跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/30 16:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉育成
研究生(外文):Yu-Cheng Liu
論文名稱:模仿人類動作下的機器手臂姿態與端點軌跡規劃
論文名稱(外文):Gesture and End-Effector Trajectory Planning of Robot Manipulator using Human Motion Imitation
指導教授:林顯易
口試委員:林沛群林志哲張文中
口試日期:2012-07-24
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:自動化科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:81
中文關鍵詞:人類動作模仿多重任務逆向亞可比FABRIK即時性控制
外文關鍵詞:Human motion imitationInverse Jacobian with Multi-taskFABRIKon-line.
相關次數:
  • 被引用被引用:1
  • 點閱點閱:254
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文希望借由人類動作來驅使機器手臂完成即時性的特定路徑軌跡任務。期望達到直覺性和高靈敏性的控制。故本研究分成三大部分,首先介紹將機器手臂(模仿者)模仿人類(示範者)動作時所需使用的方法,其中我們會比較提出的兩種演算法,方便於示範者活動的Single Marker Algorithm 和較精準的 Triple Marker Algorithm。接下來就是逆向運動學的部份。我們使用了兩種方法,多重任務逆向亞可比方程式以及Forward And Backward Reaching Inverse Kinematics (FABRIK),配合人類動作,使機器人不只能完成末端軌跡規劃,同時也能控制機器手臂部位(Link),隨著人類之意志來完成避障的功能。值得探討的是,傳統多重任務逆向亞可比方法,存在著演算法奇異的問題,使其找到錯誤解或無法找出解,在此,我們提出了改善的方法,讓多重任務逆向亞可比方法更適合完成我們所要求的任務。另一方面,FABRIK有著運算快速的優點,但它在相似度的比較上就較沒亞可比來得出色。最後,為了讓機器手臂能順利跟隨著人類動作,故我們提出了軌跡對應的方法,使機器手臂能跟隨著人類在特定的軌跡上做即時性的前進以及後退。而這三個部份整合的效果,將在論文最後章節的實驗與模疑來呈現。透過伴隨著移動式的障礙物實驗來分析以及展現動作相似度,以及改進成果。

In order to operate a redundant robot arm to accomplish the path planning, and intuitively control its posture simultaneously in on-line programming, incorporating the human motion is a useful and flexible option. We have introduced the human motion imitation, Inverse Kinematics problem and mapping algorithm in our thesis.
First, we discuss motion capture and data processing. We introduce how to translate human motion to a robot arm, and discuss the advantages and drawbacks of the proposed methods. Secondly, we discuss two appropriate methods to address the inverse kinematics problem, namely the Inverse Jacobian with Multi-tasking method, and Forward and Backward Reaching Inverse Kinematics (FABRIK) method. We propose how to augment the Inverse Jacobin with Multi-tasking method to solve two of the disadvantages. The main idea to solve those disadvantages is that exchanging the task priority while the algorithm is in progress results in a conflict between the primary task and the lower priority task. Thirdly, we have designed a mapping algorithm to control a robot to follow the trajectory of human motion on-line.
Finally, in the simulations and experiments, we have compared those algorithms we have discussed: accuracy, similarity and computation time. The results show that a robot or model can imitate the human motion institutively and flexibly on-line.


中文摘要 i
ABSTRACT ii
誌 謝 iv
Contents v
List of Tables vii
List of Figures viii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Conceptual architecture 2
1.3 Survey of related researches 5
1.3.1 Redundant robot control 5
1.3.2 Robot control with human motion 7
1.3.3 Teleoperation 9
1.4 Contributions 10
1.5 Thesis organization 10
Chapter 2 Coordinate Transformation by Human Motion Capture 11
2.1 Previous works 11
2.1.1 Motion capture system 11
2.1.2 Human to robot motion transformation 12
2.2 System architecture 13
2.3 Motion capture system 14
2.4 Master Motor Map (MMM) 15
2.5 Proposed method of human motion capture 17
2.5.1 Single Marker method 17
2.5.2 Triple Markers method 21
2.6 Comparison of the two methods 24
2.7 Numerical experiments 26
Chapter 3 Human Motion Imitation with Human Robot arm Path Planning 29
3.1 Objective 29
3.2 Inverse kinematics 30
3.2.1 Introduction 30
3.2.2 Jacobian inverse 32
3.2.3 The Jacobian transpose 32
3.2.4 Pseudo-inverse 33
3.2.5 Damped Least Squares 34
3.2.6 Singular Value Decomposition 35
3.3 Inverse Jacobian with Multi-task planning 36
3.3.1 Previous work 36
3.3.2 Formulation 38
3.3.3 Execution 39
3.4 Forward And Backward Reaching Inverse Kinematics (FABRIK) 42
3.4.1 Un-constraint 42
3.4.2 Incorporating the Orientation constraints 45
3.4.3 Execution 46
3.5 Problem description 49
3.6 Formulation Augment 54
Chapter 4 Experimental Procedure and Results 60
4.1. Hardware and software architecture 60
4.2. Mapping algorithm 64
4.3. Experimental results 66
4.4. Comparison of computation time and similarity 70
Chapter 5 Conclusions and Future works 74
Reference 76


