,顯示此作法確實能協助系統監控人員快速找到重要告警並準確推論出故障點,從而減低故障發生時間並增進系統穩定性及可靠度來提升通訊品質。

Global system for mobile communications can be divided into two major parts: base station subsystem and network switching subsystem. The great number of components of base station subsystem can lead to an extremely high volume of alarms. Therefore, it is very difficult to find out the root cause of fault shortly when network is break down. For system supervisor, it is important to keep network running smoothly, but what is even more important is to filter useless alarms and conduct trouble shooting quickly when network break down.
This study used fuzzy Bayesian networks as the model for analyzing the breakdowns of base station controllers. The model was also applied for alarm monitoring at the base station subsystem network. After summarizing and analyzing experience of experts and integrating the alarm filtering model, possible fault points can be determined from important alarms and be instantly reported to system supervisor. After various simulations, the experimental results qualified those manually diagnosed fault records. Therefore, this approach can truly help system supervisor quickly find out the most important alarm and correctly determine the root cause of fault. It can finally shorten the duration of breakdown, increase system stability and reliability to improve communication performance in GSM networks.

中文摘要 ...................................................................................................... i
英文摘要 ...................................................................................................... ii
誌謝 ............................................................................................................. iii
目錄 ............................................................................................................. iv
表目錄 ......................................................................................................... v
圖目錄 ......................................................................................................... vi
第一章 緒論 .............................................................................................. 1
1.1 研究背景 ..................................................................................... 1
1.2 研究動機與目的 ......................................................................... 4
1.3 文獻探討 ..................................................................................... 4
1.4 章節規劃 ..................................................................................... 6
1.5 本文貢獻 ..................................................................................... 6
第二章 GSM網路概要............................................................................. 7
2.1 GSM網路 .................................................................................... 7
2.2 GSM 基地台無線網路 ............................................................... 9
2.3 基地台控制器硬體結構 ............................................................. 11
第三章 問題描述與處理方法 .................................................................. 15
3.1 問題描述 ..................................................................................... 15
3.2 既往處理方法 ............................................................................. 16
3.3 現行處理方法 ............................................................................. 20
第四章 模糊貝氏網路模型概要 .............................................................. 26
4.1 貝氏定理 ..................................................................................... 26
4.2 圖形機率 ..................................................................................... 28
4.3 貝氏網路 ..................................................................................... 29
4.4 模糊理論 ..................................................................................... 33
第五章 應用與模擬驗證 .......................................................................... 35
5.1 模糊貝氏網路模型應用於基地台控制器故障診斷 .................. 36
5.2 驗證及模擬環境 ......................................................................... 43
第六章 結論與未來展望 .......................................................................... 50
6.1 心得 ............................................................................................ 50
6.2 未來展望 ..................................................................................... 50
參考文獻 ...................................................................................................... 52

