跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/03 22:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:DuongDucHieu
研究生(外文):Duong Duc Hieu
論文名稱:條紋結構光投射輪廓術之相位校正與補償方法研究
論文名稱(外文):Research on phase calibration and compensation methodology for 3D fringe projection profilometry
指導教授:陳亮嘉陳金聖陳金聖引用關係葉勝利
指導教授(外文):Liang-Chia ChenChin-Sheng ChenSheng-Lih Yeh
口試委員:林世聰
口試委員(外文):Shyh-Tsong Lin
口試日期:2012-07-20
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:自動化科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:58
中文關鍵詞:相位校正
外文關鍵詞:sinusoidal fringephase shiftingsine patternphase correctioncompensation functionwhite flat plane.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:216
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
Structured light projection or fringe projection is one of most important methods for measurement of three-dimensional object surface due to the advantage of fast speed, high precision, non-destruction and full-field testing. However, the big challenge of the method is how to overcome non-sinusoidal phase error, phase shift miscalibration errors of moving system that affect the result of shape measurement.
This thesis presents an effectiveness error-compensation methodology for phase shifting profilometry. To compensate phase errors the sinusoidal fringe is projected on the white flat plane, after that image is captured by camera to analyze phase errors. The non-sinusoidal phase error of the system approximate as a periodic sinusoidal function with its period related to the phase-shifting steps of measured phase period while phase shifted error has the similar approximation but with double of the period. Hence, we can create a function to compensate for non-sinusoidal phase error and phase shift miscalibration error. The function is used for phase calibration during working on real target.
Experimental results show that the proposed method is feasible for effective phase error compensation in phase shifting method.


Structured light projection or fringe projection is one of most important methods for measurement of three-dimensional object surface due to the advantage of fast speed, high precision, non-destruction and full-field testing. However, the big challenge of the method is how to overcome non-sinusoidal phase error, phase shift miscalibration errors of moving system that affect the result of shape measurement.
This thesis presents an effectiveness error-compensation methodology for phase shifting profilometry. To compensate phase errors the sinusoidal fringe is projected on the white flat plane, after that image is captured by camera to analyze phase errors. The non-sinusoidal phase error of the system approximate as a periodic sinusoidal function with its period related to the phase-shifting steps of measured phase period while phase shifted error has the similar approximation but with double of the period. Hence, we can create a function to compensate for non-sinusoidal phase error and phase shift miscalibration error. The function is used for phase calibration during working on real target.
Experimental results show that the proposed method is feasible for effective phase error compensation in phase shifting method.


Abstract I
Acknowledgments II
Table of Contents III
List of table V
List of figure VI
Chapter 1: INTRODUCTION 1
1.1 Structured light techique 1
1.1.1 Moiré contouring 1
1.1.2 Phase shifting profilometry 4
1.1.3 Digital fringe projection 6
1.2. Error analysis 6
1.2.1 Phase shifted error 7
1.2.2 Non-sinusoidal error 8
1.2.3 Image defocusing error 8
1.2.4 Non-linearity error 9
1.3 Problems 9
1.4 Objectives 10
1.5 Thesis structure 10
Chapter 2: LITERATURE REVIEW 11
2.1 Elimination of phase shifted error 11
2.1.1 Linear moving system 11
2.1.2 Least-squares algorithm 12
2.1.3 Calibration-insensitive algorithm 13
2.2 Elimination of non-sinusoidal error and non-linearity error 14
2.2.1 Gamma correction method 14
2.2.2 Iterative method 17
2.3 Elimination of image defocusing error 20
Chapter 3: METHODOLOGY 22
3.1 Typical 3D shape measurement setup 22
3.2 Basic idea of phase correction 22
3.3 Remove background 23
3.4 Systematic error 25
3.5 Phase shifted error 29
3.5.1 Estimation of phase shifted error 29
3.5.2 Simulation and demonstration results 30
3.6 Non-sinusoidal error 33
3.6.1 Estimation of non-sinusoidal error 33
3.6.2 Demonstration results 35
3.7 Principle 37
3.8 Limitation 40
Chapter 4: EXPERIMENT RESULTS 42
4.1 Experiment setup 42
4.2 Results on flat target 45
4.3 Results on standard sphere target 49
4.5 Results on real target 50
Chapter 5: CONCLUSIONS AND FUTURE WORKS 52
5.1 Conclusions 52
5.2 Discussions 52
5.3 Future works 53
References 54


[1]Bing Pan, Qian Kemao, Lei Huang, and Anand Asundi, “Phase error analysis and compensation for nonsinusoidal waveforms in phase-shifting digital fringe projection profilometry”, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798, Singapore, OPTICS LETTERS, Vol. 34, No. 4, 2009 Optical Society of America, pp. 416-418.