Reference

[1]K. Ikeda, H. Tanaka, T. Zhang, M. Minami and Y. Mae, “On-line Optimization of Avoidance Ability for Redundant Manipulator.” Proceeding of the 2006 IEEE/RSJ, International Conference on Intelligent Robots and Systems, Beijing, China, 2006, pp.592-597.
[2]M. Minami, Y. Nomura and T. Asakura,“Avoidance Manipulability of Redundant Manipulators.” Journal of Robotics Society, Japan, 1999, vol.17, no.6, pp.887-895.
[3]F. Padula and V. Perdereau, “A New Pseudoinverse for Manipulator Collision Avoidance.” International Federation of Automatic Control. Milano, 2011, pp. 14687-14692.
[4]D. Bertram, J. Kuffner, R. Dillmann and T. Asfour, “An Integrated Approach to Inverse Kinematics and Path Planning for Redundant Manipulators.” Proceddings of the 2006 IEEE, International Conference on Robotics and Automation, Orlando, Florida, May, 2006, pp. 1874-1879.
[5]M. V. Weghe, D. Ferguson, and S. Srinivasa, “Randomized path planning for redundant manipulators without inverse kinematics,” IEEE-RAS International Conference on Humanoid Robots, November, 2007, pp. 477-482.
[6]B. Lacevic, P. Rocco and M. Strandberg, “Safe motion planning for articulated robots using RRTs.” Information, Communication and Automation Technologies, 2011 IEEE, International Symposium on, Oct, 2011.
[7]D. Berenson, S. Srinivasa, D. Ferguson, A. Collet, and J. Kuffner“Manipulation planning with workspace goal regions,” IEEE International Conference, on Robotics and Automation, Kobe, Japan, 2009.
[8]S. Kim, C. Kim, and J.H. Park, ”Human-like arm motion generation for humanoid robots using motion capture database”, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2006.
[9]C. H. Kim, S. Kim, S. Ra and B. J. You, “Regenerating Human-like Arm Motions of Humanoid Robots for a Movable Object.” SICE Annual Conference 2007, Japan, Sept. 17-20, 2007.
[10]K. Kim, J. Lee, S. Kim, J. Lee, M. Jeong, C. Kim, and B. You, “Coordinated Task Execution by Humanoid Robot.” ICROS-SICE, International Joint Conference, 2009, pp. 3496-3503.
[11]S. Calinon and A. Billard, “Learning of Gestures by Imitation in a Humanoid Robot.” Cambridge, U.K.: Cambridge Univ. Press, 2005. In Press.
[12]C. A. Acosta-Calderon and H. Hu, “Robot imitation: Body schema and body percept.” Applied Bionics and Biomechanics, Mar. 2005, vol. 2, no. 3, pp. 131–148.
[13]M. Ruchanurucks, S. Nakaoka, S. Kudoh and K. Ikeuchi, “Humanoid Robot Motion Generation with Sequential Physical Constraints.” Proceeding of the 2006 IEEE International Conference on Robotics and Automation, Orlando, Florida, May, 2006, pp. 2649-2654.
[14]M. Ruchanurucks, S. Nakaoka, S. Kudoh, and K. Ikeuchi, “Generation of humanoid robot motions with physical constraints using hierarchical b-spline.” IEEE/RSJ International. Conference on Intelligent Robots and Systems, Edmonton, Alberta, Canada, 2005, pp. 1869 – 1874.
[15]M. Ruchanurucks, “Motion Optimization with Sequential Physical Constraints.” 2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Singapore, July 14-17, 2009. pp. 1852-1857.
[16]M. Ruchanurucks and S. Nakaoka, “Offline and Online Trajectory Generation with Sequential Physical Constraints.” Proceeding of the 2008 IEEE International Conference on Robotics and Biomimetics, Bangkok, Thailand, February 21-26, 2009.
[17]W. Suleiman, E. Yoshida, F. Kanehiro, J.-P. Laumond, and A. Monin,”On human motion imitation by humanoid robot.” Proceeding IEEE International Conference on Robotics and Automation, 2008.
[18]X. ZHAO, Q. HUANG, Z. PENG, and K. LI, “Humanoid kinematics mapping and similarity evaluation of humanoid motion based on human motion capture.” Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, Japan, September 2004.
[19]M. Do, P. Azad, T. Asfour, and R. Dillmann, “Imitation of Human Motion on a Humanoid Robot using Nonlinear Optimization.” International Conference on Humanoid Robots (Humanoids), Daejeon, Korea, 2008.
[20]B. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey of robot learning from demonstration,” Robotics Automation System, vol. 57, no. 5, pp. 469–483, 2009.
[21]J. Kofman, X. Wu, and T. J. Luu, “Teleoperation of a robot manipulator using a vision-based human-robot interface.” IEEE Transactions on Industrial Electronics, Oct, 2005, vol. 52, no. 5, pp. 1206–1219.
[22]H. I. Lin and C. L. Chen, “A Hybrid Control Policy of Robot Arm Motion for Assistive Robots.” Proceeding of the IEEE International Conference on Information and Automation, Shenzhen, China, June 2011. pp. 163-168.