[1] IEK產業情報網, “2011年第三季我國通訊產業回顧與展”, 網址: http://ieknet.iek.org.tw/BookView.do?rptidno=178827815, 2012年5月15日。
[2] F. S. Wen and C. S. Chang, “Tabu search approach to alarm processing in power systems,” Generation, Transmission and Distribution, IEEE Proceedings, vol. 144, no. 1, 1997, pp. 31-38.
[3] N. Y. Jan, S. C. Lin, S. S. Tseng and N. P. Lin, “A decision support system for constructing an alert classification model,” Expert Systems with Applications, vol. 36, no. 8, 2009, pp. 11145–11155.
[4] L. Kiernan and K. Warwick, “Adaptive alarm processor for fault diagnosis on power transmission networks,” Intelligent Systems Engineering, vol. 2, no. 1, 1993, pp.25-37.
[5] T. Miyazaki, M.W. Kim and M. Wakamoto, “Dynamic operation and maintenance systems for switching networks,” IEEE Communications Magazine, vol. 28, no. 9, 1990, pp. 34-49.
[6] P. Y. Lee and A.M.K. Cheng, "HAL: A faster match algorithm," IEEE Transactions on Knowledge and Data Engineering, vol. 14, no. 5, 2002, pp. 1047-1058.
[7] D. J. Spiegelhalter, A. P. Dawid, S. L. Lauritzen and R. G. Cowell, “Bayesian analysis in expert systems,” Statistical Science, vol. 8, no. 3, 1993, pp. 219-247.
[8] Y. Lei, Z. J. He and Y. Y. Zi, “Application of an intelligent classification method to mechanical fault diagnosis,” Expert Systems with Applications, vol. 36, no. 6, 2009, pp. 9941-9948.
[9] R. Barco et al., “Knowledge acquisition for diagnosis model in wireless networks,” Expert Systems with Applications, vol. 36, no. 3, 2009, pp. 4745-4752.
[10] T. Y. Li and X. M. Li, “Preprocessing expert system for mining association rules in telecommunication networks,” Expert Systems with Applications, vol. 38, no. 3, 2011, pp. 1709-1715.
53
[11] C. A. Protopapas, K. P. Psaltiras and A. V. Machias, “An expert system for substation fault diagnosis and alarm processing,” IEEE Transactions on Power Delivery, vol. 6, no. 2, 1911, pp. 648-655.
[12] K. Becker et al., “Design and validation of an intelligent patient monitoring and alarm system based on a fuzzy logic process model,” Artificial Intelligence in Medicine, vol. 11, no. 1 , 1997, pp. 33-53.
[13] H. Tanaka, L. T. Fan, F. S. Lai and K. Toguchi, “Fault-tree analysis by fuzzy probability,” IEEE Transactions on Reliability, vol. R-32, no. 5, 1983, pp. 453-457.
[14] W. Yang, K. Y. Lee, S. T. Junker and H. Ghezel-Ayagh, “Fuzzy fault diagnosis and accommodation system for hybrid fuel-cell/gas-turbine power plant,” IEEE Transactions on Energy Conversion, vol. 25, no. 4 , 2010, pp. 1187-1194.
[15] H. Y. Yuan, G. J. Chen and Y. L. Xie, “Feature evaluation and extraction based on neural network in analog circuit fault diagnosis,” Systems Engineering and Electronics, vol. 18, no. 2, 2007, pp. 434-436.
[16] S. C. Tan and C. P. Lim, “Application of an adaptive neural network with symbolic rule extraction to fault detection and diagnosis in a power generation plant,” IEEE Transactions on Energy Conversion, vol. 19, no. 2, 2004, pp. 369-377.
[17] C. S. Liu, S. J. Zhang and S. S. Hu, “Adaptive neural-networks-based fault detection and diagnosis using unmeasured states,” Control Theory & Applications, vol. 2, no. 12, 2008, pp. 1066-1076.
[18] H. Tang and S. Liu, “Basic Theory of Fuzzy Bayesian Networks and Its Application in Machinery Fault Diagnosis,” Fourth International Conference on Fuzzy Systems and Knowledge Discovery, Haikou, Hainan, 2007, pp. 132-137.
[19] C. Y. Lin, J. X. Yin, L. H. Ma and J. Y. Chen, “An Intelligent Model Based on Fuzzy Bayesian Networks to Predict Astrocytoma Malignant Degree,” IEEE Conference on Cybernetics and Intelligent Systems, Bangkok, Thailand, 2006, pp. 1-5.
[20] Z. C. Qiu and J. P. Zeng, “Fuzzy Bayesian networks and its application in pressure equipment''s security alerts,” Seventh International Conference on Natural
54
Computation, Shanghai, China, 2011, pp. 1507-1511.
[21] T. S. Ashkezari, “Fuzzy-Bayesian network approach to genre-based recommender systems,” IEEE International Conference on Fuzzy Systems, Barcelona, Spain, 2010, pp. 1-7.
[22] T. Farely and K. Schmidt, “Architecture of the GSM network”, Internet: http://www.privateline.com/mt_gsmhistory/04_architecture_of_the_gsm_network/, May 20, 2012.
[23] Nortel Networks, BSC/TCU 3000 reference manual, France: Nortel Networks , 2005, pp. 46-50.
[24] The Hugin Development Environment, “Introduction to Bayesian networks”, Internet: http://data.biotracer.hugin.com/htmlhelp/bn_pane.html, July 1, 2012.
[25] L. X. Wang and J. M. Mendel, “Generating fuzzy rules by learning from examples,” IEEE Transactions on Systems Man and Cybernetics, vol. 22, no. 6, 1992, pp. 1414-1427.
[26] G. Chen and D. Zhang, “Back-driving a truck with suboptimal distance trajectories: a fuzzy logic control approach,” IEEE Transactions on Fuzzy Systems, vol. 5, no. 3, 1997, pp. 369-380.
[27] P. Cingolani, “Open source fuzzy logic library and FCL language implementation”, Internet: http://jfuzzylogic.sourceforge.net/html/index.html, May 15, 2012.
[28] AIspace, “Tools for learning artificial intelligence”, Internet: http://www.aispace.org/index.shtml, May 20, 2012.
[29] jBNC, “Bayesian network classifier toolbox”, Internet: http://jbnc.sourceforge.net/, May 22, 2012.
[30] F. Wen and C. S. Chang, “A probabilistic approach to alarm processing in power systems using a refined genetic algorithm,” ISAP ''96. International Conference on Intelligent Systems Applications to Power Systems, Orlando, Florida, 1996, pp. 14-19.
[31] M. I. Jordan and Y. Weiss, “Graphical models: Probabilistic inference,” The Handbook of Brain Theory and Neural Networks, 2nd edition, MA: MIT
55
Press.
[32] B. J. Frey and N. Jojic, “A comparison of algorithms for inference and learning in probabilistic graphical models,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 9, 2005, pp. 1392-1416.
[33] W. H. Chen, “Online fault diagnosis for power transmission networks using fuzzy digraph models,” IEEE Transactions on Power Delivery, vol. 27, no. 2, 2012, pp. 688–698.
[34] L. A. M. Riascosa, M. G. Simoesb and P. E. Miyagic, “A Bayesian network fault diagnostic system for proton exchange membrane fuel cells,” Journal of Power Sources, vol. 165, no. 1, 2007, pp. 267–278.
[35] D. Leung and J. Romagnoli, “Dynamic probabilistic model-based expert system for fault diagnosis,” Computers & Chemical Engineering, vol. 24, no. 11, 2000, pp. 2473–2492.
[36] C. J. Lee and K. J. Lee, “Application of Bayesian network to the probabilistic risk assessment of nuclear waste disposal,” Reliability Engineering & System Safety, vol. 91, no. 5, 2006, pp. 515–532.
[37] B. G. Xu, “Intelligent fault inference for rotating flexible rotors using Bayesian belief network,” Expert Systems with Applications, vol. 39, no. 1, 2012, pp. 816–822.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top