[2]Kjell J. G˚ asvik, Optical Metrology-Third Edition, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,West Sussex PO19 8SQ, England, pp 186-204.
[3]Wang Hongjun ,Wang Zhao , Zhao Hong , Tian Ailing , Liu Bingcai “Research on Effects of Phase Error in Phase-Shifting Interferometer”, 3rd International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical Test and Measurement Technology and Equipment, Proc. of SPIE Vol. 6723, 2007, pp 67233W-1-6.
[4]Song Zhang and Shing-Tung Yau, “Generic nonsinusoidal phase error correction for three-dimensional shape measurement using a digital video projector”. Applied Optics, Vol. 46, No. 1, 1 January 2007, pp. 36-43.
[5]Hongwei Guo, Haitao He, and Mingyi Chen, “Gamma correction for digital fringe projection profilometry”, APPLIED OPTICS , Vol. 43, No. 14, 10 May 2004, pp. 2906-2914.
[6]K. Hibino, B. F. Oreb, and D. I. Farrant, K.G. Larkin, “Phase shifting for nonsinusoidal waveforms with phase-shift errors”, J. Opt. Soc. Am. A,Vol. 12, No. 4, April 1995, pp. 761-768.
[7]Sheng-Wen Shih, Po-Shan Kao, and Wei-Shin Guo, “An Error Bound of Relative Image Blur Analysis”, 17th International Conference on Pattern Recognition (ICPR’04), 1051-4651/04.
[8]Eryi Hu, Yuan Hu, “The fluctuating phase error analysis in the digital grating phase-shifting profilometry”, 2010 Elsevier, Optik 122, pp. 190–197.
[9]Tien-Tung Chung, Meng-Hung Shih, “Intensity error correction for 3D shape measurement based on phase-shifting method”, Seventh International Symposium on Precision Engineering Measurements and Instrumentation, Proceedings of the SPIE, Volume 8321, pp. 83213P-83213P-8.
[10]Y. Surrel, “Phase stepping: a new self-calibrating algorithm”, Applied Optics, Vol. 32, Issue 19, pp. 3598-3600.
[11]Song Zhang, “High-resolution, Real-time 3-D Shape Measurement”, 2005 Stony Brook University.
[12]Yi-Bae Choi, Seung-Woo Kim, “Phase-shifting grating projection moiré topography”, 1998 Society of Photo-Optical Instrumentation Engineers, Optical Engineering 37(03), pp. 1005-1010.
[13]Matthew J. Baker, Joe Chicharo, Jiangtao Xi and Enbang Li, “Accuracy limitations introduced by digital projection sources in profilometric optical metrology systems”, 2004 Conference on Optoelectronic and Microelectronic Materials and Devices, IEEE 2004, December 2004, pp. 261 - 264.
[14]Joanna Schmit and Katherine Creath, “Extended averaging technique for derivation of error-compensating algorithms in phase-shifting interferometry”, Applied Optics, Vol. 34, Issue 19, 1995, pp. 3610-3619.
[15]In-Bok Kong, Seung-Woo Kim, “Portable inspection of precision surfaces by phase-shifting interferometry with automatic suppression of phase-shift errors”, 1995 Society of Photo-Optical Instrumentation Engineers, Optical Engineering 34(05), pp. 1400-1404.
[16]Yeou-Yen Cheng and James C. Wyant, “Phase shifter calibration in phase-shifting interferometry”, 1985 Optical Society of America, Applied Optics, Vol. 24, Issue 18, 1985, pp. 3049-3052.
[17]Jiří Novák, Pavel Novák, Antonín Mikš, “Multi-step phase-shifting algorithms insensitive to linear phase shift errors”, Optics Communications , Volume 281, Issue 21, 1 November 2008, pp. 5302–5309.
[18]Luca Palchetti, Giovanni Bianchini, Ugo Cortesi, Enzo Pascale, and Clare Lee,”Assessment of Detector Nonlinearity in Fourier Transform Spectroscopy”, 2001, 271-274, Applied Spectroscopy, Vol. 56, Issue 2, pp. 271-274.
[19]Georg H. Notni, Gunther Notni, “Digital Fringe Projection in 3D Shape Measurement - an Error Analysis”, SPIE, SPIE Proceedings Series 5144, 2003, pp.372-380.