[23]P. Azad, T. Asfour, and R. Dillmann, “Toward an Unified Representation for Imitation of Human Motion on Humanoids.” IEEE International Conference on Robotics and Automation (ICRA), 2007.
[24]A. Thobbi and W. Sheng, “Imitation learning of hand gestures and its evaluation for humanoid robots.” Proceeding of the IEEE International Conference on Information and Automation, Harbin, China, 2010, pp. 60–65.
[25]N. Lehment, D. Arsic, M. Kaiser, and G. Rigoll. “Automated pose estimation in 3D point clouds applying annealing particle filters and inverse kinematics on a GPU.” CVPR Workshop, 2010.
[26]P. L. Cheng “A Spherical Rotation Coordinate System for the Description of Three-Dimensional Joint Rotations.” Annals of Biomedical Engineering. 2000
[27]P. L. Cheng, “Joint rotation between two attitudes in the spherical rotation coordinate system.” Journal of Biomechanics, Oct 2004, vol. 37, no. 10, pp. 1475–1482.
[28]B. Almasri and F. B. Ouezdou, "Human-Like Motion Based On a Geometrical Inverse Kinematics and Energetic Optimization" 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems Acropolis Convention Center Nice, France, Sept, 22-26, 2008 , pp.640-646.
[29]T.Asfour and R. Dillmann, “Human-like Motion of a Humanoid Robot Arm Based on a Closed-Form Solution of the Inverse Kinematics Problem.” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), USA, Oct 27-31, 2003.
[30]M. Z. Al-Faiz, A. Ali and A. H. Miry, “Human Arm Inverse Kinematic Solution Based Geometric Relations and Optimization Algorithm.” International Journal of Robotics and Automation (IJRA), 2011, vol. 2, no. 4, pp. 245-255.
[31]A. Aristidou and J. Lasenby, “FABRIK: a fast, iterative solver for the inverse kinematics problem.” Graphical Models 73(5), 2011, pp. 243–260.
[32]A. Balestrino, G. De Maria, and L. Sciavicco, “Robust control of robotic manipulators” Proceedings of the 9th IFAC World Congress, 1984, vol. 5, pp. 2435-2440.
[33]W. A. Wolovich and H. Elliot, “A computational technique for inverse kinematics.” Proceeding 23rd IEEE Conference on Decision and Control, 1984, pp. 1359-1363.
[34]C. W. Wampler, “Manipulator inverse kinematic solutions based on vector formulations and damped least squares methods” IEEE Transactions on Systems, Man, and Cybernetics, 1986, pp. 93-101.
[35]Y. Nakamura and H. Hanafusa, “Inverse kinematics solutions with singularity robustness for robot manipulator control.” Journal of Dynamic Systems, Measurement, and Control, pp. 163-171, 1986.
[36]Maciejewski and C. Klein, “Obstacle avoidance for kinematically redundant manipulators in dynamically varying environments.” International Journal of Robotics Research, 1985, vol. 4, no. 3, pp. 109–117.
[37]L. Zlajpah, B. Nemec, “Kinematic Control Algorithms for On-line Obstacle Avoidance for Redundant Manipulators,” Proceeding of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Lausanne, 2002, pp. 1898-1903.
[38]B. Siciliano and J.-J. Slotine, “Ageneral framework for managing multiple tasks in highly redundant robotic systems,” Proceeding 5th International Conference Adv. Robotics, Pisa, Italy, 1991, pp. 1211–1216.
[39]P. Chiacchio, S. Chiaverini, L. Sciavicco, and B. Siciliano, “Closed-loop inverse kinematics schemes for constrained redundant manipulators with task space augmentation and task priority strategy,” International Journal Robotics Research, 1991, vol. 10, no. 4, pp. 410–425.
[40]S. Chiaverini. “Singularity-robust task-priority redundancy resolution for real-time kinematic control of robot manipulators.” IEEE Transactions on Robotics and Automation, 1997, vol. 13, no. 3, pp.398–410.
[41]G. Antonelli, F. Arrichiello, and S. Chiaverini. “The Null-Space based Behavioral control for autonomous robotic systems.” Journal of Intelligent Service Robotics, , printed January 2008, vol. 1, no. 1, pp. 27–39, online March 2007.
[42]G. Antonelli, F. Arrichiello, and S. Chiaverini, “Stability analysis for the null-space-based behavioral control for multi-robot systems.” Proceeding 47th IEEE Conference Decision Control 8th Eur. Control Conference, Cancun, Mexico, Dec. 2008, pp. 2463–2468.
[43]S. R. Buss and J. S. Kim, “Selectively damped least squares for inverse kinematics,” Journal of Graphics Tools, 2004, vol. 10, pp. 37–49.
[44]Baerlocher,P. and Boulic, R., “Task-Priority Formulations for the Kinematic Control of Highly Redundant Articulated Structures.” Proceeding of I998 IROS 1998, pp.323-329.


電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top