[20]J. Schwider, R. Burow, K.-E. Elssner, J. Grzanna, R. Spolaczyk, and K. Merkel, “Digital wave-front measuring interferometry: some systematic error sources”, 1983 Optical Society of America, Applied Optics, Vol. 22, Issue 21, pp. 3421-3432.
[21]Peter de Groot, “Design of error-compensating algorithms for sinusoidal phase shifting interferometry”, 2009 Optical Society of America, Applied Optics, Vol. 48, Issue 35, pp. 6788-6796.
[22]Yang Liu, Jiangtao Xi, Yanguang Yu and Joe Chicharo, “Phase error correction based on Inverse Function Shift Estimation in Phase Shifting Profilometry using a digital video projector”, Optical Metrology and Inspection for Industrial Applications, Proceedings of the SPIE, Volume 7855, 2010, pp. 78550W-78550W-8.
[23]Suodong Ma, Chenggen Quan, Cho Jui Tay, Rihong Zhua, Bo Li, “Phase error correction for digital fringe projection profilometry”, , ICOPEN 2011 conference Physics Procedia 19, 2011, pp. 227–232.
[24]María B. Bernini, Alejandro Federico, and Guillermo H. Kaufmann, “Normalization of fringe patterns using the bidimensional empirical mode decomposition and the Hilbert transform”, 2009 Optical Society of America, Applied Optics, Vol. 48, Issue 36, 2009, pp. 6862-6869.
[25]Zhaoyang Wang , Bongtae Han, “Advanced iterative algorithm for randomly phase-shifted interferograms with intra- and inter-frame intensity variations”, Optics and Lasers in Engineering, Volume 45, Issue 2, 2005, pp. 274-280.
[26]Song Zhang, Peisen S. Huang, “Phase error compensation for a 3-D shape measurement system based on the phase-shifting method”, 2007 Society of Photo-Optical Instrumentation Engineers, Optical Engineering, vol. 46, issue 6, 2006, pp. 063601.
[27]Shuangyan Lei and Song Zhang, “Flexible 3-D shape measurement using projector defocusing”, 2009 Optical Society of America, Optics Letters, Vol. 35, Issue 7, 2010, pp. 934-936.
[28]Wang Hongjun, Wang Zhao, Zhao Hong, Tian Ailing, Liu Bingcai, “Research on Effects of Phase Error in Phase-Shifting Interferometer”, 3rd International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical Test and Measurement Technology and Equipment, 2007, Proceedings of the SPIE, Volume 6723, pp. 67233W.
[29]Peisen S. Huang, Chengping Zhang, Fu-Pen Chiang, “High-speed 3-D shape measurement based on digital fringe projection”, 2003 Society of Photo-Optical Instrumentation Engineers, Optical Engineering, Volume 42, 2003, pp. 163-168.
[30]Peter J. de Groot, and Leslie L. Deck, “New algorithms and error analysis for sinusoidal phase shifting interferometry”, Interferometry XIV: Techniques and Analysis, Proceedings of the SPIE, Volume 7063, 2008, pp. 70630K-70630K-14.
[31]M. J. Baker, J. Xi and J. F. Chicharo, “Elimination of γ Non-linear Luminance Effects for Digital Video Projection Phase Measuring Profilometers”, 4th IEEE International Symposium on Electronic Design, Test & Applications, IEEE, 2008, pp. 496 – 501.
[32]Peisen S. Huang and Song Zhang, “Fast three-step phase-shifting algorithm”, 2006 Optical Society of America, Applied Optics, Vol. 45, Issue 21, 2006, pp. 5086-5091.
[33]Yuanzheng Gong and Song Zhang, “Ultrafast 3-D shape measurement with an off-the-shelf DLP projector”, 2010 OSA, Optics Express, Vol. 18, Issue 19, 2010, pp. 19743-19754.
[34]Song Zhang, Shing-Tung Yau, “High dynamic range scanning technique”, 2009 Society of Photo-Optical Instrumentation Engineers, Optical Engineering, Volume 48, Issue 3, 2009, pp. 033604-033604-7.
Liang-Chia Chen, and Li-Hsiang Tsai, “Dual Phase-shifting Moiré Projection with Tunable High Contrast Fringes for Three-Dimensional Microscopic Surface Profilometry”, ICOPEN 2011 conference, Physics Procedia, Volume 19, 2011, 2011, pp. 67–75.
[35]M. Takeda, K. Mutoh, “Fourier transform profilometry for the automatic measurement of 3-d object shapes”, Applied Optics, Volume 22, Issue 24, December 15, 1983, pp.3977-3982.
[36]http://en.wikipedia.org/wiki/Autofocus#Phase_detection


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top